The Proton's Weak Charge: γZ box contribution

Nathan Hall

CoEPP and CSSM,
University of Adelaide

P.G. Blunden, W. Melnitchouk, A.W. Thomas, R. D. Young

Adelaide-Jefferson Lab-Manitoba: "AJM"

$Q_{\text {weak }}$

- longitudinally polarised electrons scattering off fixed proton target.
- measures the proton's weak charge to within 4%.
- constrains New Physics at the $\sim \mathrm{TeV}$ scale.
- measures the asymmetry:

$$
A_{\mathrm{PV}}=\frac{\sigma^{+}-\sigma^{-}}{\sigma^{+}+\sigma^{-}}
$$

in the forward, elastic limit [Musolf et al., Phys.Rep. 239:1],

$$
A_{\mathrm{PV}}=\frac{G_{F}}{4 \pi \alpha \sqrt{2}} t Q_{W}^{p}
$$

$Q_{\text {weak }}$

- longitudinally polarised electrons scattering off fixed proton target.
- measures the proton's weak charge to within 4%.
- constrains New Physics at the $\sim \mathrm{TeV}$ scale.
- measures the asymmetry:

$$
A_{\mathrm{PV}}=\frac{\sigma^{+}-\sigma^{-}}{\sigma^{+}+\sigma^{-}}
$$

in the forward, elastic limit [Musolf et al., Phys.Rep. 239:1],

$$
A_{\mathrm{PV}}=\frac{G_{F}}{4 \pi \alpha \sqrt{2}}+Q_{W}^{P} \longleftarrow \begin{aligned}
& \text { proton's } \\
& \text { weak charge }
\end{aligned}
$$

$Q_{\text {weak }}$

At tree level,

$$
Q_{W}^{p}=1-4 \sin ^{2} \theta_{W}
$$

For $Q_{\text {weak }}$ precision aims, need to include radiative corrections also, [Erler et al., PRD 68:016006; 72:073003]

$$
\begin{aligned}
Q_{W}^{p}= & \left(1+\Delta \rho+\Delta_{e}\right)\left(1-4 \sin ^{2} \theta_{W}(0)+\Delta_{e}^{\prime}\right) \\
& +\square_{W W}+\square_{z Z}+\square_{\gamma Z}(0) \\
= & 0.0713 \pm 0.0008
\end{aligned}
$$

- $\Delta \rho$ correction to the relative normalisation of the neutral and charged current amplitudes.
- Δ_{e} and Δ_{e}^{\prime} correction to axial-vector Zee and ree coupling.
- $\square_{W W} \sim 26 \%$ and $\square_{Z Z} \sim 3 \%$ (calculated perturbatively).

$Q_{\text {weak }}$

At tree level,

$$
Q_{W}^{p}=1-4 \sin ^{2} \theta_{W}
$$

For $Q_{\text {weak }}$ precision aims, need to include radiative corrections also, [Erler et al., PRD 68:016006; 72:073003]

$$
\begin{aligned}
Q_{W}^{p}= & \left(1+\Delta \rho+\Delta_{e}\right)\left(1-4 \sin ^{2} \theta_{W}(0)+\Delta_{e}^{\prime}\right) \\
& +\square_{W W}+\square_{z z}+\square_{\gamma Z}(0) \\
= & 0.0713 \pm 0.0008
\end{aligned}
$$

- $\Delta \rho$ correction to the relative normalisation of the neutral and charged current amplitudes.
- Δ_{e} and Δ_{e}^{\prime} correction to axial-vector Zee and ree coupling.
- $\square_{W W} \sim 26 \%$ and $\square_{Z Z} \sim 3 \%$ (calculated perturbatively).

