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From quarks to nuclei

Few-body nuclear physics emerges from the underlying 
Standard Model	



How exactly does this happen? 
What does it take to make a quantitative 
connection?	



Recent progress: focus on BB interactions  
and light nuclei	



New direction: nuclear matrix elements
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Combine with experiment  
to determine SM parameters
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Figure 1: Results of the UTA within the SM. The contours display the selected 68%

and 95% probability regions in the (⇢, ⌘)-plane. The 95% probability regions selected

by the single constraints are also shown.

Observable Input value SM prediction Pull
"K · 103 2.23± 0.01 1.96± 0.20 1.4

�ms[ps�1] 17.69± 0.08 18.0± 1.3 < 1
|Vcb| · 103 41.0± 1.0 42.3± 0.9 < 1
|Vub| · 103 3.82± 0.56 3.62± 0.14 < 1

Br(B ! ⌧⌫) · 104 1.67± 0.30 0.82± 0.08 2.7
sin 2� 0.68± 0.02 0.81± 0.05 2.4
↵ 91� ± 6� 88� ± 4� < 1
� 76� ± 11� 68� ± 3� < 1

Table 2: Comparison between input value and SM prediction for the UTA constraints.
The pull is also shown.

bag parameters fBs, fBs/fB, BBs and BBs/BB, which enter the theoretical predictions
of the B-physics observables �md, �md/�ms and Br(B ! ⌧⌫).

The main results of the UTA [22], performed by the UTfit collaboration assuming
the validity of the SM, are summarized in fig. 1, where the curves representing the
UTA constraints intersect in a single allowed region for (⇢, ⌘), proofing that the CKM
parameters are consistently overconstrained. In other words, the UTA has established
that the CKMmatrix is the dominant source of flavor mixing and CP violation and the
parameters ⇢ and ⌘ turn out to have the values ⇢ = 0.139±0.021 and ⌘ = 0.352±0.016.
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LQCD is an mature field: 30+ years since first calculations

~2000: QCD (no “quenched” mutilation)

~2008: QCD with physical quark masses

For simple observables –  
precision science

Combine with experiment  
to determine SM parameters

Verify CKM paradigm

SM predictions with reliable  
uncertainty quantification  

R. Van de Water Aspen 2012: Recent lattice-QCD results for heavy flavors

In this paper, we discuss three topics: the normalization and q2-dependence of the D → Klν
form factor; the decay constants of the D+ and Ds mesons; and the mass of the Bc meson. Each
of these lattice-QCD calculations was subsequently confirmed by experimental measurements,
satisfying a long-standing demand of experimental physicists [6]. The quantities discussed here
were ideal candidates: they are straightforward to compute; they test the controversial aspects
in complementary ways; and the first “good” experimental measurements were expected on the
same time scale. The success of the predictions is extremely encouraging. In particular, the
calculations for D mesons are, in lattice QCD, similar to those for B mesons, whose b quarks
are considered likely to exhibit new, non-Standard interactions.

2. Semileptonic D Decays
Semileptonic decays such as D → Klν proceed as follows. A quark (in this case, a charmed
quark) emits a virtual W boson, thereby turning into a quark of a different flavor (in this case,
a strange quark). The W immediately disintegrates into a lepton-neutrino (lν) pair. The rate
depends on q2, which is the invariant-mass-squared of lν. Some of the q2 dependence stems from
QCD through a function called a form factor (in this case, denoted f+(q2)). The momentum
transfer q2 falls in the range 0 ≤ q2 ≤ q2

max = (mD−mK)2. In lattice QCD, discretization effects
are smallest when the spatial momentum p of the kaon is small, which puts q2 close to q2

max.
Experiments usually measure the branching fraction and quote the normalization f+(0),

after making assumptions about the q2 dependence. While our results were still preliminary [7],
experimental results came out for the normalization of D → Klν [8] and D → πlν [9]. The
agreement with our final results [10] is excellent. For example, we find fD→K

+ (0) = 0.73(3)(7) [10]
while the BES Collaboration measures fD→K

+ (0) = 0.78(5) [8].
In principle, the shape of the form factors can be computed directly in lattice QCD. In

practice, we calculated at a few values of p and used a fit to the Ansatz of Bećirević-Kaidalov
(BK) [11] to fix the q2 dependence. It was important, therefore, to measure the q2 dependence
experimentally. In photoproduction of charm off fixed nuclear targets, the FOCUS Collaboration
was able to collect high enough statistics to trace out the q2 distribution of the decay [12].
This setup does not yield an absolutely normalized branching ratio, so one is left to compare
f+(q2)/f+(0).

