Structure of charmed baryons and their productions

Atsushi Hosaka, RCNP, Osaka APFB @ Hahndorf, AU, April 7-11

With Noumi, Shirotori, Kim, Sadato, Yoshida, Oka Motivated by the future JPARC experiments

Contents

- 1. Introduction
- 2. Structure: How $\rho\lambda$ modes appear in heavy baryons
- 3. Charmed baryon productions

Baryons with heavy quark(s) may disentangle light quark dynamics

 ρ

1. Introduction

Charmed baryons

What we expect with heavy quarks?

- Heavy spin becomes irrelevant and decouples
- \rightarrow Heavy quark spin symmetry
- Flavor SU(3) symmetry is broken
- \rightarrow Two modes (λ and ϱ) may be distinguished

Q + diquark → diquark motions + exitations

diquark spectroscopy

2. Structure: *How o*λ *modes appear in heavy baryons*

A heavy quark differentiate *diquark* motions = modes

As a consequence -- Decays

As a consequence -- Decays

 λ -mode: Q* decays by emitting a heavy meson Q-mode: (qq)* decays by emitting a pion

How they appear in excited B_c's
 → Mixing of the modes

qqQ systems

Quark model calculation with spin-spin interaction: Yoshida, Sadato, Hiyama, Oka, Hosaka

See how systems change as M_O is varied

Excitation spectrum

L=1 excited states: spin-spin interaction

Excitation spectrum

L=1 excited states: spin-spin interaction

Excitation spectrum

L=1 excited states: spin-spin interaction

Wave function

Mixing of
$$\psi = C_{\lambda} |l_{\lambda} = 1 \rangle + c_{\rho} |l_{\rho} = 1 \rangle$$

e.g. λ -mode dominant state: How much the other mode mixes?

Wave function

Mixing of
$$\psi = C_{\lambda} |l_{\lambda} = 1 \rangle + c_{\rho} |l_{\rho} = 1 \rangle$$

e.g. λ -mode dominant state: How much the other mode mixes?

Wave function

Mixing of
$$\psi = C_{\lambda} |l_{\lambda} = 1 \rangle + c_{\rho} |l_{\rho} = 1 \rangle$$

e.g. λ -mode dominant state: How much the other mode mixes?

3. Charmed baryon productions

Strategies: Consider D^{*} (Vector meson) prodution At high energies: Forward peak → t-channel dominant See the next figure

<u>Absolute values</u>

Regge for the estimation of charm vs strange

• <u>**Relative ratios**</u> of transitions to various B_c^* One step process in a *Qd* model

Absolute values

Regge method with couplings fixed at strangeness

- Coupling structure is determined by effective Lagrangians
- Propagators are replaced by the Regge's

$$\frac{1}{t - m_{K^*}^2} \to \mathcal{P}_{regge}^{K^*} = \left(\frac{s}{s_0}\right)^{\alpha_{K^*}(t) - 1} \frac{1}{\sin(\pi \alpha_{K^*}(t))} \frac{\pi \alpha'_{K^*}}{\Gamma(\alpha_{K^*}(t))}.$$

Sang-Ho Kim (RCNP) Regge method with couplings fixed at strangeness

<u>Relative ratios</u> to various $B_{\rm c}$

- Single step $q \rightarrow Q$: λ modes are excited
- *V*, *PS* exchanges for D^* productions with various *B*'s of $l_{\lambda} = 0, 1, 2$ (18 baryons)
- Estimate forward scattering amplitudes

Single-step $qd \rightarrow Qd$ reaction

Example of V-exchange

$$t \sim 2fgk_{D^*}^0 \vec{k}_{\pi} \times \vec{e} \cdot \vec{J}_{fi} \frac{1}{q^2 - m_{D^*}^2} \qquad \vec{q}_{eff} = \frac{m_d}{m_d + m_q} \vec{P}_N - \frac{m_d}{m_d + m_c} \vec{P}_B$$
$$\vec{J}_{fi} = \int d^3x \,\varphi_f^\dagger \left[\frac{\vec{p}_f}{m_c + E_c} + \frac{\vec{p}_i}{m_q + E_q} + i\vec{\sigma} \times \left(\frac{\vec{p}_f}{m_c + E_c} - \frac{\vec{p}_i}{m_q + E_q} \right) \right] \varphi_i \, e^{i\vec{q}_{eff} \cdot \vec{x}}$$

