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A few words on LQCD and BChPT
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QCD—non-perturbative at low energies
✤  Quantum ChromoDynamics—the theory of the strong interaction

Asymptotic freedom— 
Nobel prize in physics 2004

Low energy: non-perturbative 
                      problematic

High energy: perturbative QCD 
                       successful

✓ Models 
✓ Effective field theories 
✓ LQCD



Brute Force: Lattice QCD  
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Figure 8: Monte Carlo values ∆E(t) ≡ log(G(t)/G(t+a))/a plotted versus t for an harmonic
oscillator, as in Fig. 4 but with Ncor = 1. The errorbars are unreliable.

3 Field Theory on a Lattice

3.1 From Quantum Mechanics to Field Theory

Field theories of the sort we are interested in have lagrangian formulations
and so can be quantized immediately using path integrals. The procedure is
precisely analogous to what we do in the previous section when quantizing
the harmonic oscillator. The analogues of the coordinates x(t) in quantum
mechanics are just the fields φ(x) or Aµ(x) where x = (t, x⃗) is a space-time
point. Indeed our quantum mechanical examples can be thought of as field
theory examples in 0 spatial and 1 temporal dimension: x(t) → φ(t) → φ(x).
The analogue of the ground state in quantum field theory is the vacuum state,
|0⟩, while the analogues of the excited states, created when φ(x) or φ3 or . . . acts
on |0⟩, correspond to states with one or more particles create in the vacuum.

In the lattice approximation both space and time are discrete:
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15Basic idea：discretize space-time and solve non-perturbative  
strong interaction physics in a finite hypercube, utilizing monte 
carlo sampling techniques



• Vacuum 

!

!

• Observable

Calculating path-integral in Euclidean 
space-time



Parameters and simulation costs

• light quark masses: mu/md 

• lattice spacing:  a 

• lattice volume：V=L4
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• To reduce cost: employ larger than physical light 
quark masses, finite lattice spacing and volume.  

• To obtain physical quantities, multiple extrapolations 
are needed



Multiple extrapolations

• Chiral extrapolations: light quark masses to their 
physical values 
!
!

• Finite volume corrections: infinite space-time 
!
!

• Continuum extrapolations: zero lattice spacing
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Chiral  Perturbation Theory

• The low-energy effective field theory of QCD 

– provides a bridge to link LQCD simulations to the 
physical world 

– helps/guides to perform the aforementioned 
extrapolations



Interplay between ChPT and LQCD 
Simulations

As the low-energy EFT of QCD, ChPT provides a 
model-independent description of low-energy 
strong interaction phenomena by itself 

At higher orders, which are needed to achieve 
accuracy at the few percent level, there might be 
too many unknown low-energy constants (LECs), 
which can not easily be determined by experimental 
data alone  

LQCD simulations provide a solution to overcome 
the above difficulty



l ChPT exploits the symmetry of the QCD Lagrangian and its ground state; in 
practice, one solves in a perturbative manner the constraints imposed by chiral 
symmetry and unitarity by expanding the Green functions in powers of the 
external momenta and of the quark masses. (J. Gasser, 2003)

Chiral Perturbation Theory (ChPT) in essence

• Maps quark (u, d, s) dof’s to those of the asymptotic states, hadrons



• ChPT  very successful in the study of Nanbu-Goldstone boson self-
interactions. (at least in SU(2)) 

• In the one-baryon sector, things become problematic because of the 
nonzero (large) baryon mass in the chiral limit,  which leads to the fact 
that high-order loops contribute to lower-order results, i.e., a systematic 
power counting is lost!

Power-counting-breaking (PCB) in the one-baryon sector

Chiral order =

red dots denote 
possible  
PCB terms (pion-
nucleon scattering) !!
J. Gasser et al., 
NPB 307, 779(1988)



Nucleon mass up to O(p3)
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FIG. 1: Feynman diagrams contributing to the octet- and decuplet-baryons (B and D respectively) up to O(p3) in χPT. The
solid lines correspond to octet-baryons, double lines to decuplet-baryons and dashed lines to mesons. The black dotes indicate
1st-order couplings while boxes, 2nd-order couplings (LECs).

matrix elements of the pion and strangeness sigma commutators defined respectively as:

σπB =
m

2MB
⟨B|ūu + d̄d|B⟩ (13)

σsB =
ms

2MB
⟨B|s̄s|B⟩ (14)

(15)

where B may denote an octet or decuplet baryon. The sigma terms can be obtained from the chiral corrections to
the baryon masses through the Hellman-Feynman theorem (Refs.!!!)

σπB = m
∂MB

∂m
(16)

σsB = ms
∂MB

∂ms
(17)

Up to the order considered in this work, the Eqs. (7) hold and we can express these sigma elements as

σπB =
m2

π

2

(

1

mπ

∂MB

∂mπ
+

1

2mK

∂MB

∂mK
+

1

3mη

∂MB

∂mη

)

(18)

σsB =

(

m2
K −

m2
π

2

) (

1

2mK

∂MB

∂mK
+

2

3mη

∂MB

∂mη

)

(19)

III. RESULTS

In the Figure 1 we show the Feynman diagrams that contribute in χPT up to O(p3) to the self-energy of the octet-
baryons and of the decuplet-resonances. Up to O(p2) there are only the tree-level contributions (a) that introduce
the dependence of the masses on the unknown LECs bD, bF and b0 from the Lagrangian (5) for the octet and γ0 and

Chiral order =
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Chiral order =

Naively  
(no PCB)
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FIG. 1: Feynman diagrams contributing to the octet- and decuplet-baryons (B and D respectively) up to O(p3) in χPT. The
solid lines correspond to octet-baryons, double lines to decuplet-baryons and dashed lines to mesons. The black dotes indicate
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⟨B|ūu + d̄d|B⟩ (13)

σsB =
ms

2MB
⟨B|s̄s|B⟩ (14)

(15)

where B may denote an octet or decuplet baryon. The sigma terms can be obtained from the chiral corrections to
the baryon masses through the Hellman-Feynman theorem (Refs.!!!)

σπB = m
∂MB

∂m
(16)

σsB = ms
∂MB

∂ms
(17)

Up to the order considered in this work, the Eqs. (7) hold and we can express these sigma elements as

σπB =
m2

π

2

(

1

mπ

∂MB

∂mπ
+

1

2mK

∂MB

∂mK
+

1

3mη

∂MB

∂mη

)

(18)

σsB =

(

m2
K −

m2
π

2

) (

1

2mK

∂MB

∂mK
+

2

3mη

∂MB

∂mη

)

(19)

III. RESULTS

In the Figure 1 we show the Feynman diagrams that contribute in χPT up to O(p3) to the self-energy of the octet-
baryons and of the decuplet-resonances. Up to O(p2) there are only the tree-level contributions (a) that introduce
the dependence of the masses on the unknown LECs bD, bF and b0 from the Lagrangian (5) for the octet and γ0 and

No need to calculate, simply recall that M0~O(p0) 

Chiral order =

However

Naively  
(no PCB)



Power-counting-restoration methods



Power-counting-restoration methods



Extended-on-Mass-Shell (EOMS)

tree = M0 + bm2
⇡

• “Drop” the PCB terms

+
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Extended-on-Mass-Shell (EOMS)

tree = M0 + bm2
⇡

• “Drop” the PCB terms

+
⇓

• Equivalent to redefinition of the LECs

tree = M0 + bm2
⇡ +
⇓ChPT contains all possible terms allowed by symmetries, therefore 

whatever analytical terms come out from a loop amplitude, they must 
have a corresponding LEC



HB vs. Infrared vs. EOMS

• Heavy baryon (HB) ChPT 
- non-relativistic 
- breaks analyticity of loop amplitudes 
- converges slowly (particularly in three-flavor sector) 
- strict PC and simple nonanalytical results 

• Infrared BChPT 
- breaks analyticity of loop amplitudes  
- converges slowly (particularly in three-flavor sector) 
- analytical terms the same as HBChPT 

• Extended-on-mass-shell (EOMS) BChPT 
- satisfies all symmetry and analyticity constraints 
- converges relatively faster--an appealing feature



The nucleon scalar form factor at q3

EOMS(IR)

HB

t=4 mП
2

S. Scherer, Prog.Part.Nucl.Phys.64:1-60,2010

Figure 17: Contributions to the nucleon self energy at O(q4). The number n in the interaction blobs

refers to L(n)
πN . The Lagrangian L(2)

πN does not produce a contribution to the πNN vertex.

5.1 Nucleon mass and sigma term at O(q4)

A full one-loop calculation of the nucleon mass also includes O(q4) terms (see Fig. 17). The quark-mass
expansion up to and including O(q4) is given by

mN = m + k1M
2 + k2M

3 + k3M
4 ln

(
M

m

)
+ k4M

4 + O(M5), (244)

where the coefficients ki in the EOMS scheme read [Fuchs et al., 2003a]

k1 = −4c1, k2 = − 3gA
2

32πF 2
, k3 = − 3

32π2F 2m

(
g

2
A − 8c1m + c2m + 4c3m

)
,

k4 =
3gA

2

32π2F 2m
(1 + 4c1m) +

3

128π2F 2
c2 − ê1. (245)

Here, ê1 = 16e38 + 2e115 + 2e116 is a linear combination of O(q4) coefficients [Fettes et al., 2000]. A
comparison with the results using the infrared regularization [Becher and Leutwyler, 1999] shows that
the lowest-order correction (k1 term) and those terms which are non-analytic in the quark mass m̂ (k2

and k3 terms) coincide. On the other hand, the analytic k4 term (∼ M4) is different. This is not
surprising; although both renormalization schemes satisfy the power counting specified in Sec. 4.2.2,
the use of different renormalization conditions is compensated by different values of the renormalized
parameters.

For an estimate of the various contributions of Eq. (244) to the nucleon mass, we make use of the
parameter set

c1 = −0.9 m−1
N , c2 = 2.5 m−1

N , c3 = −4.2 m−1
N , c4 = 2.3 m−1

N , (246)

which was obtained in Ref. [Becher and Leutwyler, 2001] from a (tree-level) fit to the πN scattering
threshold parameters. Using the numerical values

gA = 1.267, Fπ = 92.4 MeV, mN = mp = 938.3 MeV, Mπ = Mπ+ = 139.6 MeV, (247)

one obtains for the mass of nucleon in the chiral limit (at fixed ms ̸= 0):

m = mN −∆m = [938.3 − 74.8 + 15.3 + 4.7 + 1.6 − 2.3 ± 4] MeV = (883 ± 4) MeV (248)

with ∆m = (55.5±4) MeV. Here, we have made use of an estimate for ê1M4 = (2.3±4) MeV obtained
from the σ term. (Note that errors due to higher-order corrections are not taken into account.) In
terms of the SU(2)L×SU(2)R-chiral-symmetry-breaking mass term of the QCD Hamiltonian,

Hsb = m̂(ūu + d̄d), (249)

the pion-nucleon σ term is defined as the proton matrix element

σ =
1

2mp
⟨p(p, s)|Hsb(0)|p(p, s)⟩ (250)
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Figure 18: Pion mass dependence of the term k5M5 ln(M/mN) (solid line) for M < 400 MeV. For
comparison also the term k2M3 (dashed line) is shown.

shows the pion mass dependence of the term k5M5 ln(M/mN ) (solid line) in comparison with the
term k2M3 (dashed line) for pion masses below 400 MeV which is considered a region where chiral
extrapolations are valid (see, e.g., Refs. [Meißner, 2006], [Djukanovic et al., 2006]). We see that already
at M ≈ 360 MeV the term k5M5 ln(M/mN ) becomes as large as the leading non-analytic term at one-
loop order, k2M3, indicating the importance of the fifth-order terms at unphysical pion masses. Our
results for the renormalization-scheme-independent terms agree with the heavy-baryon ChPT results of
Ref. [McGovern and Birse, 1999].

5.3 Form factors of the nucleon

5.3.1 Scalar form factor

The pion-nucleon σ term corresponds to the kinematical point t = 0 of the scalar form factor which is
defined as

⟨p(p′, s′)|Hsb(0)|p(p, s)⟩ = ū(p′, s′)u(p, s)σ(t), t = (p′ − p)2.

The numerical results for the real and imaginary parts of the scalar form factor at O(q4) are shown
in Fig. 19 for the extended on-mass-shell scheme (solid lines) and the infrared regularization scheme
(dashed lines). While the imaginary parts are identical in both schemes, the differences in the real parts
are practically indistinguishable. Note that for both calculations σ(0) and ∆σ ≡ σ(2M2

π) − σ(0) have
been adjusted to the dispersion results of Ref. [Gasser et al., 1991], ∆σ = (15.2 ± 0.4) MeV.

Figure 20 contains an enlargement near t ≈ 4M2
π for the results at O(q3) which clearly displays how

the heavy-baryon calculation fails to produce the correct analytic behavior not only at the tree level
but also in higher-order loop diagrams. Both real and imaginary parts diverge as t → 4M2

π .

5.3.2 Electromagnetic form factors

Imposing the relevant symmetries such as translational invariance, Lorentz covariance, the discrete sym-
metries, and current conservation, the nucleon matrix element of the electromagnetic current operator
J µ(x),

J µ(x) =
2

3
ū(x)γµu(x) − 1

3
d̄(x)γµd(x),

68
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Fig. 1. Triangle graph. The solid, dashed, and wiggly lines
represent nucleons, pions and an external scalar source, re-
spectively

3 Scalar form factor

We first wish to show that, in the sector with baryon
number 1, the standard chiral expansion in powers of me-
son momenta and quark masses converges in only part
of the low-energy region. For definiteness, we consider
the scalar form factor of the nucleon in the isospin limit
(mu = md = m̂),

⟨N(P ′, s′)| m̂ (ūu + d̄d) |N(P, s)⟩ = ū′u σ(t) ,

t = (P ′ − P )2 .