In Fig. 1(a) we plot our result for f+(q2)/f+(0) vs. q2/m2
D∗

s
. The errors from f+(0) must

be propagated to non-zero q2, so for f+(q2)/f+(0) the errors grow with q2. Figure 1 shows 1-σ
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Figure 1. Form factor for D → Klν vs. q2/m2
D∗

s
: (a) shape f+(q2)/f+(0) compared with

FOCUS [12]; (b) shape and normalization f+(q2) compared with Belle [14].
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Successes of lattice QCD

Lattice-QCD calculations now reproduce experimental results for a wide variety of 
hadron properties and provide the only ab initio QCD calculation of others, e.g.:

Most accurate determination of strong coupling constant

Predictions of Bc meson mass, decay constants fD & fDs, and D→Klν form factor 

Determinations of the light u, d, and s quark masses

Demonstrate that lattice-QCD calculations are reliable with controlled systematic errors

[Fermilab Lattice & MILC, 

Phys.Rev.Lett 94:011601,2005]
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[Laiho, Lunghi, RV,

Phys.Rev. D81 (2010) 034503

updates at www.latticeaverages.org]

[Bethke, Eur.Phys.J. C64 (2009)]
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QCD: meson/baryon spectrum

Ground state B=0,1 spectrum of QCD

[A Kronfeld, 1209.3468]
points correspond to different sets of calculations
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Ground state B=0,1 spectrum of QCD

[A Kronfeld, 1209.3468]
points correspond to different sets of calculations

Time to move up the 
periodic table
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understanding fluxes to high accuracy

Nuclear axial form factors

Transition form factors

Nuclear structure in neutrino DIS

Budd, Bodek, Arrington	
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Figure 2. The percent change in the neutrino
cross section for a 1% change in the form factors.

cross sections from deuterium. We plan to study
the nuclear corrections, adopting models which
have been used in precision electron scattering
measurements from nuclei at SLAC and JLab.

4. Extraction of FA(q2)

A substantial fraction of the cross section
comes from the form factor FA(q2). Therefore,
we can extract FA(q2) from the differential cross
section. Figure 2 and 3 show the contribution
of FA(q2) to dσ/dQ2. Figure 2 shows the per-
cent change in the neutrino cross section for a 1%
change in the form factors. Figure 3 shows the
fractional contribution of the form factor deter-
mined by setting the form factor to zero and by
determining the fractional decrease in the differ-
ential cross section. Since some terms are prod-
ucts of different form factors, the sum of the
curves do not have be 1.

To extract FA, we write the equation for
dσ/dq2(q2, Eν) in terms of a quadratic function
of FA(q2).

a(q2, Eν)FA(q2)2 + b(q2, Eν)FA(q2)

+ c(q2, Eν) −
dσ

dq2
(q2, Eν) = 0

Figure 3. Fractional contribution of the form
factor determined by setting the form factor
to zero and by determining the fractional de-
crease in the differential cross section, 1 −
(dσ/dQ2(formfactor = 0))/(dσ/dQ2).

For each q2 bin, we integrate the above equation
over the q2 bin and the neutrino flux.
∫∫

dq2dEν{a(q2, Eν)FA(q2)2 + b(q2, Eν)FA(q2)

+c(q2, Eν) −
dσ

dq2
(q2, Eν)} = 0

The above equation can be written as a
quadratic equation in FA at the bin value q2

bin.

αFA(q2
bin)2 + βFA(q2

bin) + γ − ∆ − NData
Bin = 0

The terms of this equation are given below:

α =

∫∫

dq2dEνa(q2, Eν)

β =

∫∫

dq2dEνb(q2, Eν)

γ =

∫∫

dq2dEνc(q2, Eν)
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The intensity frontier

Searches for new physics	



Dark matter detection: nuclear recoils as signal 
Nuclear matrix elements of exchange current	



Proposed mu2e conversion expt: similar requirements 	



If(when) we detect new physics we will need precision nuclear 
matrix elements to learn what it is	



Nuclear physics will be the new flavour physics	



Need to develop the tools for precision predictions



LQCD to the rescue?

Nuclear physics is Standard  
Model physics	



... so calculate ab initio???
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Nuclei: an (exponentially hard)2 problem

Nuclear spectroscopy? 
 

Complexity:  number of  
Wick contractions = (A+Z)!(2A-Z)! 
 

