Correlated-basis approach to nuclear four- and five-body problems

Asia-Pacific Few-Body Problems in Physics Hahndorf, SA, Australia 2014.4.7-11

Wataru Horiuchi (Hokkaido, Japan)

in collaboration with Y. Suzuki (Niigata, RIKEN), K. Arai (Nagaoka)

- 1. Correlated-basis approach
- 2. Electroweak response functions of ⁴He Resonance, Tensor force
- 3. ¹⁶O as a ¹²C+n+n+p+p model Clustering

Variational calculation for many-body quantum system

- Many-body wave function Ψ has all information of the system •
- Solve many-body Schoedinger equation ٠ ⇔ Eigenvalue problem with Hamiltonian matrix $H\Psi = E\Psi$
- Variational principle $\langle \Psi | H | \Psi \rangle = E \ge E_0$ ("Exact" energy) ٠ (Equal holds if Ψ is the "exact" solution)
- Expand the wave function in the explicitly correlated Gaussian functions ٠

 $\Psi = \sum_{k} c_{k} \exp\{-\sum_{i,i} \beta_{i}^{k} (r_{i} - r_{i})^{2}\}$

- Optimum parameters β^{k}_{ij} are selected stochastically — **Stochastic Variational Method**
 - K. Varga and Y. Suzuki, PRC52, 2885 (1995).
 - 1. Randomly generate candidates
 - Calculate energy for each candidate 2.
 - Select the basis which gives the lowest energy among them 3.
 - 4. Increase the basis size
 - 5. Return to 1. and repeat the procedure until energy is converged
 - accurate solution can be obtained with a small basis size \rightarrow

Explicitly correlated basis approach

Correlated Gaussian with two global vectors

Y. Suzuki, W.H., M. Orabi, K. Arai, FBS42, 33-72 (2008)

 $\phi_{(L_1L_2)LM_L}^{\pi}(A, u_1, u_2) = \exp(-\tilde{x}Ax)[\mathcal{Y}_{L_1}(\tilde{u}_1x)\mathcal{Y}_{L_2}(\tilde{u}_2x)]_{LM_L}$ $\mathcal{Y}_{\ell}(\boldsymbol{r}) = r^{\ell} Y_{\ell}(\hat{\boldsymbol{r}})$

x: any relative coordinates (cf. Jacobi)

 $\tilde{x}Ax = \sum_{i,j=1}^{N-1} A_{ij}x_i \cdot x_j$ $\tilde{u}_i x = \sum_{k=1}^{N-1} (u_i)_k x_k$

Formulation for N-particle system Analytical expression for matrix elements

Functional form does not change under any coordinate transformation

$$y = Tx \implies \widetilde{y}By = \widetilde{x}\widetilde{T}BTx \qquad \widetilde{v}y = \widetilde{T}vx$$

Shell and cluster structure

Four particle rearrangement

See Recent Review: J. Mitroy et al., Rev. Mod. Phys. 85, 693 (2013)

Energy convergence of ⁴He

H. Kamada et al., PRC64, 044001 (2001)

Electroweak response functions

- Response (strength) function
 - Resonant and continuum structure
 - The ground state properties and interactions
 - $S(E) = \mathcal{S}_{f\mu} |\langle \Psi_f | \mathcal{O}_{\lambda\mu} | \Psi_0 \rangle |^2 \delta(E_f E_0 E)$

- Evaluate *S(E)* with *ab initio* theoretical model
 - Nucleon (proton and neutron) degrees of freedom
 - Realistic nuclear force (NN scattering, ²H properties)
 - No specific model assumption

Ab initio calculation for ⁴He

• ⁴He nucleus:

Ideal example of investigating the nuclear interaction

- The lightest doubly closed nucleus
- Mostly (0s)⁴ but having approximately 14% D-state (L=2, S=2) due to tensor component of the nuclear force
- Converged *Ab initio* calculation can be done for the ground state

- Electroweak responses of ⁴He
 - Electromagnetic (EM) interaction: EM decay, electron scattering,...
 Photoabsorption reaction → Electric dipole (E1) transition
 - Weak interaction: beta decay, neutrino-nucleus reactions,...
 Spin-dipole (SD) transition: similar to the E1 but flips the spin
 Advantageous to probe the tensor correlation?