The first two terms occurring in the low-energy expansion
of this form factor were worked out long ago, on the ba-
sis of a one-loop calculation within the Lorentz invariant
formulation of the effective theory [1]. In that expansion,
t, m̂ and M2

π are treated as small quantities of O(p2),
while the nucleon mass represents a term of O(p0). In
view of the quark-mass factor occurring in the definition
of σ(t), the low-energy expansion starts at order p2, with
a momentum-independent term generated by L(2)

N :

σ(t) = −4c1 M2
π

+
3 g2

AM2
πmN

4F 2
π

{

(t − 2M2
π) γ(t) − Mπ

8πmN

}

+ O(p4) (3)

The constant c1 occurring here is a renormalized version
of the bare coupling constant in (1). Since the renormal-
ization depends on the framework used, we do not discuss
it at this preliminary stage. The contribution of order p3

is generated by the triangle graph shown in Fig. 1, and is
fully determined by Fπ and gA.

The term involves the convergent scalar loop integral

γ(t) =
1
i

∫

d4k

(2π)4
1

(M2− k2−iϵ) (M2−(k−q)2−iϵ)

× 1
(m2−(P −k)2−iϵ)

(4)

Here and in the following, we identify the masses occurring
in the loop integrals with their leading order values, Mπ →
M , mN → m.

The function γ(t) represents a quantity of O(1/p). Since
the external nucleon lines are on the mass shell, the func-
tion exclusively depends on t = q2, M and m. The func-
tion is analytic in t, except for a cut along the positive

real axis, starting at t = 4M2. The triangle graph also
shows up in the analysis of the πN-scattering amplitude
to one-loop order, so that the function γ(t) is relevant also
for that case.

The imaginary part of γ(t) can be expressed in terms
of elementary functions [1]:

Imγ(t) =
θ(t − 4M2)

8π
√

t (4m2 − t)
arctan

√

(t − 4M2)(4m2 − t)
t − 2M2 .

(5)

Dropping corrections of order t/m2 = O(p2), this expres-
sion simplifies to

Imγ(t) =
θ(t − 4M2)
16πm

√
t

{

arctan
2m

√
t − 4M2

t − 2M2 + O(p2)

}

.

(6)

The problem addressed above shows up in this formula:;
the quantity

x =
2m

√
t − 4M2

t − 2M2

represents a term of O(1/p). The standard chiral expan-
sion of Imγ(t) thus corresponds to the series arctan x =
π/2−1/x+1/(3x3)+ . . . , which, however, only converges
for |x| > 1. In the vicinity of t = 4M2, the condition is
not met, so that the chiral expansion diverges. The prob-
lem arises because the quantity x takes small values there,
while the low-energy expansion treats x as a large term of
O(1/p). In the region |x| < 1, we may instead use the con-
vergent series arctan x = x−x3/3+ . . . , but this amounts
to an expansion in inverse powers of p.

The rapid variation of the form factor near t = 4M2

is related to the fact that the function arctan z exhibits
branch points at z = ± i. The analytic continuation of
γ(t) to the second sheet therefore contains a branch point
just below the threshold:

(t − 4M2)(4m2 − t)
(t − 2M2)2

= −1 → t = 4M2 − M4

m2 .

This implies that, in the threshold region, the form fac-
tor does not admit an expansion in powers of meson mo-
menta and quark masses. As is shown in [3], the heavy-
baryon perturbation series to O(p3) coincides with the chi-
ral expansion of the relativistic result [1], and it is noted
in [5] that this representation does not make sense near
t = 4M2. The corresponding imaginary part amounts to
the approximation arctanx → π/2, so that the singu-
larity structure on the second sheet is discarded. Within
HBχPT, an infinite series of internal-line insertions must
be summed up to properly describe the behaviour of the
form factor near the threshold. The relativistic formula
(3), on the other hand, does apply in the entire low-energy
region, because it involves the full function γ(t) rather
than the first one or two terms in the chiral expansion
thereof.
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EOMS

Proton and neutron magnetic moments: 
chiral extrapolation
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Octet baryon magnetic moments at NLO 
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Origin of nucleon(baryon) masses
1) Mass of its constituents—quarks 
      In SM, due to the Higgs mechanism à LHC@CERN 
!
!
2)Strong interaction—lattice QCD 
     mass of proton (940 MeV) ≠ sum of current quark masses (~10 MeV). 

LHC@CERN

S. Durr et al., Science 322, 1224(2008)

BMW

Nobel prize 2013



landscape of latest 2+1 f LQCD simulations 
of g.s. octet baryon masses

• Extrapolate to the continuum:  
• Extrapolate to physical light quark masses: 
• Extrapolate to infinite space-time:
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Figure 2. (color online). The landscape of the PACS-CS Collaboration (red circles), the LHPC
Collaboration (blue squares), the QCDSF-UKQCD Collaboration (green diamonds), the HSC Col-
laboration (yellow upper triangles) and the NPLQCD Collaboration (sky-blue pentagons) in the
2M2

K �M2
⇡ vs M2

⇡ plane (left panel) and in the L vs M2
⇡ plane (right panel). The star denotes the

physical point with the physical light- and strange-quark masses.

volume e↵ects on the baryon masses. The large range of light pion masses provides an

opportunity to explore the applicability of chiral perturbation theory for the extrapolation

of baryon masses. Although the light u/d quark masses adopted are always larger than their

physical counterpart, the strange quark masses vary from collaboration to collaboration:

those of the PACS-CS and LHPC collaborations are larger than the physical one; those of

the HSC and NPLQCD groups are a bit smaller, while as those of the QCDSF-UKQCD

collaboration are all lighter than physical one.

In the L–M2
⇡ plane, it is seen that the PACS-CS and LHPC groups adopt a single

value of lattice volume, the HSC and QCDSF-UKQCD groups use the two di↵erent lattice

volumes and the NPLQCD employs four di↵erent lattice volumes for every ensembles in

order to study the finite-volume e↵ects on the baryon octet masses. Many of the simulations

are still performed with M�L from 3 to 5 and with M� larger than 300 MeV. As a result,

finite-volume corrections may not be negligible (see, e.g., Ref. [48]). In our study, we will

take into account finite-volume corrections a self-consist way as in Ref. [43, 48].

Except for the large di↵erent of light- and strange-quark masses and lattice size, there

are many di↵erent choices for lattice actions in the current lattice calculations,which lead

to be the same continuum theory. Therefore, it’s crucial to test all these simulation results,

whether they are consistent with each other [12].

In Appendix A, we tabulate the baryon octet masses of the PACS-CS, LHPC, HSC,

QCDSF-UKQCD and NPLQCD collaborations. The numbers are given in physical unites

using either the lattice scale specified in the original publications [5, 7, 8, 11] or the method

of ratios such as QCDSF-UKQCD [10]. It is di�cult to guess the applicability region of

SU(3) BChPT. To redue the uncertainty from higher order terms in the chiral expansion,

we take the lattice simulations with pion-masses M2
⇡ < 0.25 GeV2. And we single out
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To obtain g.s. baryon masses in the physical world



Many Studies in BChPT: HB, IR, EOMS

NNLO HBChPT - failed to describe the lattice data  
- LHPC (A. Walker-Loud et al.),  PRD79:054502, 2009 

- PACS-CS (K.-I. Ishikawa), PRD80:054502, 2009.  

NNLO EOMS BChPT - improved description of the LHP and PACS-CS 

data, particularly, in comparison with HBChPT  
- J. Martin-Gamalich, LSG, et al., PRD80:054502, 2009.   

N3LO EOMS BChPT - the first global study of all the publicly available 

LQCD data X.-L. Ren, LSG, et al., JHEP12(2012)073, PRD87, 074001 (2013) 

Studies based on other alternative formulations of BChPT: 
- NNLO finite-range-regularized HB ChPT —  nice description of the PACS-CS and LHPC 

data—R.D. Young and A. W. Thomas, PRD 81:014503 (2010) 
- N3LO partial summation BChPT  — nice description of the BMW, PACS-CS, and UKQCD 

data—A. Semeke and M.F.M Lutz, PRD 85:034001(2012) 
- N3LO infrared BChPT — Peter C. Bruns, Ludwig Greil, and Andreas Schäfer, PRD 87: 

052005(2012)



Diagrams and Lagrangians

• Diagrams (up to N3LO): 
!
!
!
!

• Lagrangians at NNLO (3 LECs)—tree

( c ) ( d ) ( e )

( a ) ( b )

Figure 1. Feynman diagrams contributing to the octet-baryons up to O(q4) in EOMS-BChPT.
The solid lines correspond to octet-baryons and dashed lines refer to Goldstone bosons. The black
boxes (diamonds) are indicate second (fourth) order couplings. The solid dot (circlecross) indicates
an insertion from the dimension one (two) meson-baryon Lagrangian.

where m0 is the octet baryon masses in the chiral limit, and M� represents the masses

of Nambu-Goldstone bosons. Here, we want to mention that the integral of Eq. (3.4) has

been calculated and results can be found in Ref [43]. As pointed in there, the above loop

functions contain power-counting breaking (PCB) terms and therefore additional steps

need to be taken to conserve a proper chiral power-counting scheme. Among the di↵erent

approaches, the EOMS scheme has been shown to be superior to heavy-baryon or infrared

approaches for a number of observables (at least at NLO).

3.2 The EOMS renormalization scheme

In a covariant version of ChPT describing the interactions between Nambu-Goldstone

bosons and baryon, one has to face the PCB problem. That is to say, in the calcula-

tion of a loop diagram one may find terms with a chiral order lower than that determined

by the naive power counting [14]. Such analytical PCB terms can be removed, just as

in baryon ChPT, by using the heavy-baryon expansion, the IR, or the EOMS renormal-

ization prescriptions. The essence of the EOMS approach lies in the fact that ChPT, by

construction, contains all the structures allowed by symmetry. Therefore, the PCB pieces

appearing in a loop calculation can always be removed by redefining the corresponding

LECs. This is equivalent to removing the finite PCB pieces directly from the loop results.

In practice, this can be achieved in two slightly di↵erent ways: (1) one can first perform

the loop calculation analytically, and then remove the PCB terms, or (2) one can first

perform an expansion in terms of the inverse heavy-meson mass, 1/mH , calculate the PCB

terms, and then subtract them from the full results. It should be noticed that the second

prescription is di↵erent from the heavy-baryon expansion because in general integration

and expansion may not commute. But since the PCB terms are finite and analytical, the

second prescription should always work.

In the present study, we have explicitly checked that all the PCB terms appearing in

our loop calculation can be removed by redefining the LECs introduced in the previous

subsection.
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Under SU(3)L⇥SU(3)R, B transforms as any matter field, B ! B0 = KBK†, with

K(U,L,R) the compensator field representing an element of the conserved subgroup SU(3)V .

The lowest-order meson-baryon lagrangian is

L(1)
�B = hB̄(i /D �m0)Bi+ D/F

2
hB̄�µ�5[uµ, B]±i, (2.7)

where m0 denotes the baryon octet masses in the SU(3) chiral limit, and the constants D

and F are the two axial-vector coupling constants (subject to the constraint F +D = gA =

1.26), which are determined by the semi-leptonic decays. In equation (2.7), the covariant

derivative of the baryon field is defined

DµB = @µB + [�µ, B], (2.8)

�µ =
1

2

n

u†(@µ � irµ) + u(@µ � ilµ)u
†
o

, (2.9)

and uµ the axial current defined as

uµ = i
n

u†(@µ � irµ)u� u(@µ � ilµ)u
†
o

. (2.10)

In the above definitions, the quantity u =
p
U , rµ = vµ+aµ, lµ = vµ�aµ with vµ = ⌧�v�µ/2,

and aµ = ⌧�a�µ/2 the external vector and axial currents, where ⌧� are the Pauli matrices.

The meson-baryon lagrangian at order O(q2) can be written as

L(2)
�B = L(2, sb)

�B + L(2)
�B

0
. (2.11)

The splitting is motivated by the fact that while the first three terms appear in the

tree and loop graphs, the latter only come in via loops.

The explicit chiral symmetry breaking part reads

L(2,sb)
�B = b0h�+ihBB̄i+ bD/F hB̄[�+, B]±i, (2.12)

where, b0, D, F are the low-energy constants (LECs), and �+ = u†�u† + u�†u.

For the latter part, we take the same form as in Ref. [47]

L(2)
�B

0
= b1hB̄[uµ, [u

µ, B]]i+ b2hB̄{uµ, {uµ, B}}i
+b3hB̄{uµ, [uµ, B]}i+ b4hB̄Bihuµuµi
+ib5

⇣

hB̄[uµ, [u⌫ , �µD⌫B]]i � hB̄ �D⌫ [u
⌫ , [uµ, �µB]]

⌘

+ib6
⇣

hB̄[uµ, {u⌫ , �µD⌫B}]i � hB̄ �D⌫{u⌫ , [uµ, �µB]}
⌘

+ib7
⇣

hB̄{uµ, {u⌫ , �µD⌫B}}i � hB̄ �D⌫{u⌫ , {uµ, �µB}}i
⌘

+ib8
⇣

hB̄�µD⌫Bi � hB̄ �D⌫�µBi
⌘

huµu⌫i+ · · · (2.13)

Here, we only interest the b1,··· ,8 terms for the contribution to the octet masses, where

b1,··· ,4 have dimension mass�1, the b5,··· ,8 have dimension mass�2. There, all terms with

one or two covariant derivatives were absorbed in the structures ⇠ b1,··· ,4. This can be done

– 4 –



Diagrams and Lagrangians

• Lagrangians at NNLO (8 LECs)—tadpole 
!
!
!
!
!