Dynamical range of scales: requires care  
with numerical precision

Small energy splittings

Importance sampling Monte Carlo: statistical 
noise exponentially increases with A

keV

73Ge

h0|Tq1(t) . . . q624(t)q1(0) . . . q624(0)|0i
t!1�! # exp(�MPbt)
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The trouble with baryons

Importance sampling of QCD functional integrals  
➤ correlators determined stochastically 

Proton  

Variance determined by  
 
 
 
 
 

For nucleus A:

π

π

π

[Lepage ’89]

�2(C) = hCC†i � |hCi|2

signal

noise

⇠ exp [�(MN � 3/2m⇡)t]

signal

noise

⇠ exp [�A(MN � 3/2m⇡)t]

noise ⇠
q
hCC†i ⇠ exp[�3/2M⇡t]

signal ⇠ hCi ⇠ exp[�MN t] N
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Interpolator choice can be used to suppress noise



Bound states at finite volume

Focus on bound states	



Two particle scattering amplitude in infinite volume 
 
 
 
bound state at                when	



Scattering amplitude in finite volume (Lüscher method)  

!

Need multiple volumes	



More complicated for n>2 body bound states

cot �(i) = i� i
X

~m6=0

e�|~m|L

|~m|L

A(p) =

8⇡

M

1

p cot �(p)� ip

cot �(i�) = ip2 = ��2


L!1�! �



Ex: H dibaryon

Effective mass plots of energy shifts	



First dibaryon bound state calculated in QCD [NPLQCD 2010]	



Multiple volumes needed to disentangle bound state from 
attractive scattering state

243x48 323x48 483x64

2MΛ



Dibaryons

H dibaryon, di-neutron and deuteron	



More exotic channels also considered (ΞΞ, nΩ and ΩΩ)	



Clearly more work needed at lighter masses
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Many baryon systems

Many baryon correlator construction is messy  
and expensive	



Techniques learnt in many-pion studies 
[WD & M. Savage; WD,, K Orginos, Z. Shi]	



New tricks  
[T. Doi & M. Endres.; WD, K Orginos; Gunther et al]	



Enables study of few (and many) baryon systems	



NPLQCD collaboration study	



Unphysical SU(3) symmetric world @ msphys	



Multiple big volumes, single lattice spacing
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Nuclei (A=2)

NPLQCD Phys.Rev. D87 (2013), 034506 



Nuclei (A=2)
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Nuclei (A=3,4)

NPLQCD Phys.Rev. D87 (2013), 034506 



Nuclei (A=3,4)
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FIG. 13: The bound-state energy levels in the J⇡ = 3

2

+

3

⌃

He sector. The points and their associated
uncertainties correspond to the energies of the states extracted from the correlation functions with
the quantum numbers of the ground state of 3

⌃

He. The locations of the energy-levels associated
with non-interacting continuum states, determined from the two-body binding energies given in
Table VII, are shown.

which greatly reduces the complexity of individual correlation functions. In order to restrict
ourselves to systems that are currently of phenomenological importance, we explore systems
containing up to two strange quarks only, the isosinglet 4He, the iso-doublet 4

⇤

H and 4

⇤

He,
the isosinglet 4

⇤⇤

H and the isotriplet 4

⇤⇤

He, 4

⇤⇤

H, and nn⇤⇤.

A. I = 0 : 4He

In nature, the 4He nucleus is anomalously deeply bound when compared to nuclei nearby
in the periodic table due to its closed shell structure, with a total binding energy of B↵ ⇠
28 MeV, or a binding energy per nucleon of B/A ⇠ 7 MeV. We anticipate that at the SU(3)
symmetric point, the binding energy of 4He will be even deeper given the bindings of the
deuteron and di-neutron found in the two-body sector. Two of the 4He correlation functions,
resulting from di↵erent source structures defined by s = 0, I = 0 and J⇡ = 0+ quantum
numbers, transform as an element of the 28 irrep of SU(3), as determined by the action of
the SU(3) Casimir operators presented in Appendix A. 8 EMP’s of one of these correlation
functions are shown in fig. 14, from which the energies of the lowest lying states have been

8 The 28 is the only allowed I = 0, s = 0, A=4 irrep.
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Empirically investigate volume dependence	



Need to ask if this is a 2+1 or 3+1 or 2+2 etc scattering state

NPLQCD Phys.Rev. D87 (2013), 034506 



Nuclei (A=2,3,4)