Variational calculation for many-body system

Hamiltonian

$$H = \sum_{i=1}^{A} T_i - T_{cm} + \sum_{i < j}^{A} v_{ij} + \sum_{i < j < k}^{A} v_{ijk}$$
$$v_{12} = V_c(r) + V_{Coul.}(r) P_{1\pi} P_{2\pi} + V_t(r) S_{12} + V_b(r) L \cdot S$$

 Argonne v8 type interactions (AV8', G3RS); "bare" interaction central, tensor, spin-orbit

• Three-nucleon force (3NF) E. Hiyama et al. PRC70, 031001(R) (2002) \rightarrow reproduce inelastic form factor of the first excited state of ⁴He.

Basis function

$$\Psi_{(LS)JM_JTM_T} = \mathcal{A}\left\{ \left[\psi_L^{(\text{space})} \psi_S^{(\text{spin})} \right]_{JM_J} \psi_{TM_T}^{(\text{isospin})} \right\}$$
$$\psi_{SM_S}^{(\text{spin})} = \left| \left[\cdots \left[\left[\left[\frac{1}{2} \frac{1}{2} \right]_{S_{12}} \frac{1}{2} \right]_{S_{123}} \right] \cdots \right]_{SM_S} \right\rangle$$

 $\psi_{LM}^{(\mathrm{space})}$: correlated Gaussian combined with two global vectors

Y. Suzuki, W.H., M. Orabi, K. Arai, FBS42, 33-72 (2008)

$$F_{(L_1L_2)LM}(u_1, u_2, A, x) = \exp\left(-\frac{1}{2}\widetilde{x}Ax\right) \left[\mathcal{Y}_{L_1}(\widetilde{u_1}x)\mathcal{Y}_{L_2}(\widetilde{u_2}x)\right]_{LM}$$

Description of four-body continuum

- Excited states of ⁴He are all in continuum
 - Gaussian is a square integrable function
 - Boundary condition is not satisfied
 - Bound state approximation is not suitable for quantitative description
 - Decay widths: 0.5-15 MeV
 - Many decay channels
 - Two- (3N+N) and three- (d+p+n), etc. thresholds open

Complex scaling method (CSM)

Rotated in complex plane \rightarrow outgoing-wave B.C.

$$\boldsymbol{r}_j \to \boldsymbol{r}_j e^{i\theta}, \quad \boldsymbol{p}_j \to \boldsymbol{p}_j e^{-i\theta}$$

Unifying bound and continuum states

Total photoabsorption cross section

σ_γ [mb]

Photoabsorption cross section

$$\sigma_{\gamma}(E_{\gamma}) = \frac{4\pi^2}{\hbar c} E_{\gamma} \frac{1}{3} S(E_{\gamma})$$

Interaction: AV8'+3NF, G3RS+3NF 3NF: E. Hiyama et al., PRC70, 031001(2004).

Final state interactions of two and three-body decay channels are explicitly taken into account. Non energy-weighted sum rule 99.6 %

Comparison with the measurements → good agreement above 30 MeV Disagree at the low energy with the data by Shima et al.

WH and Y. Suzuki, Phys. Rev. C 87, 034001 (2013) 3.5 3 2.5 2 φ 1.5 φ 1 AV8'+3NF 0.5 G3RS+3NF 25 35 40 45 30 20 E_v [MeV] \triangle S. Nakayama et al., (2007)

- D.P. Wells et al. (1992)
- ▼ Y. M. Arkatov et al.,(1974).
- T. Shima et al., (2005).
 - T. Shima et al., new measurement

- Relatively small decay widths of 0⁻0, 2⁻0 (0.84, 2.01 MeV)
- Resonant structure ⇔ Strength function

Peaks and decay widths are consistent with the observations (7 levels for ⁴He, 4 levels for ⁴H and ⁴Li)

Non energy weighted spin-dipole sum rule

$$\begin{split} m_0(p,\lambda) &= \int_0^\infty S(p,\lambda,E) dE = \sum_{\kappa=0}^2 U_{\lambda\kappa} \langle \mathcal{Q}_{(\kappa)0}^p \rangle & \kappa = 0 \quad \mathbf{1} \quad \mathbf{2} \\ \mathcal{Q}_{(\kappa)0}^p &= \sum_{i,j=1}^A \left([\rho_i \times \rho_j]_\kappa \cdot [\sigma_i \times \sigma_j]_\kappa \right) T_i^{p\dagger} T_j^p, \quad (U_{\lambda\kappa}) = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{2} & -\frac{1}{2} \\ \frac{5}{3} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \lambda = \mathbf{0} \\ \mathbf{1} \\ -\frac{1}{2} & -\frac{1}{2} \\ \frac{5}{3} & \frac{1}{6} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \lambda = \mathbf{0} \\ \mathbf{1} \\ -\frac{1}{2} & -\frac{1}{2} \\ \frac{5}{3} & \frac{1}{6} \end{pmatrix} \end{pmatrix} \\ \mathbf{1} \\ \mathbf{1} \\ -\frac{1}{2} & -\frac{1}{2} \\ \frac{5}{3} & \frac{1}{6} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \lambda = \mathbf{0} \\ \mathbf{1} \\ \frac{1}{2} \\ -\frac{1}{2} \\ \frac{5}{3} \\ \frac{1}{6} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{5}{6} \\ \frac{1}{6} \end{pmatrix} \begin{pmatrix} \lambda = \mathbf{0} \\ \mathbf{1} \\ \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \\ \frac{$$