• Lagrangians at N3LO (7 LECs)—tree
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2
hB̄�µ�5[uµ, B]±i, (2.7)
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The meson-baryon lagrangian at order O(q2) can be written as

L(2)
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�B + L(2)
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0
. (2.11)

The splitting is motivated by the fact that while the first three terms appear in the

tree and loop graphs, the latter only come in via loops.

The explicit chiral symmetry breaking part reads

L(2,sb)
�B = b0h�+ihBB̄i+ bD/F hB̄[�+, B]±i, (2.12)

where, b0, D, F are the low-energy constants (LECs), and �+ = u†�u† + u�†u.

For the latter part, we take the same form as in Ref. [47]

L(2)
�B

0
= b1hB̄[uµ, [u

µ, B]]i+ b2hB̄{uµ, {uµ, B}}i
+b3hB̄{uµ, [uµ, B]}i+ b4hB̄Bihuµuµi
+ib5

⇣

hB̄[uµ, [u⌫ , �µD⌫B]]i � hB̄ �D⌫ [u
⌫ , [uµ, �µB]]

⌘

+ib6
⇣

hB̄[uµ, {u⌫ , �µD⌫B}]i � hB̄ �D⌫{u⌫ , [uµ, �µB]}
⌘

+ib7
⇣

hB̄{uµ, {u⌫ , �µD⌫B}}i � hB̄ �D⌫{u⌫ , {uµ, �µB}}i
⌘

+ib8
⇣

hB̄�µD⌫Bi � hB̄ �D⌫�µBi
⌘

huµu⌫i+ · · · (2.13)

Here, we only interest the b1,··· ,8 terms for the contribution to the octet masses, where

b1,··· ,4 have dimension mass�1, the b5,··· ,8 have dimension mass�2. There, all terms with

one or two covariant derivatives were absorbed in the structures ⇠ b1,··· ,4. This can be done
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as long as one works for a set of fixed quark masses. For our purpose, we need to retain

all terms that lead to structures of di↵erent quark mass dependences.

The dimension three Lagrangian does not contribute to the baryon masses

L(3)
�B = 0. (2.14)

Finally, we provide the fourth-order e↵ective Lagrangians relevant to our calcula-

tions [38],

L(4)
�B = d1hB̄[�+, [�+, B]]i+ d2hB̄[�+, {�+, B}]i

+d3hB̄{�+, {�+, B}}i+ d4hB̄�+ih�+Bi
+d5hB̄[�+, B]ih�+i+ d7hB̄Bih�+i2
+d8hB̄Bih�2

+i. (2.15)

In total, up to NNLO, we have 19 low-energy constants: m0, b0, D, F,1�8 and d1�7.

3 Baryon octet masses

In this section, we evaluate the baryon octet masses up to fourth order using the baryon

chiral perturbation theory with extented-on-mass-shell (EOMS) renormalization scheme.

3.1 Self-energy

The two-point function of the baryon octet field  B(x)

S0(x) = �ih0|T [ B(x) ̄B(0)]|0i = 1

/p�m0 � ⌃(/p)
, (3.1)

where m0 is the baryon octet pole mass in the chiral limit, ⌃(/p) corresponds to the self-

energy. The physical baryon octet masses are defined at baryon pole, /p = mB,

mB �m0 � ⌃(/p = mB) = 0, ) mB = m0 + ⌃(/p = mB). (3.2)

The leading contribution to self-energy ⌃a = m(2)
B is of order O(q2), the self-energy ⌃b =

m(3)
B of one-loop graph (b) shown in Fig. 1 is of order O(q3), one tree graph (c) contribution

from L(4)
�B with other two loop-graphs (d) and (f) in Fig. 1 are classified as order O(q4),

m(4)
B = ⌃c+⌃d+⌃e. We remark that due to the parity conservation, there are no first order

contributions. Then the baryon mass at fourth-order in chiral expansion can be expressed

mB = m0 +m(2)
B +m(3)

B +m(4)
B . (3.3)

Applying the feynman rules, three one-loop diagrams (b), (d) and (e) in Fig 1 yield,

generically,

Gb = i

Z

d4k

(2⇡)4
/k�5

1

/p� /k �m0 + i✏
/k�5

1

k2 �M2
� + i✏

, (3.4)

Gd = i

Z

d4k

(2⇡)4
{1, kµk

µ, kµk⌫p
µ�⌫} 1

k2 �M2
� + i✏

, (3.5)

Ge = i

Z

d4k

(2⇡)4
/k�5

✓

1

/p� /k �m0 + i✏

◆2

/k�5
1

k2 �M2
� + i✏

, (3.6)
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Analytical results and PCB 

as long as one works for a set of fixed quark masses. For our purpose, we need to retain
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from L(4)
�B with other two loop-graphs (d) and (f) in Fig. 1 are classified as order O(q4),
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B = ⌃c+⌃d+⌃e. We remark that due to the parity conservation, there are no first order

contributions. Then the baryon mass at fourth-order in chiral expansion can be expressed

mB = m0 +m(2)
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B +m(4)
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Applying the feynman rules, three one-loop diagrams (b), (d) and (e) in Fig 1 yield,
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3.3 The mass formulas

After calculating all the feynman diagrams shown in Fig. 1 and subtracting the PCB terms

using EOMS renormalization scheme, we obtain the full expression of the baryon octet

masses up to next-to-next-to-leading order.

At O(q2) the tree level contribution provide the LO SU(3)-breaking corrections to the

chiral limit baryon octet masses

m(2)
B =

X

�=⇡, K

⇠(a)B,�M
2
�. (3.7)

where the coe�cients ⇠(a)B,� listed in Table 1

Table 1. Coe�cients of the leading order contribution to the self-energy for octet baryons.

N ⇤ ⌃ ⌅

⇠(a)B,⇡ �(2b0 + 4bF )
�2
3 (3b0 � 2bD) �(2b0 + 4bD) �(2b0 � 4bF )

⇠(a)B,K �(4b0 + 4bD � 4bF )
�2
3 (6b0 + 8bD) �4b0 �(4b0 + 4bD + 4bF )

At O(q3) the graph (b) gives the NLO SU(3)-breaking corrections to the baryon masses

m(3)
B =

1

(4⇡F0)2

X

�=⇡, K, ⌘

⇠(b)B,�H
(b)
B (M�). (3.8)

The coe�cients ⇠(b)B,� are Clebsch-Gordan coe�cients in Table 2, and the corresponding

loop function, we refer to the Ref. [43].

Table 2. Coe�cients of the loop-contribution to the self-energy of octet baryons up to O(q3).

N ⇤ ⌃ ⌅

⇠(b)B,⇡
3
2(D + F )2 2D2 2

3(D
2 + 6F 2) 3

2(D � F )2

⇠(b)B,K
1
3(5D

2 � 6DF + 9F 2) 2
3(D

2 + 9F 2) 2(D2 + F 2) 1
3(5D

2 + 6DF + 9F 2)

⇠(b)B,⌘
1
6(D � 3F )2 2

3D
2 2

3D
2 1

6(D + 3F )2

Up to NNLO, the mass corrections to the octet baryons can be expressed

m(4)
B = ⇠(c)B,⇡M

4
⇡ + ⇠(c)B,KM4

K + ⇠(c)B,⇡KM2
⇡M

2
K

+
1

(4⇡2F�)2

X

�=⇡,K,⌘

h

⇠(d,1)B,� H(d,1)
B (M�) + ⇠(d,2)B,� H(d,2)

B (M�) + ⇠(d,3)B,� H(d,3)
B (M�)

i

+
1

(4⇡2F�)2

X

�=⇡,K,⌘
B0=N,⇤,⌃,⌅

⇠(e)BB0,� ·H(e)
B,B0(M�). (3.9)

The first three terms of Eq. (3.9) is the contribution from tree-graph (c),

and the corresponding coe�cients ⇠(c)B,⇡, ⇠(c)B,K , ⇠(c)B,⇡K can be found in Table 3;
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Analytical results and PCB 

as long as one works for a set of fixed quark masses. For our purpose, we need to retain

all terms that lead to structures of di↵erent quark mass dependences.

The dimension three Lagrangian does not contribute to the baryon masses

L(3)
�B = 0. (2.14)

Finally, we provide the fourth-order e↵ective Lagrangians relevant to our calcula-

tions [38],

L(4)
�B = d1hB̄[�+, [�+, B]]i+ d2hB̄[�+, {�+, B}]i

+d3hB̄{�+, {�+, B}}i+ d4hB̄�+ih�+Bi
+d5hB̄[�+, B]ih�+i+ d7hB̄Bih�+i2
+d8hB̄Bih�2

+i. (2.15)

In total, up to NNLO, we have 19 low-energy constants: m0, b0, D, F,1�8 and d1�7.

3 Baryon octet masses

In this section, we evaluate the baryon octet masses up to fourth order using the baryon

chiral perturbation theory with extented-on-mass-shell (EOMS) renormalization scheme.

3.1 Self-energy

The two-point function of the baryon octet field  B(x)

S0(x) = �ih0|T [ B(x) ̄B(0)]|0i = 1

/p�m0 � ⌃(/p)
, (3.1)

where m0 is the baryon octet pole mass in the chiral limit, ⌃(/p) corresponds to the self-

energy. The physical baryon octet masses are defined at baryon pole, /p = mB,

mB �m0 � ⌃(/p = mB) = 0, ) mB = m0 + ⌃(/p = mB). (3.2)

The leading contribution to self-energy ⌃a = m(2)
B is of order O(q2), the self-energy ⌃b =

m(3)
B of one-loop graph (b) shown in Fig. 1 is of order O(q3), one tree graph (c) contribution

from L(4)
�B with other two loop-graphs (d) and (f) in Fig. 1 are classified as order O(q4),

m(4)
B = ⌃c+⌃d+⌃e. We remark that due to the parity conservation, there are no first order

contributions. Then the baryon mass at fourth-order in chiral expansion can be expressed

mB = m0 +m(2)
B +m(3)

B +m(4)
B . (3.3)

Applying the feynman rules, three one-loop diagrams (b), (d) and (e) in Fig 1 yield,

generically,

Gb = i

Z

d4k

(2⇡)4
/k�5

1

/p� /k �m0 + i✏
/k�5

1

k2 �M2
� + i✏

, (3.4)

Gd = i

Z

d4k

(2⇡)4
{1, kµk

µ, kµk⌫p
µ�⌫} 1

k2 �M2
� + i✏

, (3.5)

Ge = i

Z

d4k

(2⇡)4
/k�5

✓

1

/p� /k �m0 + i✏

◆2

/k�5
1

k2 �M2
� + i✏

, (3.6)
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Power-counting-breaking 
(PCB) terms removed by 
the extended-on-mass-
shell (EOMS) scheme



Results in a finite box -finite volume 
corrections

• Physical origin: existence of boundary conditions  
!
!
!
!
!

• Momenta of virtual particles are discretized
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Low energy constants (LECs)

• Unknown—to be fitted (19)  
– m0, 
– b0, bD, bF, b1, b2, b3, b4, b5,b6,b7,b8 
– d1,d2,d3,d4,d5,d7,d8 

• Reasonably well-known 
– f0=0.0871 GeV 
– D=0.46 
– F=0.8 
– µ=1 GeV

Only 4 data points at the physical point! LQCD 
simulations needed!



Selection of  the lattice data

• N3LO BChPT cannot describe all the lattice data with 
arbitrarily large light quark mass / small volumes 
!

• Two criteria: light quark masses/NGB masses (mM) 
and mM L 

11 sets of data (44 points) from five collaborations: 
LHPC, PACS-CS, QCDSF-UKQCD, HSC, and 
NPLQCD 



Results: physical data included in the fits
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Figure 3. (Color online). The lowest-lying baryon octet masses as functions of the pion mass. The
two bands correspond to the best O(q4) fit to lattice data Set-I and Set II, and the dot-dashed lines
and dashed lines are the best NLO and NNLO fits to lattice data Set-I. In obtaining the ChPT
results, the strangeness quark mass has been set to its physical value. The lattice numbers are
projected ones with N3LO BChPT with the LECs determined from the best fit to set-I and their
strange quark mass is also set to the physical value.

Table 7. Extrapolated baryon octet masses to the physical point of the O(q2), O(q3), and O(q4)
best fits. The error is only statistical.

B Exp. [12] Fit I Fit II Fit-I (NLO) Fit-I (NNLO)

N 0.940(2) 0.865(26) 0.936(10) 0.987(6) 0.876(3)

Λ 1.116(1) 1.076(18) 1.129(8) 1.118(7) 1.067(4)

Σ 1.193(5) 1.155(17) 1.193(7) 1.177(6) 1.126(4)

Ξ 1.318(4) 1.294(23) 1.310(8) 1.279(6) 1.288(4)

II seem to be closer to the data than those using the LECs from Fit I, though the latter

fit yields a smaller χ2/d.o.f.. The same is true for the NLO ChPT fit. It yields the largest

χ2/d.o.f. but the extrapolations are even closer to the physical values than the N3LO Set-I

– 15 –



Results: physical data included in the fits

• O(p4) is much better than 
O(p3) and O(p2) fit 

!
• All LECs look natural and 

consistent with each 
other  

!
• Neglecting Finite-Volume-

Corrections would lead to  
χ 2
d .o. f = 1.9

Table 6. Values of the LECs from the best fit to the LQCD data and the experimental data at
O(p2), O(p3), and O(p4). The estimator for the fits χ2/d.o.f. is also given (see text for details).