NPLQCD Phys.Rev. D87 (2013), 034506 
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d, nn, 3He, 4He

PACS-CS: bound d,nn, 3He, 4He	



Previous quenched work	



Unquenched study at mπ=500 MeV	



Working on mπ=300 MeV [Lattice 2013]	



HALQCD 	



Extract an NN potential	



Strong enough to bind H, 4He at  
mPS=490 MeV SU(3) pt	



d, nn not bound
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FIG. 1: Nucleon effective mass on (5.8 fm)3 box in lattice unites. Fit result with one standard

deviation error band is expressed by solid lines.
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FIG. 2: Effective energy shift ∆Eeff
L for 4He channel on (5.8 fm)3 box in lattice units. Fit result

with one standard deviation error band is expressed by solid lines.
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FIG. 5: Same as Fig. 3 for 3He channel.
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FIG. 6: Same as Fig. 2 for 3S1 channel.
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FIG. 3: Spatial volume dependence of ∆EL in GeV units for 4He channel. Outer bar denotes

the combined error of statistical and systematic ones added in quadrature. Inner bar is for the

statistical error. Extrapolated result in the infinite spatial volume limit is shown by filled square

symbol together with the fit line (dashed). Experimental value (star) and quenched result (open

diamond) are also presented.
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FIG. 4: Same as Fig. 2 for 3He channel.
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Status and physics plan of 
the PACS-CS Project

� Collaboration members

� PACS-CS status 

� physics plan

� Summary

Akira Ukawa
Center for Computational Sciences
University of Tsukuba

Lattice 2006
July 25
Tucson

Related talks: 
T. Ishikawa Spectroscopy session 3(Tue)
K. Ishikawa Algorithm session 2(Tue)
Y. Kuramashi Algorithm session 1(Mon)



Lighter mass

Pion mass of ~400 MeV

deuteron nn H-dib nX H3s1L SL H1s0L XX H1s0L
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QCD Nuclei (s=0,-1)
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FIG. 8: Summary of the results obtained in n
f

= 2 + 1 or n
f

= 3 lattice QCD calculations of
the binding energies of 3He, 3

⇤

H, 4He and 4

⇤

He. The red circles correspond to the physical binding
energies (for 4

⇤

He experimental determinations of both iso-doublet states are shown). For 3

⇤

He,
both J = 1/2 and 3/2 states were extracted, with the higher spin state being more tightly bound
for this SU(3)

f

symmetric quark mass.

Using two body potentials extracted from LQCD, and solving the three- and four-body
Schrödinger equations, the HALQCD collaboration have also investigated few-body systems
[90]. As noted in this study, this approach neglects three- and four- body interactions, but
provides an interesting guide as higher body forces are expected to be small. Indeed, the
two-body interaction alone is su�cient to bind the 4He state at SU(3)-symmetric quark
masses where the pion masses are in the range 500 MeV < m

⇡

< 1200 MeV.
The improved contraction methods discussed above have also enabled the construction

of correlation functions with the quantum numbers of significantly larger nuclei such as
8Be, 12C, 16O and 28Si [174], opening the way for studies of these systems. Examples of
these correlations are shown in Fig. 11, and, while the correlators for A < 20 show signs of
the expected approach to single exponential behaviour, no statistically meaningful binding
energies could be extracted at the statistical precision used in this preliminary investigation.
Indeed, it appears that the noise is becoming exponentially worse (with a small prefactor)



Nuclear matrix elements

Calculations of matrix elements of currents in light nuclei just 
beginning for A<5	



For deeply bound nuclei, use the same techniques as for single 
hadron matrix elements 
 
 
 
 
 
 
 

At large time separations gives matrix element of current	



For near threshold states, need to be careful with volume effects

Σ
permutations

3 pt function 2 pt function



Nuclear matrix elements

Axial coupling to NN system	



pp fusion: “Calibrate the sun” 	



Muon capture: MuSun @ PSI	



d ν → n n e+ : SNO 	



Twist-2 operators: eg EMC effect 
 

Proof of principle (moments of pion  
PDF in pion gas) [WD, HW Lin 1112.5682]

p

p

e+

ν

d

pp→de+ν

�N,Z|q̄�{µ1Dµ2 . . . Dµn}q|N,Z�



Nuclear sigma terms

Dark matter direct detection experiments  
look for DM interactions with nuclei (Si, Xe, ...)	



One possible interaction is through scalar exchange 	



!