 $\lambda = 0$

Summary (1)

- Four-body calculations for electroweak strength functions of ⁴He
 - Explicitly correlated basis with complex scaling method
 - No specific model assumption
 - Bare realistic nuclear force
 - Unified description of bound and unbound states
- Dipole type (E1, SD) electroweak strength functions
 - Non-energy-weighted sum rules are fully satisfied
 - Consistent agreement with experimental values
 - Photoabsorption reaction WH, Y. Suzuki, K. Arai, Phys. Rev. C 85, 054002(2012)
 - SD strength function and spectrum WH, Y. Suzuki, Phys. Rev. C 87, 034001 (2013)
 - → Tensor correlation in the ground state

Motivation: Coexistence of two aspects

Single particle excitations (Shell model like)

Mysterious 0⁺ state in ¹⁶O

- Conventional 1p-1h negative parity?
- First excited state -> 0⁺

Low energy spectrum of ¹⁶O

7.12 MeV 6.92 MeV

6.13 MeV

6.05 MeV

G.S.

Difficult to reproduce them even in modern large scale calculations

Low-lying spectra of ${}^{16}O:{}^{12}C+\alpha$ picture

¹²C+ α model: coupled channel OCM Y. Suzuki, PTP55 (1976) 1751.

 \rightarrow Levels are reproduced very well including 0₂⁺

Towards resolving the ¹⁶O problem

¹²C+p+p+n+n five body model

$$\begin{split} \text{Hamiltonian} \quad H &= \sum_{i=1}^{N} T_i - T_{\text{cm}} + \sum_{i=1}^{N-1} U_i + \sum_{i < j} v_{ij} + \sum_{i=1}^{N-1} \Gamma_i \\ \\ \underline{\text{N-N potential}} \quad v_{ij} &= v_c + v_{\text{Coul}}.P_{i\pi}P_{j\pi} \quad \text{Minnesota force} \\ \\ \underline{\text{N-12C potential}} \quad U_i &= U_c + U_{\text{Coul}}.P_{i\pi} + U_b \boldsymbol{\ell}_i \cdot \boldsymbol{s}_i \\ \\ \text{Woods-Saxon form, reproduce the levels 1/2-, 1/2+, 5/2+ of 13C} \\ \\ \underline{\text{Pauli constraint}} \quad & \text{HO 0s1/2 and 0p3/2} \\ \\ \Gamma_i &= \lambda \sum_{jm} |f_{jm}(i)\rangle \langle f_{jm}(i)|, \quad \lambda \to \infty \\ \\ \\ \text{Kukulin and Pomerantsev (1978)} \end{split}$$

- Four particles can occupy any states except for the occupied orbits in the core
- No assumption of alpha cluster nor shell model conf.

Basis function
$$\Phi = \mathcal{A} \left\{ \begin{bmatrix} \psi_L^{(\text{space})} \psi_S^{(\text{spin})} \end{bmatrix}_{\mathcal{J}} \phi_I(^{12}\text{C}) \end{bmatrix}_{JM} \psi_{TM_T}^{(\text{isospin})} \right\}$$
No core excitation (I=0)
$$\psi_{SM_S}^{(\text{spin})} = \begin{bmatrix} \cdots \begin{bmatrix} \begin{bmatrix} \frac{1}{2} \frac{1}{2} \end{bmatrix}_{S_{12}} \frac{1}{2} \end{bmatrix}_{S_{123}} \end{bmatrix} \cdots \end{bmatrix}_{SM_S} \rangle$$

Energy curves of ¹⁶C and ¹⁶O

- ¹⁶C: converged (7000 basis states)
 - Good agreement with experiment
- ¹⁶O: converged at around 10000 basis states
 Discretizing on grids → Variational parameters D~N¹⁰⁺⁴⁺⁴×3×2
 N=4, D~4×10¹¹
 - Energies of the ground and first excited states are reproduced very well