V-exchange at forward

$$t_{fi} \sim \left(\frac{P_B}{2(m_c + m_d)} - 1\right) k_{D^*}^0 k_\pi \left\langle \mathbf{B}_c \right| \vec{e}_\perp \cdot \vec{\sigma} e^{i\vec{q}_{eff} \cdot \vec{x}} \left| \mathbf{N} \right\rangle \frac{1}{q^2 - m_{D^*}^2}$$

Matrix elements

$$V: \langle B_{c} | \vec{e}_{\perp} \cdot \vec{\sigma} e^{i\vec{q}_{eff} \cdot \vec{x}} | N \rangle$$

$$Transverse$$

$$PS: \langle B_{c} | \vec{e}_{//} \cdot \vec{\sigma} e^{i\vec{q}_{eff} \cdot \vec{x}} | N \rangle$$

$$Longitudinal$$

$$CG$$

= (Geometric) × (Dynamic) CG coefficients

Dynamical part ~ radial integral

$$\langle B_c(\mathbf{S}\text{-wave}) | \vec{e}_{\perp} \cdot \vec{\sigma} e^{i\vec{q}_{eff} \cdot \vec{x}} | N(\mathbf{S}\text{-wave}) \rangle_{radial} \sim 1 \times \exp\left(-\frac{q_{eff}^2}{4A^2}\right)$$

Excited states

GS

$$\left\langle B_{c}(\boldsymbol{P}\text{-wave}) \middle| \vec{e}_{\perp} \cdot \vec{\sigma} e^{i\vec{q}_{eff} \cdot \vec{x}} \middle| N(\text{S-wave}) \right\rangle_{radial} \sim \left(\frac{q_{eff}}{A}\right)^{1} \times \exp\left(-\frac{q_{eff}^{2}}{4A^{2}}\right)$$
$$\left\langle B_{c}(\boldsymbol{D}\text{-wave}) \middle| \vec{e}_{\perp} \cdot \vec{\sigma} e^{i\vec{q}_{eff} \cdot \vec{x}} \middle| N(\text{S-wave}) \right\rangle_{radial} \sim \left(\frac{q_{eff}}{A}\right)^{2} \times \exp\left(-\frac{q_{eff}^{2}}{4A^{2}}\right)$$

Transitions to excited states are not suppressed

April 7-11, 2014

APFB2014

Results

Charm $k_{\pi}^{CM} = 2.71 \text{ [GeV]}, k_{\pi}^{Lab} = 16 \text{ [GeV]}$										
l = 0	$\Lambda_c(\frac{1}{2}^+)$	$\Sigma_c(\frac{1}{2}^+)$	$\Sigma_c(\frac{3}{2}^+)$							
	1.00	0.02	0.16							
l = 1	$\Lambda_c(\frac{1}{2}^-)$	$\Lambda_c(\frac{3}{2}^-)$	$\Sigma_c(\frac{1}{2})$	$\Sigma_c(\frac{3}{2}^-)$	$\Sigma_c'(\frac{1}{2})$	$\Sigma_c'(\frac{3}{2})$	$\Sigma_c^{\prime}(\frac{5}{2}^-)$			
	0.90	1.70	0.02	0.03	0.04	0.19	0.18			
l = 2	$\Lambda_c(\frac{3}{2}^+)$	$\Lambda_c(\frac{5}{2}^+-)$	$\Sigma_c(\frac{3}{2}^+)$	$\Sigma_c(\frac{5}{2}^+)$	$\Sigma_c'(\frac{1}{2}^+)$	$\Sigma_c'(\frac{3}{2}^+)$	$\Sigma_c'(\frac{5}{2}^+)$	$\Sigma_c'(\frac{5}{2}^+)$		
	0.50	0.88	0.02	0.02	0.01	0.03	0.07	0.07		