Set-I Set-II

Fit - O(p2) Fit - O(p3) Fit I - O(p4) Fit II - O(p4)

m0 [MeV] 900(6) 767(6) 880(22) 868(12)

b0 [GeV−1] −0.273(6) −0.886(5) −0.609(19) −0.714(21)
bD [GeV−1] 0.0506(17) 0.0482(17) 0.225(34) 0.222(20)

bF [GeV−1] −0.179(1) −0.514(1) −0.404(27) −0.428(12)
b1 [GeV−1] – – 0.550(44) 0.515(132)

b2 [GeV−1] – – −0.706(99) 0.148(48)

b3 [GeV−1] – – −0.674(115) −0.663(155)
b4 [GeV−1] – – −0.843(81) −0.868(105)
b5 [GeV−2] – – −0.555(144) −0.643(246)
b6 [GeV−2] – – 0.160(95) −0.268(334)
b7 [GeV−2] – – 1.98(18) 0.176(72)

b8 [GeV−2] – – 0.473(65) −0.0694(1638)
d1 [GeV−3] – – 0.0340(143) 0.0345(134)

d2 [GeV−3] – – 0.296(53) 0.374(21)

d3 [GeV−3] – – 0.0431(304) 0.00499(1817)

d4 [GeV−3] – – 0.234(67) 0.267(34)

d5 [GeV−3] – – −0.328(60) −0.445(26)
d7 [GeV−3] – – −0.0358(269) −0.183(12)
d8 [GeV−3] – – −0.107(32) −0.307(21)

χ2/d.o.f. 11.8 8.6 1.0 1.6

Set-I. On the contrary the two N3LO fits, named Fit I and Fit II, both can give a good

description of lattice data Set-I. The rather linear dependence of the lattice data on M2
π at

large light quark masses, which are exhibited both by the lattice data [7] and reported by

other groups, is clearly seen.

As mentioned above, Fit II is a global fit to the 26 lattice data sets with a χ2/d.o.f. = 1.6.

In Fig. 4, we show its description of the lattice data from the PACS-CS, LHPC, QCDSF-

UKQCD and HSC collaborations, respectively. 7 The baryon masses are plotted as func-

tions of M2
π , with the kaon mass calculated using M2

K = a+ bM2
π with a and b determined

from the lattice data for each ensemble (see Appendix B for details), and the lattice data

are all extrapolated to infinite space-time. It is clear that our fitting results can give a rea-

7 We do not show the NPLQCD data because they are obtained at a single pion mass.
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FIG. 2. (Color online). Pion mass dependence of the LQCD data in comparison with the best fits of the

EOMS BChPT up to N3LO with (solid lines) and without (dashed lines) the virtual decuplet contributions.

The lattice data have been extrapolated to the physical strange-quark mass and infinite space-time.

a reasonable description of the FVCs. At the e−mπL/(mπL) ≤ 0.2 region, these two fits give

essentially the same results. With the increase of e−mπL/(mπL) ( the decrease of lattice size L),

the O+D BChPT results are in better agreement the NPLQCD data, especially for the nucleon

mass. It seems that the virtual decuplet baryons can help to improve the description of the FVCs,

although the BChPT results are still a bit larger than the LQCD data at small MφL.

It is interesting to check whether the O+D best fit can describe the lattice data with larger pion

masses and/or smaller lattice volumes. In Fig. 4, the PACS-CS, LHPC, HSC and QCDSF-UKQCD

lattice data with Mπ < 700 MeV are compared with the best N3LO O+D EOMS BChPT with the

Fit-I LECs of Table IV. The lattice points included in the fit are denoted by solid points and those

excluded in the fit by hollow points. It is clear that the N3LO BChPT can describe reasonably well
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Continuum extrapolation/
discretization effects

• In principle, all the aforementioned studies of the 
LQCD simulations should be performed after they 
have been extrapolated to the continuum, since ChPT 
refers to continuum QCD 
!

• At the lattice spacing of the order of 0.1 fm 
discretization effects are usually assumed to be small 
!

• Nevertheless, explicit studies are still missing

1

2

1 2 3

∆E(t)

t

! !
!

!
! !

Figure 8: Monte Carlo values ∆E(t) ≡ log(G(t)/G(t+a))/a plotted versus t for an harmonic
oscillator, as in Fig. 4 but with Ncor = 1. The errorbars are unreliable.

3 Field Theory on a Lattice

3.1 From Quantum Mechanics to Field Theory

Field theories of the sort we are interested in have lagrangian formulations
and so can be quantized immediately using path integrals. The procedure is
precisely analogous to what we do in the previous section when quantizing
the harmonic oscillator. The analogues of the coordinates x(t) in quantum
mechanics are just the fields φ(x) or Aµ(x) where x = (t, x⃗) is a space-time
point. Indeed our quantum mechanical examples can be thought of as field
theory examples in 0 spatial and 1 temporal dimension: x(t) → φ(t) → φ(x).
The analogue of the ground state in quantum field theory is the vacuum state,
|0⟩, while the analogues of the excited states, created when φ(x) or φ3 or . . . acts
on |0⟩, correspond to states with one or more particles create in the vacuum.

In the lattice approximation both space and time are discrete:

! ! ! !

! ! ! !

! ! ! !

! ! ! !

✻

❄
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ChPT with Wilson fermions

• Close to the continuum limit, LQCD can be described 
by the Symanzik action 
!
!
!
!
!

• To take into account discretization effects, one can 
then construct ChPT in accordance with the 
Symanzik effective field theory, instead of the 
continuum QCD
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ChPT with Wilson fermions
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5

The paper is organized as follows. In Sec. 2, the Symanzik action up to O(a2) is briefly

introduced and the a-dependent chiral Lagrangians relevant to the study of the ground-state

octet baryon masses are constructed. In Sec. 3, the discretization effects on the ground-state

octet baryon masses are formulated up to O(a2) for Wilson fermions. As an application, we

then perform a simultaneous fit of the LQCD octet baryon masses and study the discretiza-

tion effects. A short summary is given in Sec. 4.

2 BChPT at finite lattice spacing

In this section, we briefly review the continuum effective action up to and including O(a2).

We will follow closely the procedure and notations of Ref. [50] and construct for the first

time the chiral Lagrangians incorporating a finite lattice spacing for the Wilson action in the

u, d, and s three-flavor one-baryon sector.

2.1 Continuum effective action

Close to the continuum limit, LQCD can be described by an effective action, the “Symanzik

action” [17, 18], which is expanded in powers of lattice spacing a as

Seff = S0 + aS1 + a2S2 + · · ·

=

∫

d4x(L(4) + aL(5) + a2L(6) + · · ·), (1)

where L(4) is the normal (continuum) QCD Lagrangian and the two new terms L(5) and

L(6) are introduced to include the discretization effects of LQCD. The Lagrangian L(5)

contains chiral breaking terms only, while L(6) contains both chiral invariant and breaking

terms. In the u, d, and s three-flavor sector, the QCD Lagrangian is

L(4) = ψ̄(i /D −M)ψ, (2)
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– L(6)
3 : four-quark operators that conserve chiral symmetry

(ψ̄γµψ)
2, (ψ̄γµγ5ψ)

2, (ψ̄taγµψ)
2, (ψ̄taγµγ5ψ)

2, (6)

where ta are the SU(3) generators, a = 1, · · · , 8.

– L(6)
4 : four-quark operators that break chiral symmetry

(ψ̄ψ)2, (ψ̄γ5ψ)
2, (ψ̄σµνψ)

2, (ψ̄taψ)2, (ψ̄taγ5ψ)
2, (ψ̄taσµνψ)

2. (7)

– L(6)
5 : quark bilinear operators that break the O(4) rotation symmetry

ψ̄γµDµDµDµψ. (8)

It should be noted that fermionic operators that conserve chiral symmetry first appear at

O(a2).

2.2 Wilson Chiral Lagrangians

In order to construct the chiral Lagrangians of the WChPT, one has to write down the most

general Lagrangians that are invariant under the symmetries of the continuum EFT. This

can be done by following the standard procedure of spurion analysis [46, 47]. In practice, in

order to obtain the corresponding a-dependent chiral Lagrangians, one only needs to know

which symmetries are broken and how [50]. Before writing down the chiral Lagrangians up

to O(a2), one has to first specify a chiral power counting scheme, which should be enlarged

to include lattice spacing a. In LQCD simulations, the following hierarchy of energy scales

are satisfied

mq ≪ ΛQCD ≪ 1
a
. (9)

If one assumes that the size of the chiral symmetry breaking due to the light-quark masses

and the discretization effects are of comparable size, as done in Refs. [47, 48, 50], one has

8

( a ) ( b ) ( c ) ( d )

Fig. 1 Feynman diagrams contributing to the a-dependence of octet baryon masses up to O(a2). The solid

lines represent octet baryons and the dashed lines denote pseudoscalar mesons. The boxes (diamonds) indicate

theO(a) (O(a2)) vertices. The circle-cross is an insertion from the LO(a). The wave function renormaliza-

tion diagrams are not explicitly shown but included in the calculation.

the following expansion parameters

p2 ∼
mq

ΛQCD
∼ aΛQCD, (10)

where p denotes a generic small quantity and ΛQCD ≈ 300 MeV denotes the typical low

energy scale of QCD. Up to O(a2), the a-dependent chiral Lagrangians contain terms of O

(a, amq, a2) and can be written as

Leff
a = L(1)

a + L(2)
a , (11)

where

L(1)
a = LO(a) + LO(amq), (12)

L(2)
a = LO(a2)

1 + LO(a2)
2 + LO(a2)

3 + LO(a2)
4 + LO(a2)

5 , (13)

and LO(a2)
i (i = 1, · · · , 5) are the five classes of chiral Lagrangians corresponding to the

previous five types of operators appearing in the Symanzik action at O(a2).

The chiral Lagrangian at O(a) can be written as

LO(a) = b̄0⟨B̄B⟩⟨ρ+⟩+ b̄D⟨B̄[ρ+, B]−⟩+ b̄F ⟨B̄[ρ+, B]+⟩, (14)

where b̄0, b̄D, and b̄F are the unknown LECs of dimension mass−1, ⟨X⟩ stands for the

trace in flavor space, ρ+ = u†ρu† + uρ†u with u =
√
U = exp(iφ/(2Fφ)), φ and B are

the usual SU(3) matrix representation of the pseudoscalar mesons and of the octet baryons,
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LQCD simulations performed with Wilson 
fermions

• PACS-CS: a=0.0907 fm, cSW=1.715 
• QCDSF-UKQCD: a=0.0795fm, cSW=2.65 
• HSC and NPLQCD: as=0.1227, at=0.03506; csSW=2.6, 

ctSW=1.8 
• All the simulations are O(a) improved, meaning that 

discretization effects start  at O(amq) or O(a2）

LQCD simulations performed with Wilson 
Fermions

• PACS-CS: a=0.0907 fm, cSW=1.715
• QCDSF-UKQCD: a=0.0795 fm, cSW=2.65
• HSC and NPLQCD: as=0.1227, at=0.03506, csSW=2.6, 

ctSW=1.8
• All the simulations are O(a) improved, meaning that 

discretization effects start at O(amq) or O(a2)

15

performed at three different values of lattice spacing a and with different light quark masses

and, therefore, in principle allow for a quantitative study of the discretization effects on the

octet baryon masses.

It should be noted that both the HSC [61] and NPLQCD [66] simulations employed the

anisotropic clover fermion action [84]. In this action, the temporal lattice spacing is chosen

to be much smaller than the spacial lattice spacing. The EFT for such a LQCD setup has

been worked out in Ref. [52], which in principle is more appropriate to be employed to

study the HSC and NPLQCD simulations. On the other hand, this EFT has to introduce

more LECs to discriminate the temporal and spacial lattice spacing effects. As we will see,

present limited LQCD data do not allow us to perform such a study. Therefore, in our study

we assume that these simulations are performed with a single lattice spacing, as, and treat

the difference between as and at as higher order effects.

As in Refs. [76, 85], we focus on the LQCD data from the above four collaborations with

Mπ < 500MeV andMφL > 3.8 to ensure the applicability of the SU(3) covariant BChPT.

In total, there are 12 sets of LQCD data (each set includes the N , Λ, Σ, and Ξ masses) from

the PACS-CS (3 sets), QCDSF-UKQCD (2 sets), HSC (3 sets), and NPLQCD (4 sets). In

order to better ascertain the values of LECs, the experimental octet baryon masses are also

included in the fits.

In the O(a)-improved Wilson action the Pauli term aL(5) is eliminated. As a result,

discretization effects originate only from the O(amq) and O(a2) terms. Therefore, only the

fourth order tree-level diagrams contribute, while the leading order tree-level diagram and

the tadpole/one-loop diagrams do not contribute. In the end, the discretization effects,

m
(a)
B = m

O(amq)
B +m

O(a2)
B

= −8acSWW0

(

ξlM
2
π + ξs(2M

2
K −M2

π)
)

− 16a2c2SWW 2
0 X̄, (31)

12

3.1 Discretization effects on the octet baryon masses

The octet baryon masses up to N3LO and with finite lattice spacing a contributions up to

O(a2) can be expressed as

mB = m0 +m(2)
B +m(3)

B +m(4)
B +m(a)

B , (24)

where m0 is the chiral limit octet baryon mass and m(2)
B ,m(3)

B , and m(4)
B correspond to the

O(p2), O(p3), and O(p4) contributions (the corresponding finite-volume corrections from

loop diagrams are also included) and their explicit expressions can be found in Ref. [75].

The last term m
(a)
B denotes the discretization effects up to O(a2). In our power-counting

scheme, it contains the following three contributions

m
(a)
B = m

O(a)
B +m

O(amq)
B +m

O(a2)
B . (25)

Here, we need to mention that virtual decuplet contributions are not explicitly included,

since their effects on the chiral extrapolation and the finite-volume corrections are relatively

small [76].

In the case of the unmixed Wilson action, where the u, d, and s quarks are all Wilson

fermions, the Wilson matrix can be written asW = diag(1,1, 1). One can easily compute

the O(a) contributions of diagram Fig. 1-(a) to the octet baryon masses,

m
O(a)
B = −4acSWW0(3b̄0 + 2b̄D), (26)

where B = N, Λ, Σ, and Ξ .

