Universal physics of three bosons with isospin

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

2014, Apr. 10th

T. Hyodo, T. Hatsuda, Y. Nishida, Phys. Rev. C89, 032201(R) (2014)

Universal physics

- **Universal:** different systems share the identical feature
- **Critical phenomena around phase transition**
 - large correlation length $\boldsymbol{\xi}$
 - scaling, critical exponent, ...
 - liquid-gas transition ~ ferromagnet

N. Goldenfeld, "Lectures on phase transitions and the renormalization group" (1992)

Universal physics in few-body system

- large two-body scattering length |a|
- scaling, shallow bound state

$$a \rightarrow \lambda a, \quad E \rightarrow \lambda^{-2}E$$
 N [MeV] 4He [mK]
 $B_2 = \frac{1}{ma^2}$ B₂ 2.22 1.31
1/ma² 1.41 1.12

E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

strong

vdW

Efimov effect : attractive 1/R² for identical three bosons

V. Efimov, Phys. Lett. B 33, 563-564 (1970)

- infinitely many bound states
- discrete scale invariance --> limit cycle

P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463-437 (1999)

Pion interaction

ππ scattering length <-- chiral low energy theorem

S. Weinberg, Phys. Rev. Lett. 17, 616-621 (1966)

$$a^{I=0} \propto -\frac{7}{4} \frac{m_{\pi}}{f_{\pi}^2}, \quad a^{I=2} \propto \frac{1}{2} \frac{m_{\pi}}{f_{\pi}^2}$$

- $1/f_{\pi^2}$ ~ spontaneous breaking of chiral symmetry
- m_{π} ~ explicit breaking of chiral symmetry
- In nature, the scattering lengths are small <— m_{π} is small $a^{I=0}$ ~ -0.31 fm, $a^{I=2}$ ~ 0.06 fm / QCD scale ~ 1 fm
- If we can adjust m_{π} or f_{π} , |a| may be increased by $m_{\pi} \nearrow$ or $f_{\pi} \searrow$
 - sufficient attraction
 --> bound state in |=0
 --> diverging |a|
 - sigma: I=0 resonance

Tuning pion interaction

Increase pion mass

Lattice QCD/chiral EFT can tune the pion mass

6

Tuning pion interaction

Decrease pion decay constant

Chiral symmetry restoration ~ reduction of f_{π}

T. Hyodo, D. Jido, T. Kunihiro, Nucl. Phys. A848, 341-365 (2010)

==> Real experiment (in-medium symmetry restoration) !

Three pions with large scattering length

Three pions with isospin symmetry

Large |=0 scattering length

$$f_{I=0} = \frac{1}{-1/a - ip}, \quad f_{I=2} = 0$$

S-wave three-pion system in total |=1

 $\begin{pmatrix} |\pi \otimes [\pi \otimes \pi]_{I=0} \rangle_{I=1} \\ |\pi \otimes [\pi \otimes \pi]_{I=2} \rangle_{I=1} \end{pmatrix} = \begin{pmatrix} 1/3 & \sqrt{5}/3 \\ \sqrt{5}/3 & 1/6 \end{pmatrix} \begin{pmatrix} |[\pi \otimes \pi]_{I=0} \otimes \pi \rangle_{I=1} \\ |[\pi \otimes \pi]_{I=2} \otimes \pi \rangle_{I=1} \end{pmatrix}$

Three pions with large scattering length

Three pions with isospin breaking

Isospin breaking: $m_{\pi^{\pm}} = m_{\pi^{0}} + \Delta$ with $\Delta > 0$

- In the energy region $E \ll \Delta$, heavy π^{\pm} can be neglected.

Identical three-boson system with a large scattering length --> Efimov effect

Three pions with large scattering length

Coupled-channel effect

Two universal phenomena : existence of the coupled channel

$$z(|\mathbf{p}|) = \frac{2}{\lambda\pi} \int_0^\infty d|\mathbf{q}| \frac{|\mathbf{q}|}{|\mathbf{p}|} \ln\left(\frac{\mathbf{q}^2 + \mathbf{p}^2 + |\mathbf{q}||\mathbf{p}| + mB_3}{\mathbf{q}^2 + \mathbf{p}^2 - |\mathbf{q}||\mathbf{p}| + mB_3}\right) \frac{z(|\mathbf{q}|)}{\sqrt{\frac{3}{4}\mathbf{q}^2 + mB_3} - \frac{1}{a}}$$

 $2.41480 < \lambda < 3.66811$ $3.66811 < \lambda$

discrete scale invariance

 $\lambda < 2.41480$

E'

scale invariance

Both cases can be realized in three-pion systems.

Implication in hadron physics

- Numerical experiment by lattice QCD : $m_{\pi} \mathcal{I}$
 - Find the quark mass with which σ appears at threshold
 - Calculate the energy of three-pion system
 - Note: to confirm the Efimov effect, the simulation requires very high resolution.
- In-medium restoration of chiral symmetry : f_{π}
 - existence of shallow bound state(s) for $1/|a| \longrightarrow 0$
 - When the $\sigma(|=J=0)$ softens, $\pi^*(|=1, J=0)$ also softens simultaneously.
 - Note: o softening is difficult to confirm due to the final state interaction, mixing with quark number fluctuation, ...

Summary

Summary

Universal physics of three pions

Solution Large $\pi\pi$ scattering length (I=0) can be obtained by $m_{\pi} \mathcal{I}$ or $f_{\pi} \mathcal{I}$.

Universal phenomena with large a:

single bound state (isospin symmetry)
Efimov states (isospin breaking)

Consequence in hadron physics:

- realization in lattice QCD
- simultaneous softening of σ and π^{*}

T. Hyodo, T. Hatsuda, Y. Nishida, Phys. Rev. C89, 032201(R) (2014)