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Qweak

◦ longitudinally polarised electrons scattering off fixed proton
target.

◦ measures the proton’s weak charge to within 4%.

◦ constrains New Physics at the ∼ TeV scale.

◦ measures the asymmetry:

APV =
σ+ − σ−

σ+ + σ−

in the forward, elastic limit [Musolf et al., Phys.Rep. 239:1],

APV =
GF

4πα
√

2
t Qp

W

proton’s
weak charge
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Qweak

At tree level,
Qp

W = 1− 4 sin2 θW

For Qweak precision aims, need to include radiative corrections also,
[Erler et al., PRD 68:016006; 72:073003]

Qp
W = (1 + ∆ρ+ ∆e)

(
1− 4 sin2 θW (0) + ∆

′
e

)
+�WW + �ZZ + �γZ (0)

= 0.0713± 0.0008

• ∆ρ correction to the relative normalisation of the neutral and
charged current amplitudes.

• ∆e and ∆
′
e correction to axial-vector Zee and γee coupling.

• �WW ∼ 26% and �ZZ ∼ 3% (calculated perturbatively).
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Energy dependence of �γZ

k k

p p

q
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◦ contributions from both long and short distance physics

◦ decomposes into two parts,

�γZ (E ) = �A
γZ (E ) + �V

γZ (E )

vector e – axial h axial e – vector h
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Energy dependence of �V
γZ

<e �V
γZ (×10−3)

3± 3 Gorchtein and Horowitz, PRL (2009)

4.7 +1.1
−0.4 Sibirtsev et al. PRD (2010)

5.7± 0.9 Rislow and Carlson, PRD (2011)

5.4± 2.0 Gorchtein et al. PRC (2011)

=⇒ central values of all the calculations agree within the quoted
uncertainties.

=⇒ error on the Gorchtein et al. value is twice as large as those on the
Sibirtsev et al. and Rislow and Carlson calculations.

ti
m
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Energy dependence of �γZ

Summary list of the models for the γZ structure functions that have
been discussed in the literature:

(i) color-dipole model, referred to as “Model I” in Gorchtein et al.
(GHRM);

(ii) vector meson dominance (VMD) + Regge model, referred to as
“Model II” by GHRM;

(iii) Sibirtsev et al., based on the Regge parametrization of Capella
et al. PLB (1994);

(iv) Rislow and Carlson’s model: depends on the kinematic region.
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Formalism

Dispersion relations give,

<e �V
γZ (E ) =

2E

π
P
∫ ∞
0

dE ′
1

E ′2 − E 2
=m�V

γZ (E ′)

From the optical theorem, the imaginary part of the PV γZ exchange
amplitude can be written as [Gorchtein and Horowitz, PRL (2009)],

=m�V
γZ (E ) =

1

(s −M2)2

∫ s

W 2
π

dW 2

∫ Q2
max

0
dQ2 α(Q2)

1 + Q2/M2
Z

×

[
F γZ
1 +

s
(
Q2

max − Q2
)

Q2 (W 2 −M2 + Q2)
F γZ
2

]
interference

structure functions
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Formalism

In describing the structure functions, or equivalently, the virtual
boson–proton cross sections σT ,L, it is convenient to separate the full
range of kinematics into a resonance part and a smooth nonresonant
background [Christy and Bosted, PRC (2010)],

σT ,L = σ
(res)
T ,L + σ

(bgd)
T ,L

σ
(res)
T ,L

=⇒ term includes a sum over the prominent low-lying resonances.

σ
(bgd)
T ,L

=⇒ is determined phenomenologically by fitting the inclusive
scattering data.
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γZ structure functions - resonances

◦ Using isospin symmetry, the matrix elements of the vector
component of the Z current for a proton target can be related to the
proton and neutron matrix elements of the electromagnetic current by

〈R|JµZ |p〉 = (1− 4 sin2 θW )〈R|Jµγ |p〉 − 〈R|Jµγ |n〉

=⇒ neglecting the small contribution from strange quarks.

◦ Modify the contribution from each resonance R by a ratio that
takes into account the differences between the electromagnetic and
weak neutral transition amplitudes.
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γZ structure functions - resonances

For the transverse cross section define this ratio for a proton as

ξR ≡
σγZ

T ,R

σγγT ,R

= (1− 4 sin2 θW )− yR

where,

yR =
Ap

R, 1
2

An∗

R, 1
2

+ Ap

R, 3
2

An∗

R, 3
2∣∣Ap

R, 1
2

∣∣2 +
∣∣Ap

R, 3
2

∣∣2
=⇒ GHRM longitudinal ratio equated with the transverse one.