The O(amq) contributions can be written as

m
O(amq)
B = −16acSWW0B0(ξlml + ξsms)

= −8accSWW0

(

ξlM
2
π + ξs(2M

2
K −M2

π)
)

, (27)
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Fits with and without discretization 
effects taken into account

• Slight reduction of 𝜒2 

but not 𝜒2/d.o.f. 

• Discretization effects 
are not important for 
the description of the 
present LQCD 
simulations 

• Different from finite 
volume corrections, 
which are essential to 

obtain a 𝜒2/d.o.f. 
around 1

Fits with and without discretization 
effects taken into account

• Slightly reduction 
of chi2 but not chi2/
d.o.f.

• Discretization 
effects are not 
important for the 
description of the 
LQCD simulations

• Different from finite 
volume corrections, 
which are essential 
to obtain a chi2/
d.o.f. around 1
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Table 3 Values of the LECs from the best fit to the LQCD data and the experimental data atO(p4) with and

without discretization effects.

BChPT WBChPT BChPT WBChPT

m0 [MeV] 910(20) 915(20) d1 [GeV−3] 0.0295(124) −0.0196(121)

b0 [GeV−1] −0.579(56) −0.557(50) d2 [GeV−3] 0.342(65) 0.230(58)

bD [GeV−1] 0.211(56) 0.201(48) d3 [GeV−3] −0.0314(63) −0.0557(56)

bF [GeV−1] −0.434(43) −0.359(41) d4 [GeV−3] 0.372(114) 0.304(1008)

b1 [GeV−1] 0.730(10) 0.810(8) d5 [GeV−3] −0.401(110) −0.237(88)

b2 [GeV−1] −1.21(18) −0.819(26) d7 [GeV−3] −0.0913(58) −0.104(48)

b3 [GeV−1] −0.340(153) −0.357(12) d8 [GeV−3] −0.132(79) −0.0417(67)

b4 [GeV−1] −0.776(16) −0.780(15) B̄1 [GeV−3]×10−2 – −0.121(103)

b5 [GeV−2] −1.15(287) −1.34(23) B̄2 [GeV−3]×10−2 – −0.467(109)

b6 [GeV−2] 0.778(390) 0.889(199) B̄3 [GeV−3]×10−2 – 0.344(267)

b7 [GeV−2] 0.899(26) 0.787(14) X̄ [GeV−3]×10−4 – 0.606(5723)

b8 [GeV−2] 0.627(37) 0.817(28)

χ2 30.0 28.0 χ2/d.o.f. 0.91 0.97

only contain 4 new independent combinations of LECs, i.e., B̄1, B̄2, B̄3, and X̄. Together

with the 19 unknown LECs appearing in the octet baryon masses in the continuum, there

are in total 23 free LECs needed to be fixed.3 As in Ref. [75], the meson decay constant is

fixed at its chiral limit value Fφ = 0.0871GeV. For the baryon axial coupling constants, we

use D = 0.8 and F = 0.46. The renormalization scale is set at µ = 1 GeV.

In order to study the discretization effects on the octet baryon masses, we perform two

fits. First, we use the continuum octet baryon mass formulas to fit the LQCD and experimen-

3In our fits, we setW0 at 1 GeV3.
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Lattice spacing evolutions

• For LQCD simulations with mπ<500 MeV and a<0.15 fm, 
discretization effects are about 1 to 2 percent
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Fig. 2 (color online). Finite lattice spacing effects on the octet baryon masses, RB = m
(a)
B /mB , as func-

tions of lattice spacing a for Mπ = 0.3, 0.4, and 0.5 GeV, respectively. The SW coefficient is set at

cSW = 1.715, the value of the PACS-CS Collaboration. The strange quark mass is fixed at its physical value

dictated by the LO ChPT.

tal data. Second, the mass formulas of Eq. (24) with discretization effects taken into account

are employed to fit the same data. In both fits, the FVCs to the LQCD simulations are always

taken into account self-consistently [75]. The LECs, together with the χ2/d.o.f., obtained

from the two best fits are tabulated in Table 3. It is clear that the 19 LECs remain similar

whether or not discretization effects are taken into account. The total χ2 changes from 30

for the first fit to 28 for the second fit, indicating that the data can be described slightly

better. On the other hand, the χ2/d.o.f. slightly increases from 0.91 to 0.97, implying that

discretization effects do not play an important role in describing the present LQCD data.4

4This is in contrast with the finite volume effects. In Ref. [75], it is shown that a self-consistent treatment of

finite volume effects is essential to obtain a χ2/d.o.f about 1.
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Predictions: octet baryon sigma terms

Important for  

➡understanding the composition of baryons  

➡direct dark matter searches
Dark Matter Lattice QCD Sigma terms 2010 dataset

Direct DM detection
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LQCD determination of sigma terms
• Direct method—calculates the 3-point connected and 

disconnect diagrams 

!
!
!

• Spectrum method-calculates the baryon masses, and 
relates the sigma terms to their quark mass dependence 
via the Feynman Hellman theorem

– JLQCD	
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– R.	
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  PRD85,054510	
  (2012)	
  
– QCDSF	
  coll.,	
  PRD85,	
  054502	
  (2012)	
  
– ETM	
  coll.,	
  JHEP	
  1208,037(2012)	
  
– M.	
  Engelhardt	
  et	
  al.,	
  PRD86,	
  114510	
  (2012)	
  
– JLQCD	
  coll.,	
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5 Pion- and strangeness baryon sigma terms

In this section, we evaluate the pion- and strangeness sigma terms for all octet baryons at

physical point using the mass formulas up to NNLO.

The light-quark sigma terms are important quantities in explaining the chiral symmetry

breaking e↵ects in QCD. In particular, for nucleon-sigma term if of vital importance to

understand the composition of nucleon mass and strangeness content of nucleon. The

accurate knowledge of the sigma terms is of essential importance in the interpretation of

the cross section for the detection of dark matter [52]. However, these quantities cannot

be directly measured by experiment, ChPT, with its LECs fixed by the LQCD data, can

make predictions for sigma terms [53–55].

The sigma terms are defined by scalar form factors of baryon at zero recoil. In this

work, we calculate all the baryon octet sigma terms �⇡B, �sB for B = N, ⇤, ⌃, ⌅ , and

through the Feynman-Hellmann theorem, which states:

�⇡B = mlhB(p)|ūu+ d̄d|B(p)i = ml
@MB

@ml
(5.1)

�sB = mshB(p)|s̄s|B(p)i = ms
@MB

@ms
. (5.2)

where ml = (mu +md)/2.

Other interesting quantities, like the strangeness content (yB) and the so-called ”di-

mensionless sigma terms” (flB, fsB) are also calculated

yB =
2hB(p)|s̄s|B(p)i

hB(p)|ūu+ d̄d|B(p)i =
ml

ms

2�sB
�⇡B

(5.3)

flB =
mlhB(p)|ūu+ d̄d|B(p)i

MB
=

�⇡B
MB

(5.4)

fsB =
mshB(p)|s̄s|B(p)i

MB
=

�sB
MB

. (5.5)

Using the previous Fit-I parameters and combining with the Eq. (5.1) and (5.3), we

obtain the results (Table 8) of the pion- and strangeness sigma terms �⇡B, �sB for all the

baryon octet members, and the corresponding strangeness content yB, ”dimensionless sigma

terms” flB, fsB. For the nucleon pion-sigma term at physical point, �⇡N = 42(2)(12), is in

reasonable agreement with the empirical determination coming from ⇡�N scattering data

Table 8. The sigma-terms, the strangeness content and the ”dimensionless sigma terms” for all
octet baryons at physical point. The first error is statistical, the second one systematic.

�⇡B [MeV] �sB [MeV] yB flB fsB
N 43(2)(12) 128(22)(55) 0.248(44)(127) 0.0457(21)(128) 0.136(23)(59)

⇤ 19(2)(15) 269(21)(66) 1.178(154)(974) 0.0170(18)(134) 0.241(19)(59)

⌃ 18(2)(13) 295(21)(50) 1.364(180)(1012) 0.0151(17)(109) 0.247(18)(42)

⌅ 4(1)(7) 395(20)(55) 8.221(2097)(144432) 0.00303(76)(531) 0.300(15)(42)

– 15 –



Selection of LQCD data

• All nf=2+1 LQCD simulations 
– PACS-CS, LHPC, QCDSF-UKQCD, HSC, 

NPLQCD, BWM 
– BWM—not publicly available 
– HSC and NPLQCD—Low statistics



Selection of LQCD data

• All nf=2+1 LQCD simulations 
– PACS-CS, LHPC, QCDSF-UKQCD, HSC, 

NPLQCD, BWM 
– BWM—not publicly available 
– HSC and NPLQCD—Low statistics

PACS-CS, LHPC, QCDSF-UKQCD



An accurate determination of baryon 
sigma terms 

• Scale setting: mass independent (given by the LQCD 
simulations or self-consistently determined) vs. mass 
dependent (r0, r1, Xπ) 

• Isospin breaking effects: better constrain the LQCD 
LECs 

• Theoretical uncertainties caused by truncating chiral 
expansions: NNLO vs. N3LO; EOMS vs. FRR



Scale-setting effects on the determination 
of baryon sigma terms

• Lattice-scale setting  
– PACS-CS data with mass independent scale-

setting:  
!
!

– PACS data with mass dependent (r0) scale-setting: 
!
!

• Whether other LQCD data will show the same trend?

σ sN = 59 ± 7 (MeV)

σ sN = 21± 6 (MeV)

arXiv:1301.3231 
P.E. Shanahan∗, A.W. Thomas and R.D. Young



Three different fits at N3LO

• Mass independent 
– Lattice spacing a 

fixed to the published 
value 

– Lattice spacing a 
determined self-
consistently 

• Mass dependent 
– r0 for PACS-CS 
– r1 for LHPC 
– Xπ for QCDSF-

UKQCD

3

TABLE II. Predicted pion- and strangeness-sigma terms of the octet
baryons at the physical point by the NNLO BChPT with the LECs of
Table I.

EOMS FRR
Fit-I Fit-II Fit-III Fit-IV

�⇡N [MeV] 56(0) 47(1) 47(0) 53(1)

�⇡⇤ [MeV] 35(1) 30(1) 31(1) 34(1)

�⇡⌃ [MeV] 32(0) 27(1) 25(0) 27(1)

�⇡⌅ [MeV] 13(1) 12(1) 13(1) 13(1)

�sN [MeV] 35(6) 27(7) 21(6) 20(7)

�s⇤ [MeV] 147(7) 152(7) 162(7) 153(7)

�s⌃ [MeV] 218(7) 222(7) 226(7) 214(7)

�s⌅ [MeV] 295(7) 313(8) 332(7) 312(8)

the physical point, the experimental octet baryon masses are
also included in the fits. The best fit results are tabulated in
Table I. We have preformed four fits with either the EOMS
BChPT or the FRR BChPT of Ref. [29]. We have also al-
lowed the LECs F� and ⇤ to vary to get an estimation of the
induced variation. All the obtained �2/d.o.f. is larger than
1, indicating that higher-order chiral contributions need to be
taken into account. In addition, if one allows the F� to deviate
from the chiral limit value to take into account SU(3) breaking
effects, the EOMS BChPT can fit the data as well as the FRR
approach. It should be noted that the so-obtained F� is close
to its SU(3) average 1.17f⇡ with f⇡ = 92.1 MeV [59].

The correspondingly predicted sigma terms are listed in Ta-
ble II. It is seen that depending on the fits, the predicted baryon
pion- and strangeness-sigma terms can vary by about 20 MeV.
Nevertheless, given the relatively large �2/d.o.f., it is clear
that one needs to go to N3LO to have more confidence in the
predictions.

N3LO studies: At N3LO, the LQCD and experimental
meson masses are described by the next-to-leading order
ChPT [61] with the LECs of Refs. [62] and FVCs [63] are
taken into account but found to play an negligible role. In Ta-
ble III, we tabulate the LECs and the corresponding �2/d.o.f.
from three best fits to the LQCD mass data and the experi-
mental octet baryon masses. In the first fit, we use the lat-
tice spacings a determined by the LQCD collaborations them-
selves to obtain the hadron masses in physical units as done in
Ref. [30]. In the second fit, we determine the lattice spacing a
self-consistently. Interestingly, we find that the so determined
lattice spacings a are very close to the ones determined by
the LQCD collaborations. The PACS-CS deviation is 2.5%,
the LHPC deviation is 4.1%, and the QCDSF-UKQCD devi-
ation is 2.1%. The corresponding �2/d.o.f. also look simi-
lar. While in the third fit, we adopt the so-called mass depen-
dent scale setting, either from r0 for the PACS-CS data with
r0(phys) = 0.465(12) fm [64], r1 for the LHPC data with
r1(phys) = 0.31174(20) fm [32], or X⇡ for the QCDSF-
UKQCD data with X⇡(phys) = 0.4109 GeV [43]. The third
fit yields a smaller �2/d.o.f. and different LECs compared to
the other two fits.

In Fig. 1, we show the octet baryon masses as functions of

TABLE III. Values of the LECs from the best fits to the LQCD data
and the experimental octet baryon masses up to N3LO. The lattice
scale in each simulation is determined using both the mass indepen-
dent scale setting (MIS) and the mass dependent scale setting (MDS)
methods. In the MIS, both the original lattice spacings determined
by the LQCD collaborations “a fixed” and the self-consistently de-
termined lattice spacings “a free” are used (see text for details).