Expectation values of potential terms

	${}^{16}C(0_1^+)$	$^{16}O(0_1^+)$	$^{16}O(0_2^+)$	α
E	-18.47	-35.47	-29.52	-28.30
$E_{\text{exp.}}$	-18.59	-35.46	-29.41	-28.30
$\langle T_{cv} \rangle$	17.81	11.55	7.16	—
$\langle V_{cv} \rangle$	-82.49	-79.55	-29.22	
$\langle T_v \rangle$	53.53	72.93	67.46	56.92
$\langle V_v \rangle$	-7.32	-40.41	-74.92	-85.22

N-N potential

Core-N potential

 $U_i = U_c + U_{\text{Coul}} P_{i\pi} + U_b \ell_i \cdot s_i$

- ¹⁶C: shell model like state
- $v_{ij} = v_c + v_{\text{Coul.}} P_{i\pi} P_{j\pi}$ ¹⁶O (0₁⁺): coexistence of shell and cluster states - α cluster is strongly distorted $\rightarrow \langle V_{v} \rangle \sim 1/2$ of free α
 - ${}^{16}O(0_2^+)$: well developed $\alpha + {}^{12}C$ cluster $<V_{y}>^{16}O(0_{2}^{+})\sim <V_{y}>^{4}He$ $\sim < V_{cv} > {}^{16}O(0_1^+)$
 - Delicate balance of Core-N and N-N interactions

Density distributions of ¹²C-4N and 4N

- ¹⁶C: weak NN interaction
 - Shell model like states
 - Delocalized 4N density
- ¹⁶O: strong NN interaction
 - 0_1^+ : Shell and 4N correlation
 - 0_2^+ : Strong 4N correlation
 - Second peak far from the core Peak at ¹²C+α touching distance ~4.9 fm
 - Similar 4N density distribution to that of ⁴He

Rms distance between ¹²C and 4N and radius of 4N system

	${}^{16}C(0_1^+)$	$^{16}O(0_1^+)$	${}^{16}O(0_2^+)$	α
$\sqrt{\langle r_{cv}^2 \rangle}$	1.94	2.54	4.86	
$\sqrt{\langle r_v^2 \rangle}$	2.88	1.90	1.62	1.43

Density distributions between ¹²C and 4N system

Density distributions of 4N system from their CM

¹²C+ α spectroscopic amplitude y(r)=<¹²C+ α |¹⁶O>

¹²C+α OCM: Y. Suzuki, PTP56 (1976) 111

- 0_1^+ : Alpha cluster is distorted by the core nucleus
- 0_2^+ : Large amplitude beyond the touching distance of ${}^{12}C+\alpha$ (~4.9 fm)
 - Very long tail implying the cluster structure
- Spectroscopic factor

0₁⁺: 0.105 (OCM: 0.300) 0₂⁺: 0.680 (OCM: 0.679)

Distribution of harmonic oscillator quanta

Components of the harmonic oscillator quanta Q in the A=16 wave functions

Oscillator frequency is set to be the same as the occupied (forbidden) states in ¹²C

80 ¹⁶C: Q \geq 6 ¹⁶C (0⁺) ¹⁶0 Shell model state: four neutrons in 60 p and sd shells Average: $M_0 = 7.0$ 40 Standard deviation: σ_0 =2.1 Probability [%] 20 ¹⁶O: Q≧4 0₁⁺: Shell model or intermediate 0 state between shell and cluster. 10 20 30 0 10 20 30 0 15 $M_0 = 5.5$ σ₀=2.9 10 0₂⁺: **Cluster state** Peak : 10-12 hw 5 2-4 hw more than 4p-4h M₀=14.3 0 σ₀=8.3 10 20 30 40 50 60 0 Q

Difficult to describe it with a standard shell model truncation

Monte Carlo, symmetry adaption, importance truncation, etc.

Summary (2)

- Five-body models for A=16 systems: ¹⁶O and ¹⁶C
 - Correlated Gaussian with global vectors: Both the shell model like and cluster states can be described in a single scheme
- ¹⁶O: a ¹²C+n+n+p+p five body model
 - No assumption of alpha cluster
 - Energies of 0_1^+ , 0_2^+ states in ¹⁶O are reproduced well
 - Shell model (delocalized) and cluster structure in A=16 systems
 - 0_1^+ , 0_2^+ : delicate balance of N-¹²C and N-N potentials
 - Two different aspects coexist in the spectrum of ¹⁶O
 - Well developed ${}^{12}C+\alpha$ cluster in the first excited states of ${}^{16}O$
 - Density distributions
 - Spectroscopic amplitude (long tail, large α -width)
 - Large major shell mixing in the cluster state