=⇒ no Q2 dependence (errors large enough to take this into
account).
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γZ structure functions - background

For Model II of GHRM, a generalization of the VMD model is used,
assuming the γZ cross section for vector meson V is given by the
analogous γγ cross section scaled by the ratio κV of weak and
electric charges,

σ
γZ(V )
T ,L = κV σ

γγ(V )
T ,L

where,

κρ = 2− 4 sin2 θW κω = −4 sin2 θW κφ = 3− 4 sin2 θW

This allows the ratio of γZ to γγ cross sections to be written as

σγZ
T ,L

σγγT ,L

=
κρ + κω R

T ,L
ω (Q2) + κφ R

T ,L
φ (Q2) + κT ,L

C RT ,L
C (Q2)

1 + RT ,L
ω (Q2) + RT ,L

φ (Q2) + RT ,L
C (Q2)
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AJM model - F γγi

Divide the integrals into distinct regions of W 2 and Q2,

(I) Christy and Bosted’s (CB) parametrization [Christy and Bosted PRC

(2010)] to describe the low-W region (Region I) at
Wπ <W < 2 GeV for all Q2 up to 10 GeV2;

(II) At higher W , corresponding to kinematics where Regge theory
is applicable, the VMD+Regge model of Alwall and Ingelman
[Alwall and Ingleman, PLB (2004)] is combined with a modified CB
resonance contribution to describe the structure functions for
W 2 > 9 GeV2 and Q2 < 2.5 GeV2;

(III) In the DIS region we use the next-to-next-to-leading order
(NNLO) fit by Alekhin et al. (ABM11) [Alekhin et al., PRD (2012)].
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AJM model - F γγi

Kinematic regions:

1 4 9
0

2.5

10

W2 HGeV2L

Q
2

HGe
V

2 L III

I II
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AJM model - F γZi

Resonances: modified using the ratio ξR ,

ξR ≡
σγZ

T ,R

σγγT ,R

= (1− 4 sin2 θW )− yR

where

yR =
Ap

R, 1
2

An∗

R, 1
2

+ Ap

R, 3
2

An∗

R, 3
2∣∣Ap

R, 1
2

∣∣2 +
∣∣Ap

R, 3
2

∣∣2
as in GHRM.

• for the AJM model the uncertainties of the helicity amplitudes are
added quadrature, while GHRM take the extremal values for each
resonance.
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AJM model - F γZi

Nonresonant background: transformed using,

σγZ
T ,L

σγγT ,L

=
κρ + κω R

T ,L
ω (Q2) + κφ R

T ,L
φ (Q2) + κT ,L

C RT ,L
C (Q2)

1 + RT ,L
ω (Q2) + RT ,L

φ (Q2) + RT ,L
C (Q2)

• instead of fixing the parameters κT ,L
C , determine by demanding

that structure functions match at their boundaries.

DIS region: computed from the ABM11 PDF parametrization [Alekhin

et al., PRD 86:054009].
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PDF constraints

Our fit of the parameters κT ,L
C involves equating the cross section

ratios σγZ
T ,L/σ

γγ
T ,L with the structure function ratios computed from

global QCD fits in the DIS region,

σγZ
T

σγγT

=
F γZ
1

F γγ1

∣∣∣∣∣
DIS

σγZ
L

σγγL

=
F γZ

L

F γγL

∣∣∣∣∣
DIS

=⇒ DIS structure functions F γγ,γZ
1,L are taken from the ABM11

parametrization.

=⇒ determine the values of κT ,L
C by matching the ratios, over a range

of W 2 values at fixed Q2 near the boundaries between the
regions.

22 of 41



PDF constraints

Our fit of the parameters κT ,L
C involves equating the cross section

ratios σγZ
T ,L/σ

γγ
T ,L with the structure function ratios computed from

global QCD fits in the DIS region,

σγZ
T

σγγT

=
F γZ
1

F γγ1

∣∣∣∣∣
DIS

σγZ
L

σγγL

=
F γZ

L

F γγL

∣∣∣∣∣
DIS

=⇒ DIS structure functions F γγ,γZ
1,L are taken from the ABM11

parametrization.

=⇒ determine the values of κT ,L
C by matching the ratios, over a range

of W 2 values at fixed Q2 near the boundaries between the
regions.

23 of 41



PDF constraints

Values at the different Q2 are correlated

=⇒ performing a simple χ2 fit will underestimate the errors.