MIS MDS
a fixed a free

m0 [MeV] 884(11) 877(10) 887(10)

b0 [GeV�1] �0.998(2) �0.967(6) �0.911(10)

bD [GeV�1] 0.179(5) 0.188(7) 0.039(15)

bF [GeV�1] �0.390(17) �0.367(21) �0.343(37)

b1 [GeV�1] 0.351(9) 0.348(4) �0.070(23)

b2 [GeV�1] 0.582(55) 0.486(11) 0.567(75)

b3 [GeV�1] �0.827(107) �0.699(169) �0.553(214)

b4 [GeV�1] �0.732(27) �0.966(8) �1.30(4)

b5 [GeV�2] �0.476(30) �0.347(17) �0.513(89)

b6 [GeV�2] 0.165(158) 0.166(173) �0.0397(1574)

b7 [GeV�2] �1.10(11) �0.915(26) �1.27(8)

b8 [GeV�2] �1.84(4) �1.13(7) 0.192(30)

d1 [GeV�3] 0.0327(79) 0.0314(72) 0.0623(116)

d2 [GeV�3] 0.313(26) 0.269(42) 0.325(54)

d3 [GeV�3] �0.0346(87) �0.0199(81) �0.0879(136)

d4 [GeV�3] 0.271(30) 0.230(24) 0.365(23)

d5 [GeV�3] �0.350(28) �0.302(50) �0.326(66)

d7 [GeV�3] �0.435(10) �0.352(8) �0.322(7)

d8 [GeV�3] �0.566(24) �0.456(30) �0.459(33)

�2/d.o.f. 0.87 0.88 0.53

M2
⇡ (2M2

K � M2
⇡) using the LECs from Table III with the

physical light- and strange-quark masses. In order to cross-
check the validity of our N3LO BChPT fit, the BMW Collab-
oration data [26] are shown as well. It is clear that our three
fits yield similar results and are all consistent with the BMW
data, which are not included in our fits.

Using the best fit LECs, we predict the sigma terms of the
octet baryons and tabulate the results in Table IV. For com-

TABLE IV. Predicted pion- and strangeness-sigma terms of the octet
baryons by the N3LO BChPT with the LECs of Table III.

Ref. [48] MIS MDS
a fixed a free

�⇡N [MeV] 40(0) 55(1)(4) 54(1) 51(2)

�⇡⇤ [MeV] 23(0) 32(1)(2) 32(1) 30(2)

�⇡⌃ [MeV] 18(0) 34(1)(3) 33(1) 37(2)

�⇡⌅ [MeV] 6(1) 16(1)(2) 18(2) 15(3)

�sN [MeV] 4(1) 27(27)(4) 23(19) 26(21)

�s⇤ [MeV] 83(3) 185(24)(17) 192(15) 168(14)

�s⌃ [MeV] 228(3) 210(26)(42) 216(16) 252(15)

�s⌅ [MeV] 355(5) 333(25)(13) 346(15) 340(13)
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Evolution of baryon masses with u/d  and 
s quark masses in comparison with the 

BMW data
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FIG. 1. (color online) Dependence of octet baryon masses as a function of M2
⇡ and 2M2

K � M2
⇡ vs. the BMW [23] lattice data. The solid

and dash lines are obtained with the LECs from the Fit-I, II, and III. LQCD data points and BChPT results are obtained by use of the physical
strange quark mass. For the mB vs. M2

s̄s plane, all results are obtained by use of the physical u/d quark masses.

FIG. 2. (color online) Nucleon strangeness sigma term from lat-
tice calculation. The red circles denote N3LO BChPT, blue squares
represent NNLO BChPT and green diamonds are nf = 2 + 1

LQCD. The blue band and red band are our results up to NNLO and
N3LO, respectively. Data points are taken from the following refer-
ences: MILC(2009) [12], BMW(2012) [23], QCDSF-UKQCD [24],
MILC(2013) [13], JLQCD(2013) [19], Engelhardt [18], Junnarkar
& Walker-Loud [29], �QCD(2013) [20], Young and Thomas [22],
Martin-Camalich et al. [50], Shanahan et al. [26], Semke &
Lutz [25], Ren et al. [27].

are.
For comparison, the latest �-SU(3) results of Ref. [52] ) are

also listed. We can see that a relatively larger pion-sigma term

of nucleon, �⇡N = 53(2) MeV, is obtained, which is in rea-
sonable agreement with the latest ⇡-N scattering study [9],
�⇡N = 59(7) MeV. Our �⇡N is also consistent with the
JLQCD result [53], �⇡N = 50(4.5) MeV.

Our predicted �SN is compared with those of earlier studies
in Fig. 2. We classify the �sN into three groups according to
the calculation methods. First group is the results reported
by the nf = 2 + 1 LQCD simulations. For second and third
groups, the �sN is predicted by the NNLO and N3LO BChPT,
respectively, combined with the latest lattice baryon spectrum.
Our results are consistent with the average LQCD result on
the strange sigma term, �sN = 40(10) [29]. The extremely
accurate determination of Ref. [52] might be due to the fact
that the LECs are over constrained. Similar effects can be
seen in the NNLO fit of the present work, which has a much
smaller uncertainty compared to the N3LO fit.

Conclusion: In this work, we have performed an accu-
rate determination of the octet baryon sigma terms and found
�sN = 37(). A number of key issues are taken into ac-
count, including uncertainties induced by truncating chiral ex-
pansions and the lattice-scale setting method. In addition,
we have used the strong-interaction isospin splitting effects
from the LQCD simulations to further constrain the relevant
LECs. Within the spectrum method, a more precise value for
�SN can only be made possible by increasing statistics and
performing simulations at a even larger range of light-quark
masses both larger and smaller their physical counterparts.
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tional Natural Science Foundation of China under Grants No.
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damental Research Funds for the Central Universities, the Re-
search Fund for the Doctoral Program of Higher Education
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Baryon sigma terms from N3LO BChPT

• All three scale-
setting 
methods yield 
similar baryon 
sigma terms

3

TABLE II. Predicted pion- and strangeness-sigma terms of the octet
baryons at the physical point by the NNLO BChPT with the LECs of
Table I.

EOMS FRR
Fit-I Fit-II Fit-III Fit-IV

�⇡N [MeV] 56(0) 47(1) 47(0) 53(1)

�⇡⇤ [MeV] 35(1) 30(1) 31(1) 34(1)

�⇡⌃ [MeV] 32(0) 27(1) 25(0) 27(1)

�⇡⌅ [MeV] 13(1) 12(1) 13(1) 13(1)

�sN [MeV] 35(6) 27(7) 21(6) 20(7)

�s⇤ [MeV] 147(7) 152(7) 162(7) 153(7)

�s⌃ [MeV] 218(7) 222(7) 226(7) 214(7)

�s⌅ [MeV] 295(7) 313(8) 332(7) 312(8)

the physical point, the experimental octet baryon masses are
also included in the fits. The best fit results are tabulated in
Table I. We have preformed four fits with either the EOMS
BChPT or the FRR BChPT of Ref. [29]. We have also al-
lowed the LECs F� and ⇤ to vary to get an estimation of the
induced variation. All the obtained �2/d.o.f. is larger than
1, indicating that higher-order chiral contributions need to be
taken into account. In addition, if one allows the F� to deviate
from the chiral limit value to take into account SU(3) breaking
effects, the EOMS BChPT can fit the data as well as the FRR
approach. It should be noted that the so-obtained F� is close
to its SU(3) average 1.17f⇡ with f⇡ = 92.1 MeV [59].

The correspondingly predicted sigma terms are listed in Ta-
ble II. It is seen that depending on the fits, the predicted baryon
pion- and strangeness-sigma terms can vary by about 20 MeV.
Nevertheless, given the relatively large �2/d.o.f., it is clear
that one needs to go to N3LO to have more confidence in the
predictions.

N3LO studies: At N3LO, the LQCD and experimental
meson masses are described by the next-to-leading order
ChPT [61] with the LECs of Refs. [62] and FVCs [63] are
taken into account but found to play an negligible role. In Ta-
ble III, we tabulate the LECs and the corresponding �2/d.o.f.
from three best fits to the LQCD mass data and the experi-
mental octet baryon masses. In the first fit, we use the lat-
tice spacings a determined by the LQCD collaborations them-
selves to obtain the hadron masses in physical units as done in
Ref. [30]. In the second fit, we determine the lattice spacing a
self-consistently. Interestingly, we find that the so determined
lattice spacings a are very close to the ones determined by
the LQCD collaborations. The PACS-CS deviation is 2.5%,
the LHPC deviation is 4.1%, and the QCDSF-UKQCD devi-
ation is 2.1%. The corresponding �2/d.o.f. also look simi-
lar. While in the third fit, we adopt the so-called mass depen-
dent scale setting, either from r0 for the PACS-CS data with
r0(phys) = 0.465(12) fm [64], r1 for the LHPC data with
r1(phys) = 0.31174(20) fm [32], or X⇡ for the QCDSF-
UKQCD data with X⇡(phys) = 0.4109 GeV [43]. The third
fit yields a smaller �2/d.o.f. and different LECs compared to
the other two fits.

In Fig. 1, we show the octet baryon masses as functions of

TABLE III. Values of the LECs from the best fits to the LQCD data
and the experimental octet baryon masses up to N3LO. The lattice
scale in each simulation is determined using both the mass indepen-
dent scale setting (MIS) and the mass dependent scale setting (MDS)
methods. In the MIS, both the original lattice spacings determined
by the LQCD collaborations “a fixed” and the self-consistently de-
termined lattice spacings “a free” are used (see text for details).

MIS MDS
a fixed a free

m0 [MeV] 884(11) 877(10) 887(10)

b0 [GeV�1] �0.998(2) �0.967(6) �0.911(10)

bD [GeV�1] 0.179(5) 0.188(7) 0.039(15)

bF [GeV�1] �0.390(17) �0.367(21) �0.343(37)

b1 [GeV�1] 0.351(9) 0.348(4) �0.070(23)

b2 [GeV�1] 0.582(55) 0.486(11) 0.567(75)

b3 [GeV�1] �0.827(107) �0.699(169) �0.553(214)

b4 [GeV�1] �0.732(27) �0.966(8) �1.30(4)

b5 [GeV�2] �0.476(30) �0.347(17) �0.513(89)

b6 [GeV�2] 0.165(158) 0.166(173) �0.0397(1574)

b7 [GeV�2] �1.10(11) �0.915(26) �1.27(8)

b8 [GeV�2] �1.84(4) �1.13(7) 0.192(30)

d1 [GeV�3] 0.0327(79) 0.0314(72) 0.0623(116)

d2 [GeV�3] 0.313(26) 0.269(42) 0.325(54)

d3 [GeV�3] �0.0346(87) �0.0199(81) �0.0879(136)

d4 [GeV�3] 0.271(30) 0.230(24) 0.365(23)

d5 [GeV�3] �0.350(28) �0.302(50) �0.326(66)

d7 [GeV�3] �0.435(10) �0.352(8) �0.322(7)

d8 [GeV�3] �0.566(24) �0.456(30) �0.459(33)

�2/d.o.f. 0.87 0.88 0.53

M2
⇡ (2M2

K � M2
⇡) using the LECs from Table III with the

physical light- and strange-quark masses. In order to cross-
check the validity of our N3LO BChPT fit, the BMW Collab-
oration data [26] are shown as well. It is clear that our three
fits yield similar results and are all consistent with the BMW
data, which are not included in our fits.

Using the best fit LECs, we predict the sigma terms of the
octet baryons and tabulate the results in Table IV. For com-

TABLE IV. Predicted pion- and strangeness-sigma terms of the octet
baryons by the N3LO BChPT with the LECs of Table III.

Ref. [48] MIS MDS
a fixed a free

�⇡N [MeV] 40(0) 55(1)(4) 54(1) 51(2)

�⇡⇤ [MeV] 23(0) 32(1)(2) 32(1) 30(2)

�⇡⌃ [MeV] 18(0) 34(1)(3) 33(1) 37(2)

�⇡⌅ [MeV] 6(1) 16(1)(2) 18(2) 15(3)

�sN [MeV] 4(1) 27(27)(4) 23(19) 26(21)

�s⇤ [MeV] 83(3) 185(24)(17) 192(15) 168(14)

�s⌃ [MeV] 228(3) 210(26)(42) 216(16) 252(15)

�s⌅ [MeV] 355(5) 333(25)(13) 346(15) 340(13)

5

simulations to further constrain the relevant LECs. Within the
spectrum method, a more precise value for �sN can only be
achieved if high statistics LQCD simulations at a even larger
range of light- and strange-quark masses become available.
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FIG. 1. (color online). Octet baryon masses as a function of M2
⇡ and 2M2

K � M2
⇡ vs. the BMW lattice data [26]. The solid, dashed, and

dot-dashed lines are obtained with the LECs from the three fits of Table III. On the left and right panels, the strange quark mass and the
light-quark mass are fixed at their respective physical values.

FIG. 2. (color online). Nucleon strangeness-sigma term determined
from different studies. The blue and red bands are our NNLO and
N3LO results, respectively.

parison, the latest �-SU(3) results of Ref. [48] are also listed.
Our predictions given by the LECs of Table III are consis-
tent with each other within uncertainties, and the scale-setting
effects on the sigma terms seem to be small. Therefore, we
take the central values from the fit to the mass independent
a fixed LQCD simulations as our final results, and treat the
difference between different lattice scale settings as system-
atic uncertainties, which are given in the second parenthesis
of the second column of Table IV. It is clear that for �⇡N ,
uncertainties due to scale setting is dominant, while for �sN

statistics errors are much larger, calling for improved LQCD
simulations. It should be noted that we have studied the ef-

fects of virtual decuplet baryons and variation of the LECs D,
F , F�, and the renormalization scale µ, and found that the
induced uncertainties are negligible compared to those shown
in Table IV. Furthermore, as shown in Ref. [49], continuum
extrapolations have no visible effects on the predicted sigma
terms.