Strange $k_{\pi}^{CM} = 1.59 \text{ [GeV]}, k_{\pi}^{Lab} = 5.8 \text{ [GeV]}$

l = 0	$\Lambda_{-}(\frac{1}{2}^{+})$	$\Sigma_{-}(\frac{1}{2}^+)$	$\Sigma_{-}(rac{3}{2}^+)$					
	1.00	0.067	0.44					
l = 1	$\Lambda_{-1}(\frac{1}{2}^{-})$	$\Lambda_{-}(\frac{3}{2}^{-})$	$\Sigma \left(\frac{1}{2}^{-}\right)$	$\Sigma \left(\frac{3}{2}^{-}\right)$	$\Sigma'(\frac{1}{2}^-)$	$\Sigma'(\frac{3}{2})$	$\Sigma'(\frac{5}{2}^-)$	
	0.11	0.23	0.007	0.01	0.01	0.07	0.067	
l=2	$\Lambda_{-}(\frac{3}{2}^+)$	$\Lambda_c(\frac{5}{2}^+-)$	$\Sigma_{-}(\frac{3}{2}^{+})$	$\Sigma_{-}(\frac{5}{2}^+)$	$\Sigma'_{-}(\frac{1}{2}^+)$	$\Sigma'_{-1}(\frac{3}{2}^+)$	$\Sigma'(\frac{5}{2}^+)$	$\Sigma'_{-}(\frac{5}{2}^+)$
	0.13	0.20	0.007	0.01	0.004	0.02	0.038	0.04

Summary

- ρ and λ modes are separately studied (Isotope shift) better in Λ than in Σ
- ρ-modes may open di-quark spectroscopy
- Systematic study in strangeness is important

- Production in one step process is studied
- Higher excited (Λ) states may be produced as many as the ground states

NSTAR 2015 Workshop

Osaka, Japan, May 25 (mon) – 28(thu)

Florida State University (1994), Jefferson Lab (1995) INT in Seattle (1996), George Washington University (1997) ECT* in Trento (1998), Jefferson Lab (2000) Mainz (2001), Pittsburg (2002), LPSC in Grenoble (2004) Florida State University (2005), <u>University of Bonn (2007)</u> Beijing (2009), Jefferson Lab (2011), Valencia (2013)

Diquarks

$$d_{S} = qq(S = 0), \quad d_{A} = qq(S = 1)$$

ss attractive ss repulsive

$$B_{C} \quad \Lambda(1/2^{+},gs) = |[d_{S}c]\rangle, \quad \Sigma(1/2^{+},gs) = |[d_{A}c]\rangle$$

$$\Lambda(1/2^{-},\lambda) = c_{\lambda} |[d_{S}c],l_{\lambda} = 1\rangle + c_{\rho} |[d_{A}c],l_{\rho} = 1\rangle$$

$$\Sigma(1/2^{-},\lambda) = c_{\lambda} |[d_{A}c],l_{\lambda} = 1\rangle + c_{\rho} |[d_{S}c],l_{\rho} = 1\rangle$$

$$N \quad p(1/2^{+},gs) = c_{S} |[d_{S}u]\rangle + c_{A} |[d_{A}u]\rangle$$

SU(C) we do use that

 $V \quad p(1/2^+, g_S) = c_S |[d_S u]\rangle + c_A |[d_A u]\rangle$ SU(6) quark model: $c_S = c_A$ Strong scalar diquark: $c_S > c_A$

Diquark correlations enhance Λ , while suppress Σ productions

Density correlations

Alexandrou, deForcrand, Lucini PRL 97, 222002 (2006)

Good diquark Bad diquark

Indicates significant attraction between quarks in good diquark pair

$$d_{S} = qq(S = 0), \quad d_{A} = qq(S = 1)$$

$$\Lambda(1/2^{-},\lambda) = \text{dominant} |[d_{S}c], l_{\lambda} = 1\rangle + |[d_{A}c], l_{\rho} = 1\rangle$$

$$\Sigma(1/2^{-},\lambda) = \text{dominant} |[d_{A}c], l_{\lambda} = 1\rangle + |[d_{S}c], l_{\rho} = 1\rangle$$

Spectrum

APFB2014

Interesting systematics