4 9
0

2.5

10

W2 HGeV2L

Q
2

HGe
V

2 L

XX XXX

X

XX XXX

XX XXX

Uncertainties come from:

(i) the W 2 dependence;

(ii) the PDF error.
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PDF constraints
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AJM model - F γZ2
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PVDIS asymmetry

May perform a proof of method using the parity-violating inelastic
asymmetry data for the deuteron [Wang et al. PRL 111, 082501],

APVDIS = g e
A

(
GFQ

2

2
√

2πα

)

×
xy2F γZ

1 +

(
1− y − x2y2M2

Q2

)
F γZ
2 +

g e
V

g e
A

(
y − 1

2
y2
)
xF γZ

3

xy2F γγ1 +

(
1− y − x2y2M2

Q2

)
F γγ2
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Deuteron asymmetry

◦ Measured parity-violating asymmetry Ad
PV [Wang et al. PRL 111, 082501],

scaled by 1/Q2, is shown at W = 1.26, 1.59, 1.86 and 1.98 GeV,
with Q2 values ranging from 0.76 GeV2 to 1.47 GeV2 (preliminary).

◦ Deuteron asymmetries in the AJM model are computed with the
continuum parameters constrained by the DIS region structure
functions, as for the proton asymmetry.

◦ Resulting fit gives,

κT
C (d) = 0.79± 0.05 κL

C (d) = 0.2± 3.4
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Deuteron asymmetry

PDF constrained:
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=⇒ clearly in good agreement with the E08-011 [Wang et al.

PRL 111, 082501] data.
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Deuteron Asymmetry

Data constrained:
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This fit constrains κT
C (d) = 0.69± 0.13.
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Energy dependence of <e �V
γZ

Dependence of <e �V
γZ on the incident energy E :

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.000

0.002

0.004

0.006

0.008

E HGeVL

R
e

�
Γ
ZV

I
Total

III

II

[Hall et al. PRD (2013)]
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<e �V
γZ at Qweak

Region <e �V
γZ (×10−3)

I (res) 2.18± 0.29
I (bgd) 2.46± 0.21
I (total) 4.64± 0.36
II 0.59± 0.05
III 0.35± 0.02
Total 5.57± 0.36

ææ

ææ

ææ

ææ

3 4 5 6 7 8

AJM

RC

SBMT

GHRM

Re �ΓZ
V H´10-3L

Including all uncertainties, we find for the total correction

<e �V
γZ = (5.57± 0.21[bgd ] ± 0.29[res] ± 0.02[DIS])× 10−3

Adding the errors in quadrature gives

<e �V
γZ = (5.57± 0.36)× 10−3
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Conclusions

• We have performed a comprehensive analysis of the γZ box
contribution to the forward, e–p elastic parity-violating asymmetry,
reporting a final value of

<e �V
γZ = (5.57± 0.36)× 10−3.

• The reduction of the error, relative to previous works, is largely
driven by data, where theoretical uncertainties are constrained by a
consistent description of the γZ interference structure functions.

• May also use this method to determine the <e �V
γZ contribution at

higher energies relevant to MOLLER, reporting a value of
<e �V

γZ = (11.5± 0.8)× 10−3 [Hall et al. PLB (2014)

• Important to further examine the Q2 dependence of the <e �V
γZ
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Deuteron asymmetry – unbinned

[Wang et al., PRL (2013)]
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Christy-Bosted fit

[Christy and Bosted, PRC 81:055213]
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MOLLER

• longitudinally polarised electrons scattered off atomic electrons
in a liquid hydrogen target.

• measure the electron’s weak charge to within 2.3%.

=⇒ equivalent to measuring sin2 θW to ≈ 0.1%.

• PV asymmetry is given by [Derman and Marciano, Annals

Phys. 121:147]:

APV = meE
GF√
2πα

2y(1− y)

1 + y4 + (1− y)4
Qe

W

where at tree level,

Qe
W = −1 + 4 sin2 θW
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Experimental status of sin2 θW

[Kumar et al., Ann. Rev. Nucl. Part. Sci. (2013)]
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MOLLER backgrounds

Use of hydrogen target means unavoidable background contribution
from e − p scattering.

Require,

(I) Qp
W < 4% level

(II) proton inelastic asymmetry ∼ 10%

APVDIS = g e
A

(
GFQ

2

2
√

2πα

)

×
xy2F γZ

1 +

(
1− y − x2y2M2

Q2

)
F γZ
2 +

g e
V

g e
A

(
y − 1

2
y2
)
xF γZ

3

xy2F γγ1 +

(
1− y − x2y2M2

Q2

)
F γγ2

38 of 41



<e �V
γZ at MOLLER
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R
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�
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I
Total

III

II

Dependence of <e �V
γZ

on the incident energy E .

<e �V
γZ (×10−3)

Region Qweak MOLLER

I 4.64± 0.35 3.04± 0.26
II 0.59± 0.05 5.26± 0.49
III 0.35± 0.02 3.18± 0.16

total 5.57± 0.36 11.5± 0.6
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Model dependence of Reg II
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Γ
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=⇒ including all uncertainties, we find for the total correction

<e �V
γZ = (11.5± 0.6 orig ± 0.6mdp)× 10−3

40 of 41



Inelastic asymmetry at 11 GeV

APVDIS background to MOLLER
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