Energy dependence of $\square_{\gamma Z}$

- contributions from both long and short distance physics
- decomposes into two parts,

$$
\square_{\gamma Z}(E)=\square_{\gamma Z}^{A}(E)+\square_{\gamma Z}^{V}(E)
$$

Energy dependence of $\square_{\gamma Z}$

- contributions from both long and short distance physics
- decomposes into two parts,

Energy dependence of $\square_{\gamma Z}$

- contributions from both long and short distance physics
- decomposes into two parts,

$$
\square_{\gamma Z}(E)=\square_{\gamma Z}^{A}(E)+\square_{\gamma Z}^{V}(E)
$$

Energy dependence of $\square_{\gamma Z}^{V}$

$$
\begin{array}{cl}
\Re e \square_{\gamma Z}^{V}\left(\times 10^{-3}\right) & \\
\stackrel{\oplus}{\oplus} \left\lvert\, \begin{array}{cl}
3 \pm 3 & \text { Gorchtein and Horowitz, PRL (2009) } \\
4.7_{-0.4}^{+1.1} & \text { Sibirtsev et al. PRD (2010) } \\
5.7 \pm 0.9 & \text { Rislow and Carlson, PRD (2011) } \\
5.4 \pm 2.0 & \text { Gorchtein et al. PRC (2011) }
\end{array}\right.
\end{array}
$$

\Longrightarrow central values of all the calculations agree within the quoted uncertainties.
\Longrightarrow error on the Gorchtein et al. value is twice as large as those on the Sibirtsev et al. and Rislow and Carlson calculations.

Energy dependence of $\square_{\gamma Z}$

Summary list of the models for the γZ structure functions that have been discussed in the literature:
(i) color-dipole model, referred to as "Model I" in Gorchtein et al. (GHRM);
(ii) vector meson dominance (VMD) + Regge model, referred to as "Model II" by GHRM;
(iii) Sibirtsev et al., based on the Regge parametrization of Capella et al. PLB (1994);
(iv) Rislow and Carlson's model: depends on the kinematic region.

Formalism

Dispersion relations give,

$$
\Re e \square_{\gamma Z}^{V}(E)=\frac{2 E}{\pi} \mathcal{P} \int_{0}^{\infty} d E^{\prime} \frac{1}{E^{\prime 2}-E^{2}} \Im m \square_{\gamma Z}^{V}\left(E^{\prime}\right)
$$

From the optical theorem, the imaginary part of the PV γZ exchange amplitude can be written as [Gorchtein and Horowitz, PRL (2009)],

$$
\begin{aligned}
\Im m \square_{\gamma Z}^{V}(E)= & \frac{1}{\left(s-M^{2}\right)^{2}} \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} d Q^{2} \frac{\alpha\left(Q^{2}\right)}{1+Q^{2} / M_{Z}^{2}} \\
& \times\left[F_{1}^{\gamma Z}+\frac{s\left(Q_{\max }^{2}-Q^{2}\right)}{Q^{2}\left(W^{2}-M^{2}+Q^{2}\right)} F_{2}^{\gamma Z}\right]
\end{aligned}
$$

Formalism

Dispersion relations give,

$$
\Re e \square_{\gamma Z}^{V}(E)=\frac{2 E}{\pi} \mathcal{P} \int_{0}^{\infty} d E^{\prime} \frac{1}{E^{\prime 2}-E^{2}} \Im m \square_{\gamma Z}^{V}\left(E^{\prime}\right)
$$

From the optical theorem, the imaginary part of the PV γZ exchange amplitude can be written as [Gorchtein and Horowitz, PRL (2009)],

$$
\Im m \square_{\gamma Z}^{V}(E)=\frac{1}{\left(s-M^{2}\right)^{2}} \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} d Q^{2} \frac{\alpha\left(Q^{2}\right)}{1+Q^{2} / M_{Z}^{2}}
$$

$$
\times[\overbrace{\begin{array}{c}
\text { interference } \\
\text { structure functions }
\end{array}}^{F_{1}^{z}}+\frac{s\left(Q_{\max }^{2}-Q^{2}\right)}{Q^{2}\left(W^{2}-M^{2}+Q^{2}\right)}\left(F_{2}^{\gamma z}\right)]
$$

Formalism

In describing the structure functions, or equivalently, the virtual boson-proton cross sections $\sigma_{T, L}$, it is convenient to separate the full range of kinematics into a resonance part and a smooth nonresonant background [Christy and Bosted, PRC (2010)],

$$
\sigma_{T, L}=\sigma_{T, L}^{(\mathrm{res})}+\sigma_{T, L}^{(\mathrm{bgd})}
$$

$\sigma_{T, L}^{\text {(res) }}$
\Longrightarrow term includes a sum over the prominent low-lying resonances.
$\sigma_{T, L}^{(\mathrm{bgd})}$
\Longrightarrow is determined phenomenologically by fitting the inclusive scattering data.