Accessible via Feynman-Hellman theorem	



At hadronic/nuclear level 
 

Contributions:

L =
GF

2

X

q

a(q)
S (��)(q q)

Lagrange density in Eq. (2) matches onto

L ! GF ��
✓

1

4
h0|qq|0i Tr

h
aS⌃

† + a†S⌃
i
+

1

4
hN |qq|NiN †NTr

h
aS⌃

† + a†S⌃
i

� 1

4
hN |q⌧ 3q|Ni

⇣
N †NTr

h
aS⌃

† + a†S⌃
i
� 4N †aS,⇠N

⌘
+ ...

◆
(3)

at the chiral symmetry breaking scale ⇤�, which describes the single-hadron matrix elements
and the associated interactions at LO in the chiral expansion. ⌃ is the exponentiated pion
field, and N is the nucleon field,

⌃ = exp

 
2i

f⇡
M

!

, M =

 
⇡0/

p
2 ⇡+

⇡� �⇡0/
p
2

!

, N =

 
p
n

!

, (4)

f⇡ = 132 MeV is the pion decay constant, aS,⇠ =
1
2

⇣
⇠†aS⇠† + ⇠a†S⇠

⌘
with ⇠ =

p
⌃, and the

ellipsis denotes higher-order interactions including those involving more than one nucleon.
Expanding Eq. (3) in the number of pion fields (neglecting the shift in the WIMP mass
induced by the chiral condensate), the LO contributions to the interactions are

L ! GF ��

 

� (a(u)S + a(d)S )

f 2
⇡

h0|qq|0i
✓
1

2
(⇡0)2 + ⇡+⇡�

◆
+

1

2
(a(u)S + a(d)S )hN |qq|NiN †N

+
1

2
(a(u)S � a(d)S )hN |q⌧ 3q|NiN †⌧ 3N + ...

!

. (5)

Matching onto the multi-nucleon interactions is complicated by the fact that contributions
from pion-exchange interactions and from local four-nucleon operators are of the same order
in the chiral expansion, and the coe�cients of the latter are not directly related to multi-
nucleon matrix elements at any order in the chiral expansion. For instance, the four-nucleon
operators involving one insertion of the light-quark mass matrix are of the form [13–15]

LN4,mq = DS,1

⇣
N †N

⌘2
Tr
h
mq⌃

† +m†
q⌃
i
+ DS,2N

†NN †mq,⇠+N

+ DT,1

⇣
N †�aN

⌘2
Tr
h
mq⌃

† +m†
q⌃
i
+ DT,2N

†�aNN †�amq,⇠+N (6)

in the low-energy EFT, where mq,⇠+ = 1
2

⇣
⇠†mq⇠† + ⇠m†

q⇠
⌘
, and �a are the Pauli matrices.

Hence WIMP–two-nucleon interactions are of the form

LN4,� = �GF��
✓
DS,1

⇣
N †N

⌘2
Tr
h
aS⌃

† + a†S⌃
i
+ DS,2N

†NN †aS,⇠N

+DT,1

⇣
N †�aN

⌘2
Tr
h
aS⌃

† + a†S⌃
i
+ DT,2N

†�aNN †�aaS,⇠N
◆

. (7)

The importance of the various contributions to the scalar-isoscalar matrix elements can be
estimated using power counting arguments. The second and third terms in Eq. (5) provide
the leading (order Q0, where Q denotes the small ratio of scales in the e↵ective theory) scalar
interactions between the WIMP and the nucleon that generate the impulse approximation
for WIMP-nucleus interactions (see Fig. 1 (left)). In a nucleus, the first term in Eq. (5) gives
rise to a MEC between two nucleons, as shown in Fig. 1 (middle), that naively contributes
at order 1/Q2 in the chiral expansion due to the non-derivative interaction of the pions,

4

which is two orders lower than the contribution from the impulse approximation. This term
is the origin of the enhancement suggested in Ref. [1]. The isoscalar interactions with the
strange and heavier quarks do not contribute to the non-derivative interaction with pions
and, as such, are not expected to be enhanced in WIMP-nucleus interactions. To determine
the WIMP-nucleus interactions quantitatively, nuclear matrix elements of these operators
need to be calculated.

FIG. 1: Some of the diagrams contributing to nuclear �-terms. The left panel shows the leading
order contribution to the single-nucleon �-term in �PT. The middle (pion-exchange) and right
(“D2-terms” contributions from Eq. (7)) panels show contributions to nuclear �-terms at next-to-
leading order in KSW power counting [13–15]. The crossed box corresponds to an insertion of the
light-quark mass matrix.