The nucleon pion-sigma term, �⇡N = 55(1)(4) MeV, is
in reasonable agreement with the latest ⇡N scattering study,
�⇡N = 59(7) MeV [14], and also the systematic study
of nf = 2 + 1 LQCD simulations on the nucleon mass,
�⇡N = 52(3)(8) MeV [65], but larger than that of Ref. [48],
�⇡N = 40(0). Our predicted �sN is compared with those of
earlier studies in Fig. 2, classified into three groups accord-
ing to the methods by which they are determined. The first
group is the results reported by the nf = 2 + 1 LQCD sim-
ulations. While the second and the third groups are predicted
by the NNLO and N3LO BChPT, respectively. Our results are
consistent with most latest LQCD determinations and those of
BChPT studies. In Ref. [32], the average LQCD result on the
nucleon strangeness sigma term is found to be �sN = 40(10)

MeV. We would like to comment that the NNLO fits of the
present work have a much smaller uncertainty compared to
the N3LO fits mainly because the LECs are over constrained
by the LQCD simulations. It should be mentioned that in
the spectrum method the large ms multiplying the derivate
enhances the uncertainty in the determination of the baryon
strangeness-sigma term, which seems to dominate the uncer-
tainty and therefore puts an upper limit in the precision one
can achieve.

Conclusion: In this work, we have performed an accu-
rate determination of the octet baryon sigma terms and found
�⇡N = 55(1)(4) MeV and �sN = 27(27)(4) MeV. Spe-
cial attention was paid to uncertainties induced by the lattice-
scale setting method. Other uncertainties, such as those in-
duced by truncating chiral expansions and variations of certain
LECs were also studied in detail. In addition, we have used
the strong-interaction isospin splitting effects from the LQCD
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✤ We have performed a systematic study of the LQCD simulations of octet 
baryon masses, in terms of chiral extrapolations, finite volume corrections, 
and continuum extrapolations, and predicted their sigma terms

✤ Our studies showed 
- The extended-on-mass-shell (EOMS) BChPT provides a reliable 

framework to study the properties of the ground-state octet baryons 
- LQCD simulations can help determine the many unknown low-energy 

constants which otherwise cannot be fixed
✤ Many interesting observables remain unexplored within the EOMS 

framework 
– Axial, Vector, and Electromagnetic form factors of the g.s. octet baryons 
- TMDs and GMDs of the octet baryons 
– Hyperon-nucleon (hyperon) forces 
– ...
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TABLE I. Values of the LECs obtained from the best fits to the
LQCD simulations and the experimental octet baryon masses and the
corresponding �2/d.o.f.. The underlined numbers denote the values
at which they are fixed.

EOMS FRR
Fit-I Fit-II Fit-III Fit-IV

m0 [MeV] 757(7) 808(1) 829(7) 805(9)

b0 [GeV�1] �0.907(6) �0.710(2) �0.820(7) �0.922(20)

bD [GeV�1] 0.0582(22) 0.0570(22) 0.101(2) 0.116(3)

bF [GeV�1] �0.508(2) �0.411(11) �0.464(2) �0.510(8)

f0 [GeV] 0.0871 0.105(3) 0.0871 0.0871

⇤ or µ [GeV] 1.0 1.0 1.0 1.24(5)
�2/d.o.f. 3.0 1.6 2.4 1.8

baryons are listed in Table II. It is seen that depending on the
fits, the predicted pion-baryon and strangeness-baryon sigma
terms can vary by about 20 MeV. Nevertheless, given the rel-
atively large �2/d.o.f , we need to go to N3LO to have more
confidence in our predictions.

N3LO studies: In Table III, we tabulate the LECs and the
corresponding �2/d.o.f from three best fits to the LQCD mass
data. In the first fit, we use the lattice spacing a determined
by the LQCD collaboration themselves to obtain the hadron
masses in physical units as done in Ref. []. In the second fit,
we determine the lattice spacing a self-consistently. While in
the third fit, we adopt the so-called mass dependent scale set-
ting, either form r0 for the PACS-CS data, r1 for the LHPC
data, or X⇡ for the QCDSF-UKQCD data. Interestingly, we
find that the self-consistently determined lattice spacing a is
very close to the ones determined by the LQCD collabora-
tions. The largest deviation is 4.5 percent for the QCDSF-
UKQCD data. The corresponding �2/d.o.f. also look simi-
lar. This is not the case for the mass-independent lattice-scale
setting method, which yield a smaller �2/d.o.f. and different
LECs.

In Fig. 1, we show the light-quark (strange-quark) mass
evolution of octet baryon masses as functions of M2

⇡ (M2
s̄s)

using the LECs from Table III with the physical light- and
strange-quark mass. In order to crosscheck the validity of

TABLE II. Sigma terms of the octet baryons at the physical point,
predicted by the NNLO BChPT with the LECs of Table I.

EOMS FRR
Fit-I Fit-II Fit-III Fit-IV

�⇡N [MeV] 56(0) 47(1) 47(0) 53(1)

�⇡⇤ [MeV] 35(1) 30(1) 31(1) 34(1)

�⇡⌃ [MeV] 32(0) 27(1) 25(0) 27(1)

�⇡⌅ [MeV] 13(1) 12(1) 13(1) 13(1)

�sN [MeV] 35(6) 27(7) 21(6) 20(7)

�s⇤ [MeV] 147(7) 152(7) 162(7) 153(7)

�s⌃ [MeV] 218(7) 222(7) 226(7) 214(7)

�s⌅ [MeV] 295(7) 313(8) 332(7) 312(8)

TABLE III. Values of the LECs from the best fits to the LQCD
data and experimental results up to N3LO. In the mass indepen-
dent scale-setting, both the original lattice spacing determined by the
LQCD collaborations and self-consistent determined lattice spacing
are used. While in the mass dependent scale setting, r0 is used for the
PACS-CS data, r1 for the LHPC data, and X⇡ for QCDSF-UKQCD
data.) (see text for details).

MIS MDS
a fixed a free

m0 [MeV] 884(11) Fix-884 887(10)

b0 [GeV�1] �0.998(2) �0.906(�) �0.911(10)

bD [GeV�1] 0.179(5) 0.166(�) 0.039(15)

bF [GeV�1] �0.390(17) �0.363(�) �0.343(37)

b1 [GeV�1] 0.351(9) 0.291(�) �0.070(23)

b2 [GeV�1] �0.827(107) �0.648(�) �0.553(214)

b3 [GeV�1] 0.582(55) 0.458(�) 0.567(75)

b4 [GeV�1] �0.732(27) �0.679(�) �1.30(4)

b5 [GeV�2] �0.476(30) �0.360(�) �0.513(89)

b6 [GeV�2] 0.165(158) 0.130(�) �0.0397(1574)

b7 [GeV�2] �1.10(11) �0.941(�) �1.27(8)

b8 [GeV�2] �1.84(4) �1.38(�) 0.192(30)

d1 [GeV�3] 0.0327(79) 0.0372(�) 0.0623(116)

d2 [GeV�3] 0.313(26) 0.271(�) 0.325(54)

d3 [GeV�3] �0.0346(87) �0.0271(�) �0.0879(136)

d4 [GeV�3] 0.271(30) 0.245(�) 0.365(23)

d5 [GeV�3] �0.350(28) �0.290(�) �0.326(66)

d7 [GeV�3] �0.435(10) �0.351(�) �0.322(7)

d8 [GeV�3] �0.566(24) �0.474(�) �0.459(33)

�2/d.o.f. 0.87 0.84 0.53

our N3LO BChPT fit and the model-independent properties
of LQCD simulation, the BMW [23] Collaboration data are
shown as well. It is clear that our three fits yield similar re-
sults, which are consistent with the BMW data.

Using the best fitted LECs, we predict the sigma terms of
the octet baryons and tabulate the results in Table IV. For com-
parison, the latest �-SU(3) results of Ref. [52] ) are also listed.

TABLE IV. Pion- and strangeness-sigma terms (in the unit of MeV)
from the global fit of the “mass independent” and “mass dependent”
data of the PACS-CS, LHPC and QCDSF-UKQCD Collaborations.

Ref. [52] MIS MDS
a-fixed a-free

�⇡N [MeV] 40(0) 55(1) 52(�) 51(2)

�⇡⇤ [MeV] 23(0) 32(1) 30(�) 30(2)

�⇡⌃ [MeV] 18(0) 34(1) 31(�) 37(2)

�⇡⌅ [MeV] 6(1) 16(1) 14(�) 15(3)

�sN [MeV] 4(1) 27(27) 32(�) 26(21)

�s⇤ [MeV] 83(3) 185(24) 183(�) 168(14)

�s⌃ [MeV] 228(3) 210(26) 213(�) 252(15)

�s⌅ [MeV] 355(5) 333(25) 324(�) 340(13)
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LQCD simulations and the experimental octet baryon masses and the
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baryons are listed in Table II. It is seen that depending on the
fits, the predicted pion-baryon and strangeness-baryon sigma
terms can vary by about 20 MeV. Nevertheless, given the rel-
atively large �2/d.o.f , we need to go to N3LO to have more
confidence in our predictions.

N3LO studies: In Table III, we tabulate the LECs and the
corresponding �2/d.o.f from three best fits to the LQCD mass
data. In the first fit, we use the lattice spacing a determined
by the LQCD collaboration themselves to obtain the hadron
masses in physical units as done in Ref. []. In the second fit,
we determine the lattice spacing a self-consistently. While in
the third fit, we adopt the so-called mass dependent scale set-
ting, either form r0 for the PACS-CS data, r1 for the LHPC
data, or X⇡ for the QCDSF-UKQCD data. Interestingly, we
find that the self-consistently determined lattice spacing a is
very close to the ones determined by the LQCD collabora-
tions. The largest deviation is 4.5 percent for the QCDSF-
UKQCD data. The corresponding �2/d.o.f. also look simi-
lar. This is not the case for the mass-independent lattice-scale
setting method, which yield a smaller �2/d.o.f. and different
LECs.

In Fig. 1, we show the light-quark (strange-quark) mass
evolution of octet baryon masses as functions of M2

⇡ (M2
s̄s)

using the LECs from Table III with the physical light- and
strange-quark mass. In order to crosscheck the validity of

TABLE II. Sigma terms of the octet baryons at the physical point,
predicted by the NNLO BChPT with the LECs of Table I.

EOMS FRR
Fit-I Fit-II Fit-III Fit-IV

�⇡N [MeV] 56(0) 47(1) 47(0) 53(1)

�⇡⇤ [MeV] 35(1) 30(1) 31(1) 34(1)

�⇡⌃ [MeV] 32(0) 27(1) 25(0) 27(1)

�⇡⌅ [MeV] 13(1) 12(1) 13(1) 13(1)

�sN [MeV] 35(6) 27(7) 21(6) 20(7)

�s⇤ [MeV] 147(7) 152(7) 162(7) 153(7)

�s⌃ [MeV] 218(7) 222(7) 226(7) 214(7)

�s⌅ [MeV] 295(7) 313(8) 332(7) 312(8)

TABLE III. Values of the LECs from the best fits to the LQCD
data and experimental results up to N3LO. In the mass indepen-
dent scale-setting, both the original lattice spacing determined by the
LQCD collaborations and self-consistent determined lattice spacing
are used. While in the mass dependent scale setting, r0 is used for the
PACS-CS data, r1 for the LHPC data, and X⇡ for QCDSF-UKQCD
data.) (see text for details).

MIS MDS
a fixed a free

m0 [MeV] 884(11) Fix-884 887(10)

b0 [GeV�1] �0.998(2) �0.906(�) �0.911(10)

bD [GeV�1] 0.179(5) 0.166(�) 0.039(15)

bF [GeV�1] �0.390(17) �0.363(�) �0.343(37)

b1 [GeV�1] 0.351(9) 0.291(�) �0.070(23)

b2 [GeV�1] �0.827(107) �0.648(�) �0.553(214)

b3 [GeV�1] 0.582(55) 0.458(�) 0.567(75)

b4 [GeV�1] �0.732(27) �0.679(�) �1.30(4)

b5 [GeV�2] �0.476(30) �0.360(�) �0.513(89)

b6 [GeV�2] 0.165(158) 0.130(�) �0.0397(1574)

b7 [GeV�2] �1.10(11) �0.941(�) �1.27(8)

b8 [GeV�2] �1.84(4) �1.38(�) 0.192(30)

d1 [GeV�3] 0.0327(79) 0.0372(�) 0.0623(116)

d2 [GeV�3] 0.313(26) 0.271(�) 0.325(54)

d3 [GeV�3] �0.0346(87) �0.0271(�) �0.0879(136)

d4 [GeV�3] 0.271(30) 0.245(�) 0.365(23)

d5 [GeV�3] �0.350(28) �0.290(�) �0.326(66)

d7 [GeV�3] �0.435(10) �0.351(�) �0.322(7)

d8 [GeV�3] �0.566(24) �0.474(�) �0.459(33)

�2/d.o.f. 0.87 0.84 0.53

our N3LO BChPT fit and the model-independent properties
of LQCD simulation, the BMW [23] Collaboration data are
shown as well. It is clear that our three fits yield similar re-
sults, which are consistent with the BMW data.

Using the best fitted LECs, we predict the sigma terms of
the octet baryons and tabulate the results in Table IV. For com-
parison, the latest �-SU(3) results of Ref. [52] ) are also listed.

TABLE IV. Pion- and strangeness-sigma terms (in the unit of MeV)
from the global fit of the “mass independent” and “mass dependent”
data of the PACS-CS, LHPC and QCDSF-UKQCD Collaborations.