γZ structure functions - resonances

- Using isospin symmetry, the matrix elements of the vector component of the Z current for a proton target can be related to the proton and neutron matrix elements of the electromagnetic current by

$$
\langle R| J_{Z}^{\mu}|p\rangle=\left(1-4 \sin ^{2} \theta_{W}\right)\langle R| J_{\gamma}^{\mu}|p\rangle-\langle R| J_{\gamma}^{\mu}|n\rangle
$$

\Longrightarrow neglecting the small contribution from strange quarks.

- Modify the contribution from each resonance R by a ratio that takes into account the differences between the electromagnetic and weak neutral transition amplitudes.

γZ structure functions - resonances

For the transverse cross section define this ratio for a proton as

$$
\xi_{R} \equiv \frac{\sigma_{T, R}^{\gamma Z}}{\sigma_{T, R}^{\gamma \gamma}}=\left(1-4 \sin ^{2} \theta_{W}\right)-y_{R}
$$

where,

$$
y_{R}=\frac{A_{R, \frac{1}{2}}^{p} A_{R, \frac{1}{2}}^{n^{*}}+A_{R, \frac{3}{2}}^{p} A_{R, \frac{3}{2}}^{n^{*}}}{\left|A_{R, \frac{1}{2}}^{p}\right|^{2}+\left|A_{R, \frac{3}{2}}^{p}\right|^{2}}
$$

\Longrightarrow GHRM longitudinal ratio equated with the transverse one.
\Longrightarrow no Q^{2} dependence (errors large enough to take this into account).

γZ structure functions - background

For Model II of GHRM, a generalization of the VMD model is used, assuming the γZ cross section for vector meson V is given by the analogous $\gamma \gamma$ cross section scaled by the ratio κV of weak and electric charges,

$$
\sigma_{T, L}^{\gamma Z(V)}=\kappa_{V} \sigma_{T, L}^{\gamma \gamma(V)}
$$

where,

$$
\kappa_{\rho}=2-4 \sin ^{2} \theta_{W} \quad \kappa_{\omega}=-4 \sin ^{2} \theta_{W} \quad \kappa_{\phi}=3-4 \sin ^{2} \theta_{W}
$$

This allows the ratio of γZ to $\gamma \gamma$ cross sections to be written as

$$
\frac{\sigma_{T, L}^{\gamma Z}}{\sigma_{T, L}^{\gamma \gamma}}=\frac{\kappa_{\rho}+\kappa_{\omega} R_{\omega}^{T, L}\left(Q^{2}\right)+\kappa_{\phi} R_{\phi}^{T, L}\left(Q^{2}\right)+\kappa_{C}^{T, L} R_{C}^{T, L}\left(Q^{2}\right)}{1+R_{\omega}^{T, L}\left(Q^{2}\right)+R_{\phi}^{T, L}\left(Q^{2}\right)+R_{C}^{T, L}\left(Q^{2}\right)}
$$

γZ structure functions - background

For Model II of GHRM, a generalization of the VMD model is used, assuming the γZ cross section for vector meson V is given by the analogous $\gamma \gamma$ cross section scaled by the ratio κ_{V} of weak and electric charges,

$$
\sigma_{T, L}^{\gamma Z(V)}=\kappa_{V} \sigma_{T, L}^{\gamma \gamma(V)}
$$

where,

$$
\kappa_{\rho}=2-4 \sin ^{2} \theta_{W} \quad \kappa_{\omega}=-4 \sin ^{2} \theta_{W} \quad \kappa_{\phi}=3-4 \sin ^{2} \theta_{W}
$$

This allows the ratio of γZ to $\gamma \gamma$ cross sections to be written as

$$
\frac{\sigma_{T, L}^{\gamma Z}}{\sigma_{T, L}^{\gamma \gamma}}=\frac{\kappa_{\rho}+\kappa_{\omega} R_{\omega}^{T, L}\left(Q^{2}\right)+\kappa_{\phi} R_{\phi}^{T, L}\left(Q^{2}\right)+\kappa_{C}^{T, L} R_{C}^{T, L}\left(Q^{2}\right)}{1+R_{\omega}^{T, L}\left(Q^{2}\right)+R_{\phi}^{T, L}\left(Q^{2}\right)+R_{C}^{T, L}\left(Q^{2}\right)}
$$

AJM model - $F_{i}^{\gamma \gamma}$

Divide the integrals into distinct regions of W^{2} and Q^{2},
(I) Christy and Bosted's (CB) parametrization [Christy and Bosted PRC (2010)] to describe the low- W region (Region I) at $W_{\pi}<W<2 \mathrm{GeV}$ for all Q^{2} up to $10 \mathrm{GeV}^{2}$;
(II) At higher W, corresponding to kinematics where Regge theory is applicable, the VMD+Regge model of Alwall and Ingelman [Alwall and Ingleman, PLB (2004)] is combined with a modified CB resonance contribution to describe the structure functions for $W^{2}>9 \mathrm{GeV}^{2}$ and $Q^{2}<2.5 \mathrm{GeV}^{2}$;
(III) In the DIS region we use the next-to-next-to-leading order (NNLO) fit by Alekhin et al. (ABM11) [Alekhin et al., PRD (2012)].

AJM model - $F_{i}^{\gamma \gamma}$

Kinematic regions:

AJM model $-F_{i}^{\gamma Z}$
Resonances: modified using the ratio ξ_{R},

$$
\xi_{R} \equiv \frac{\sigma_{T, R}^{\gamma Z}}{\sigma_{T, R}^{\gamma \gamma}}=\left(1-4 \sin ^{2} \theta_{W}\right)-y_{R}
$$

where

$$
y_{R}=\frac{A_{R, \frac{1}{2}}^{p} A_{R, \frac{1}{2}}^{n^{*}}+A_{R, \frac{3}{2}}^{p} A_{R, \frac{3}{2}}^{n^{*}}}{\left|A_{R, \frac{1}{2}}^{p}\right|^{2}+\left|A_{R, \frac{3}{2}}^{p}\right|^{2}}
$$

as in GHRM.

- for the AJM model the uncertainties of the helicity amplitudes are added quadrature, while GHRM take the extremal values for each resonance.

AJM model $-F_{i}^{\gamma Z}$

Nonresonant background: transformed using,

$$
\frac{\sigma_{T, L}^{\gamma Z}}{\sigma_{T, L}^{\gamma \gamma}}=\frac{\kappa_{\rho}+\kappa_{\omega} R_{\omega}^{T, L}\left(Q^{2}\right)+\kappa_{\phi} R_{\phi}^{T, L}\left(Q^{2}\right)+\kappa_{C}^{T, L} R_{C}^{T, L}\left(Q^{2}\right)}{1+R_{\omega}^{T, L}\left(Q^{2}\right)+R_{\phi}^{T, L}\left(Q^{2}\right)+R_{C}^{T, L}\left(Q^{2}\right)}
$$

- instead of fixing the parameters $\kappa_{C}^{T, L}$, determine by demanding that structure functions match at their boundaries.

DIS region: computed from the ABM11 PDF parametrization [Alekhin et al., PRD 86:054009].

PDF constraints

Our fit of the parameters $\kappa_{C}^{T, L}$ involves equating the cross section ratios $\sigma_{T, L}^{\gamma Z} / \sigma_{T, L}^{\gamma \gamma}$ with the structure function ratios computed from global QCD fits in the DIS region,

$$
\frac{\sigma_{T}^{\gamma Z}}{\sigma_{T}^{\gamma \gamma}}=\left.\frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma \gamma}}\right|_{\mathrm{DIS}} \quad \frac{\sigma_{L}^{\gamma Z}}{\sigma_{L}^{\gamma \gamma}}=\left.\frac{F_{L}^{\gamma Z}}{F_{L}^{\gamma \gamma}}\right|_{\mathrm{DIS}}
$$

\Longrightarrow DIS structure functions $F_{1, L}^{\gamma \gamma, \gamma Z}$ are taken from the ABM11 parametrization.
\Longrightarrow determine the values of $\kappa_{C}^{T, L}$ by matching the ratios, over a range of W^{2} values at fixed Q^{2} near the boundaries between the regions.