Ref. [52] MIS MDS
a-fixed a-free

�⇡N [MeV] 40(0) 55(1) 52(�) 51(2)

�⇡⇤ [MeV] 23(0) 32(1) 30(�) 30(2)

�⇡⌃ [MeV] 18(0) 34(1) 31(�) 37(2)

�⇡⌅ [MeV] 6(1) 16(1) 14(�) 15(3)

�sN [MeV] 4(1) 27(27) 32(�) 26(21)

�s⇤ [MeV] 83(3) 185(24) 183(�) 168(14)

�s⌃ [MeV] 228(3) 210(26) 213(�) 252(15)

�s⌅ [MeV] 355(5) 333(25) 324(�) 340(13)



Effects of dynamical decuplet baryons

• ChPT relies on the assumption that all high-energy 
degrees of freedom can be integrated out--not 
necessarily true for SU(3) BChPT
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Feynman diagrams/Lagrangians-no new 
unknown LECs

• Feynman diagrams 
!
!
!

• Lagrangians 
!
– Octet-Decuplet-Pseudoscalr coupling 
!
!

– mass corrections

( b ) (c )( a )

FIG. 1. Feynman diagrams contributing to the octet baryon masses with the intermediate decuplet reso-

nances. The solid lines correspond to octet baryons, the double lines to decuplet baryons, and the dashed

lines denote pseudoscalar mesons. Black dots indicate an insertion from the dimension one chiral La-

grangian (Eq. (3)), and black boxes (diamonds) indicate O(p2) mass insertions.

where we have used the so-called “consistent” coupling scheme for the octet-decuplet-pseudoscalar

vertices [57, 58]. The φ and B are the SU(3) matrix representations of the pseudoscalar mesons

and of the octet baryons. The coefficient Fφ is the meson-decay constant in the chiral limit, and C

denotes the φBT coupling.

The propagator of the spin-3/2 fields in d dimensions has the following form [59]

Sµν(p) = − /p+mD

p2 −m2
D + iϵ

[
gµν −

1

d− 1
γµγν −

1

(d− 1)mD
(γµpν − γνpµ)−

d− 2

(d− 1)m2
D

pµpν
]
.

(4)

B. Virtual decuplet contributions to the octet baryon masses

Because the baryon mass, which is of the same order as the chiral symmetry breaking scale

ΛChPT, does not vanish in the chiral limit, a systematic power-counting (PC) is destroyed

beyond the leading order calculation in BChPT [24]. In order to restore the chiral power-

counting, the extended-on-mass-shell (EOMS) renormalization scheme was proposed [49, 50].

The essence of the EOMS scheme is to perform an additional subtraction of power-counting

breaking (PCB) pieces beyond the M̃S orMS renormalization scheme. Different from the infrared

(IR) BChPT [60] and HBChPT [61], the EOMS BChPT is not only covariant, but also satisfies

all analyticity and symmetry constraints (see, e.g., Ref. [62] ). In addition, it converges relatively

faster [55, 63, 64]. In this work we use the EOMS scheme to remove the PCB terms from the

one-loop diagrams.

The octet baryon masses up to N3LO and with the virtual decuplet contributions can be written

as

mB = m0 +m(2)
B +m(3)

B +m(4)
B +m(D)

B . (5)

5

the effects of the virtual decuplet baryons in detail. A short summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Chiral effective Lagrangians involving the decuplet baryons

The baryon decuplet consists of a SU(3)-flavor multiplet of spin-3/2 resonances, which are

represented with the Rarita-Schwinger field T abc ≡ T abc
µ (each element of T abc

µ is a four-component

Dirac spinor). The physical fields are assigned to the tensor as T 111 = ∆++, T 112 = ∆+/
√
3,

T 122 = ∆0/
√
3, T 222 = ∆−, T 113 = Σ∗+/

√
3, T 123 = Σ∗0/

√
6, T 223 = Σ∗−/

√
3, T 133 =

Ξ∗0/
√
3, T 233 = Ξ∗−/

√
3, and T 333 = Ω−.

The covariant free Lagrangian for the decuplet baryons is

LT = T̄ abc
µ (iγµναDα −mDγ

µν) T abc
ν , (1)

where mD is the decuplet-baryon mass in the chiral limit and DνT abc
µ = ∂νT abc

µ + (Γν , Tµ)abc, Γν

being the chiral connection (see, e.g., Ref. [32]) and with the definition (X, Tµ)abc ≡ (X)adT
dbc
µ +

(X)bdT
adc
µ +(X)cdT

abd
µ . In the last and following Lagrangians, we always apply the Einstein notation

to sum over any repeated SU(3)-index denoted by latin characters a, b, c, · · · , and (X)ab denotes

the element of row a and column b of the matrix representation of X . The totally antisymmetric

gamma matrix products are defined as: γµν = 1
2 [γ

µ, γν], γµνα = 1
2 {γ

µν , γα} = −iεµναβγβγ5,

with the following conventions: gµν = diag(1,−1,−1,−1), ε0,1,2,3 = −ε0,1,2,3 = 1 and γ5 =

iγ0γ1γ2γ3.

TheO(p2) chiral Lagrangian for the decuplet baryons is:

L(2)
T =

t0
2
T̄ abc
µ gµνT abc

ν ⟨χ+⟩+
tD
2
T̄ abc
µ gµν(χ+, Tν)

abc, (2)

with χ+ = 2χ = 4B0diag(ml, ml, ms) introducing the explicit chiral symmetry breaking, where

ml and ms are the average light-quark and strange-quark masses. The parameters t0, tD are two

unknown LECs.

Up toO(p3) the chiral effective Lagrangian, describing the interaction of the octet and decuplet

baryons with the pseudoscalar mesons, can be written as [55]

L(1)
φBT =

iC
mDFφ

εabc(∂αT̄
ade
µ )γαµνBe

c∂νφ
d
b +H.c., (3)
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fixed from decay of 
a decuplet into an 
octet baryon and a 
pseudoscalar

fixed from the 
experimental 
decuplet masses



Slightly better description of the volume 
dependence of the NPLQCD data

the LQCD data, even those excluded in the fit. The average deviation of the BChPT results from

the LQCD data, defined as 4

χ̃2 =
1

NLQCD

NLQCD∑

i=1

(
M i

LQCD −M i
BChPT

∆i
LQCD

)2

,

is 3.1, 2.5, 1.2 and 1.2 for the PACS-CS, LHPC, HSC, and QCDSF-UKQCD data, respectively.

Here, it should be noted that in Fig. 4, only the QCDSF-UKQCD data with Ns = 32 are shown

and those simulated in a smaller volume with Ns = 24 are not explicitly displayed. Including

them in the χ̃2, one would have obtained a χ̃2 = 22.3.

It is clear from the above comparisons that using the LECs determined from the best fit to

lattice data Set-I, the BChPT cannot well describe the LQCD data obtained in smaller volumes,
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FIG. 3. (Color online). Lattice volume dependence of the NPLQCD data in comparison with the EOMS

BChPT up to N3LO with (solid lines) and without (dashed lines) the virtual decuplet contributions. The

three black points with MφL > 4 are included in data Set-I, while the hollow points with MφL = 3.86 are

not.

4 The uncertainty of the lattice data, ∆i
LQCD, can be found in Ref. [48].
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Unfitted data can also reasonably well 
described
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FIG. 4. (Color online). The PACS-CS, LHPC, QCDSF-UKQCD and HSC lattice data in comparison

with the O+D BChPT best fit as functions of the pion mass. The lines in each panel (from bottom to

top) correspond to N , Λ, Σ and Ξ, respectively. The kaon mass is fixed using M2
K = a + bM2

π for the

corresponding lattice ensemble with a and b determined in Ref. [48]. The lattice data have been extrapolated

to infinite space-time using the corresponding BChPT fit. Xπ =
√

(M2
π + 2M2

K)/3, XN = (mN +mΣ +

mΞ)/3, where the meson and baryon masses are the physical ones.

particularly those of the QCSDSF-UKQCD data with Ns = 24. On the other hand, the virtual

decuplet contributions seem to be helpful in this regard. Furthermore, it should be noted that we

have chosen lattice data set-I by requiring Mπ < 500 MeV and MπL > 4. These criteria yielded

a χ2/d.o.f. = 1, but nevertheless, are a bit arbitrary. In the following subsection, we would like

to slightly relax the above criteria and study whether the LQCD data with smaller MπL can be

described at a reasonable sacrifice of the χ2/d.o.f..
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• Feynman-Hellmann theorem states 
!
!
!
!

• Using leading-order ChPT meson masses 

Baryon Pion and Strangeness Sigma terms

5 Pion- and strangeness baryon sigma terms

In this section, we evaluate the pion- and strangeness sigma terms for all octet baryons at

physical point using the mass formulas up to NNLO.

The light-quark sigma terms are important quantities in explaining the chiral symmetry

breaking e↵ects in QCD. In particular, for nucleon-sigma term if of vital importance to

understand the composition of nucleon mass and strangeness content of nucleon. The

accurate knowledge of the sigma terms is of essential importance in the interpretation of

the cross section for the detection of dark matter [52]. However, these quantities cannot

be directly measured by experiment, ChPT, with its LECs fixed by the LQCD data, can

make predictions for sigma terms [53–55].

The sigma terms are defined by scalar form factors of baryon at zero recoil. In this

work, we calculate all the baryon octet sigma terms �⇡B, �sB for B = N, ⇤, ⌃, ⌅ , and

through the Feynman-Hellmann theorem, which states:

�⇡B = mlhB(p)|ūu+ d̄d|B(p)i = ml
@MB

@ml
(5.1)

�sB = mshB(p)|s̄s|B(p)i = ms
@MB

@ms
. (5.2)

where ml = (mu +md)/2.

Other interesting quantities, like the strangeness content (yB) and the so-called ”di-

mensionless sigma terms” (flB, fsB) are also calculated

yB =
2hB(p)|s̄s|B(p)i

hB(p)|ūu+ d̄d|B(p)i =
ml

ms

2�sB
�⇡B

(5.3)

flB =
mlhB(p)|ūu+ d̄d|B(p)i

MB
=

�⇡B
MB

(5.4)

fsB =
mshB(p)|s̄s|B(p)i

MB
=

�sB
MB

. (5.5)

Using the previous Fit-I parameters and combining with the Eq. (5.1) and (5.3), we

obtain the results (Table 8) of the pion- and strangeness sigma terms �⇡B, �sB for all the

baryon octet members, and the corresponding strangeness content yB, ”dimensionless sigma

terms” flB, fsB. For the nucleon pion-sigma term at physical point, �⇡N = 42(2)(12), is in

reasonable agreement with the empirical determination coming from ⇡�N scattering data

Table 8. The sigma-terms, the strangeness content and the ”dimensionless sigma terms” for all
octet baryons at physical point. The first error is statistical, the second one systematic.

�⇡B [MeV] �sB [MeV] yB flB fsB
N 43(2)(12) 128(22)(55) 0.248(44)(127) 0.0457(21)(128) 0.136(23)(59)

⇤ 19(2)(15) 269(21)(66) 1.178(154)(974) 0.0170(18)(134) 0.241(19)(59)

⌃ 18(2)(13) 295(21)(50) 1.364(180)(1012) 0.0151(17)(109) 0.247(18)(42)

⌅ 4(1)(7) 395(20)(55) 8.221(2097)(144432) 0.00303(76)(531) 0.300(15)(42)
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Fig. 2. In (a) we show (amPS)2/(aµ) as a function of aµ. We plot the χPT fit of Eq. (5) applied to the raw data on the L = 24 lattice from the lowest four µ-values.
We represent the finite size correction by the dashed line. In (b) we show (amPS)2 as a function of aµ. Here we present two χPT fits with Eq. (5), one taking all
data points and one leaving out the point at the largest value aµ = 0.015. Also in figure (b) we show the L = 24 data points.

Fig. 3. We show afPS as a function of aµ together with fits to χPT formula Eq. (6). In (a) we show the fit applied to the raw data on the L = 24 lattice at the 4
lowest values of aµ. We represent the finite size correction by the dashed curve. In (b) we present two fits, one taking all data and one leaving out the point at the
largest value aµ = 0.015. Here we show only the finite size corrected (L → ∞) data points.

We now discuss the possible sources of systematic error.
Our analysis is based on lattice determinations of properties of
pseudo scalar mesons with masses in the range 300 to 500 MeV
on lattices with a spatial size slightly above 2 fm. Systematic er-
rors can arise from several sources:

(i) Finite lattice spacing effects. Preliminary results at a
smaller value of the lattice spacing that were presented in Refs.
[33,34] suggest that O(a) improvement is nicely at work and
that residual O(a2) effects are small.

(ii) Finite size effects. In order to check that next to lead-
ing order (continuum) χPT adequately describes these, we are
presently performing a run at β = 3.9 and aµ = 0.004 on a
323 · 64 lattice.

(iii) Mass difference of charged and neutral pseudo scalar
meson. In the appropriate lattice χPT power-counting for our

values of the lattice spacing and quark masses, i.e. a ∼ µ ∼ p2,
one gets the order of magnitude relation (mPS)2 − (m0

PS)2 =
O(a2Λ4

QCD) = O(p4), from which it follows that to the order
we have been working the effects of the pion mass splitting
do not affect, in particular, the finite size correction factors for
mPS and fPS. In spite of these formal remarks, it is possible,
however, that the fact that the neutral pion is lighter than the
charged one (by about 20% at aµ = 0.0040, see Section 3.4)
makes inadequate the continuum χPT description of finite size
effects adopted in the present analysis. This caveat represents a
further motivation for simulations on larger lattices, which will
eventually resolve the issue.

(iv) Extrapolation to physical quark masses. We are assum-
ing that χPT at next to leading order for the Nf = 2 case is
appropriate to describe the quark mass dependence of m2

PS and

ETM collaboration, hep-lat/0701012
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Scale-setting effects on the octet 
baryon masses

• Full symbols: 
scale dependent 

• Hollow symbols: 
scale independent

scale-setting effects on the octet 
baryon masses
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