PDF constraints

Our fit of the parameters $\kappa_{C}^{T, L}$ involves equating the cross section ratios $\sigma_{T, L}^{\gamma Z} / \sigma_{T, L}^{\gamma \gamma}$ with the structure function ratios computed from global QCD fits in the DIS region,

$$
\frac{\sigma_{T}^{\gamma Z}}{\sigma_{T}^{\gamma \gamma}}=\left.\frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma \gamma}}\right|_{\text {DIS }} \quad \frac{\sigma_{L}^{\gamma Z}}{\sigma_{L}^{\gamma \gamma}}=\left.\frac{F_{L}^{\gamma Z}}{F_{L}^{\gamma \gamma}}\right|_{\text {DIS }}
$$

\Longrightarrow DIS structure functions $F_{1, L}^{\gamma \gamma, \gamma Z}$ are taken from the ABM11 parametrization.
\Longrightarrow determine the values of $\kappa_{C}^{T, L}$ by matching the ratios, over a range of W^{2} values at fixed Q^{2} near the boundaries between the regions.

PDF constraints

Values at the different Q^{2} are correlated
\Longrightarrow performing a simple χ^{2} fit will underestimate the errors.

Uncertainties come from:
(i) the W^{2} dependence;
(ii) the PDF error.

PDF constraints

$\Longrightarrow \kappa_{C}^{T}=0.65 \pm 0.14$

$$
\kappa_{C}^{L}=-1.3 \pm 1.7 \Longleftarrow
$$

AJM model $-F_{2}^{\gamma Z}$

26 of 41

PVDIS asymmetry

May perform a proof of method using the parity-violating inelastic asymmetry data for the deuteron [Wang et al. PRL 111, 082501],

$$
\begin{aligned}
A_{\text {PVDIS }} & =g_{A}^{e}\left(\frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha}\right) \\
\times & x \frac{x y^{2} F_{1}^{\gamma Z}+\left(1-y-\frac{x^{2} y^{2} M^{2}}{Q^{2}}\right) F_{2}^{\gamma Z}+\frac{g_{V}^{e}}{g_{A}^{e}}\left(y-\frac{1}{2} y^{2}\right) x F_{3}^{\gamma Z}}{x y^{2} F_{1}^{\gamma \gamma}+\left(1-y-\frac{x^{2} y^{2} M^{2}}{Q^{2}}\right) F_{2}^{\gamma \gamma}}
\end{aligned}
$$

Deuteron asymmetry

- Measured parity-violating asymmetry $A_{\text {PV }}^{d}$ [Wang et al. PRL 111, 082501], scaled by $1 / Q^{2}$, is shown at $W=1.26,1.59,1.86$ and 1.98 GeV , with Q^{2} values ranging from $0.76 \mathrm{GeV}^{2}$ to $1.47 \mathrm{GeV}^{2}$ (preliminary).
- Deuteron asymmetries in the AJM model are computed with the continuum parameters constrained by the DIS region structure functions, as for the proton asymmetry.
- Resulting fit gives,

$$
\kappa_{C}^{T}(d)=0.79 \pm 0.05 \quad \kappa_{C}^{L}(d)=0.2 \pm 3.4
$$

Deuteron asymmetry

PDF constrained:

\Longrightarrow clearly in good agreement with the E08-011 [Wang et al. PRL 111, 082501] data.

Deuteron Asymmetry

Data constrained:

This fit constrains $\kappa_{C}^{T}(d)=0.69 \pm 0.13$.

Energy dependence of $\Re e \square_{\gamma Z}^{V}$

Dependence of $\Re e \square_{\gamma Z}^{V}$ on the incident energy E :

[Hall et al. PRD (2013)]
31 of 41

$\Re e \square_{\gamma Z}^{V}$ at $Q_{\text {weak }}$

Region	$\Re e \square_{\gamma Z}^{V}\left(\times 10^{-3}\right)$
I (res)	2.18 ± 0.29
I (bgd)	2.46 ± 0.21
I (total)	4.64 ± 0.36
II	0.59 ± 0.05
III	0.35 ± 0.02
Total	5.57 ± 0.36

Including all uncertainties, we find for the total correction

$$
\Re e \square_{\gamma Z}^{V}=\left(5.57 \pm 0.21_{[b g d]} \pm 0.29_{[r e s]} \pm 0.02_{[D I S]}\right) \times 10^{-3}
$$

Adding the errors in quadrature gives

$$
\Re e \square_{\gamma Z}^{V}=(5.57 \pm 0.36) \times 10^{-3}
$$

Conclusions

- We have performed a comprehensive analysis of the γZ box contribution to the forward, $e-p$ elastic parity-violating asymmetry, reporting a final value of

$$
\Re e \square_{\gamma Z}^{V}=(5.57 \pm 0.36) \times 10^{-3}
$$

- The reduction of the error, relative to previous works, is largely driven by data, where theoretical uncertainties are constrained by a consistent description of the γZ interference structure functions.
- May also use this method to determine the $\Re e \square_{\gamma Z}^{V}$ contribution at higher energies relevant to MOLLER, reporting a value of $\Re e \square_{\gamma Z}^{V}=(11.5 \pm 0.8) \times 10^{-3}$ [Hall et al. PLB (2014)
- Important to further examine the Q^{2} dependence of the $\Re e \square_{\gamma Z}^{V}$

Deuteron asymmetry - unbinned

[Wang et al., PRL (2013)]

Christy-Bosted fit

[Christy and Bosted, PRC 81:055213]

MOLLER

- longitudinally polarised electrons scattered off atomic electrons in a liquid hydrogen target.
- measure the electron's weak charge to within 2.3%.
\Longrightarrow equivalent to measuring $\sin ^{2} \theta_{W}$ to $\approx 0.1 \%$.
- PV asymmetry is given by [Derman and Marciano, Annals Phys. 121:147]:

$$
A_{\mathrm{PV}}=m_{e} E \frac{G_{F}}{\sqrt{2} \pi \alpha} \frac{2 y(1-y)}{1+y^{4}+(1-y)^{4}} Q_{W}^{e}
$$

where at tree level,

$$
Q_{W}^{e}=-1+4 \sin ^{2} \theta_{W}
$$

Experimental status of $\sin ^{2} \theta_{W}$

[Kumar et al., Ann. Rev. Nucl. Part. Sci. (2013)]

MOLLER backgrounds

Use of hydrogen target means unavoidable background contribution from $e-p$ scattering.
Require,
(I) $Q_{W}^{p}<4 \%$ level
(II) proton inelastic asymmetry $\sim 10 \%$
$A_{\mathrm{PVDIS}}=g_{A}^{e}\left(\frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha}\right)$

$$
\times \frac{x y^{2} F_{1}^{\gamma Z}+\left(1-y-\frac{x^{2} y^{2} M^{2}}{Q^{2}}\right) F_{2}^{\gamma Z}+\frac{g_{V}^{e}}{g_{A}^{e}}\left(y-\frac{1}{2} y^{2}\right) x F_{3}^{\gamma Z}}{x y^{2} F_{1}^{\gamma \gamma}+\left(1-y-\frac{x^{2} y^{2} M^{2}}{Q^{2}}\right) F_{2}^{\gamma \gamma}}
$$

$\Re e \square_{\gamma Z}^{V}$ at MOLLER

Dependence of $\Re e \square_{\gamma Z}^{V}$ on the incident energy E.

	$\Re e \square_{\gamma Z}^{V}\left(\times 10^{-3}\right)$	
Region	$Q_{\text {weak }}$	MOLLER
I	4.64 ± 0.35	3.04 ± 0.26
II	0.59 ± 0.05	5.26 ± 0.49
III	0.35 ± 0.02	3.18 ± 0.16
total	5.57 ± 0.36	11.5 ± 0.6

Model dependence of Reg II

\Longrightarrow including all uncertainties, we find for the total correction

$$
\Re e \square_{\gamma Z}^{V}=\left(11.5 \pm 0.6_{\text {orig }} \pm 0.6_{\mathrm{mdp}}\right) \times 10^{-3}
$$

Inelastic asymmetry at 11 GeV

$A_{P V D I S}$ background to MOLLER