Ideally, one would simply determine the matrix element of the Lagrange density in Eq. (2)
in the ground state of a given nucleus, at the relevant momentum transfer, without perform-
ing the intermediate matchings in Eq. (3) and in Eq. (5). This would sum the contributions
from the hadronic EFT to all orders in perturbation theory, and provide the necessary ma-
trix elements directly from QCD. While such formidable calculations cannot currently be
accomplished, the forward matrix element of the scalar-isoscalar operator can be determined
in light nuclei, albeit with significant uncertainties, by combining recent lattice QCD cal-
culations of the binding energies with the corresponding experimental values. The mass of
the ground state of a nucleus with Z protons and N neutrons, denoted by |Z,N(gs)i, is
E(gs)

Z,N = E(gs,�)
Z,N + �Z,N , where

�Z,N = hZ,N(gs)| muuu+mddd |Z,N(gs)i (8)

is the nuclear �-term, and E(gs,�)
Z,N is the energy of the nuclear ground state in the limit of

massless up- and down-quarks (assuming that the nucleus is bound in this limit). With
isospin symmetry, mu = md = m, the nuclear �-term becomes

�Z,N = mhZ,N(gs)| uu+ dd |Z,N(gs)i = m
d

dm
E(gs)

Z,N

=
h
1 + O

⇣
m2

⇡

⌘ i m⇡

2

d

dm⇡
E(gs)

Z,N , (9)

where we have used the leading contribution to the Gell-Mann–Oakes–Renner (GMOR)
relation [4, 43],

�2mh0| uu+ dd |0i = m2
⇡f

2
⇡

h
1 + O

⇣
m2

⇡

⌘ i
, (10)

to relate the quark and pion masses. The relation between the pion mass and the average
light-quark mass has been precisely determined with lattice QCD [44, 45]. The linear relation
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Nuclear sigma terms

Previous work suggested scalar dark matter couplings to nuclei 
have O(50%) uncertainty arising from MECs [Prezeau et al 2003]	



Quark mass dependence of nuclear binding energies bounds 
such contributions 	



!

Lattice calculations + physical point suggest such 
contributions are O(10%) or less for light nuclei (A<4)  
 
 
 
 

TABLE II: Contributions to the nuclear �-terms of the deuteron, 3He and 4He. The binding energy
contributions, �BZ,N , are derived from the nuclear binding energies determined from lattice QCD
calculations, shown in Table I. The quantity hm⇡i is the average pion mass over the interval
used to construct the finite-di↵erence estimate of the nuclear �-term. The single-nucleon �-term
contribution, A�N , is taken from the approximate empirical relation A�N = Aa1m⇡/2, as defined
in the text (with uncertainties determined from the covariance matrix of the two-parameter fit
[57]). The first uncertainty of each quantity is statistical, the second is systematic and the third
(where present) is the additional systematic associated with the relation between the pion mass
and the light-quark mass.
hm⇡i (MeV) Quantity d 3He 4He

325 A�N (MeV) 322(9)(32) 483(13)(48) 644(17)(64)
325 �BZ,N (MeV) �4.08(48)(26)(41) �5.5(1.8)(0.9)(0.6) �6.5(5.3)(3.5)(0.7)
325 ��Z,N �0.0125(15)(08) �0.0113(36)(18) �0.0099(81)(54)
658 A�N (MeV) 652(18)(65) 978(26)(98) 1304(35)(130)
658 �BZ,N (MeV) �9.1(3.7)(4.6)(0.9) �50.8(8.0)(7.0)(5.1) �75(26)(19)(8)
658 ��Z,N �0.0139(56)(70) �0.0515(81)(71) �0.057(20)(14)
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FIG. 4: The nuclear contributions to the deuteron (left panel), 3He (middle panel) and 4He (right
panel) �-terms from nuclear interactions. The inner and outer shaded regions correspond to the
statistical and total (statistical combined with systematic) uncertainties, respectively.

the nuclear �-terms of the deuteron, 3He and 4He are shown in Fig. 5. For each nucleus,
the nuclear interactions modify the �-term by less than 10% of the impulse approximation
contribution for both pion masses considered, and by less than 2% at the lighter pion mass,
as can be seen in Fig. 6.
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FIG. 5: Percentage modifications to the impulse approximation contribution to the deuteron (left
panel), 3He (middle panel) and 4He (right panel) �-terms.
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(two-flavor) nuclear �-term can be written as

�Z,N = A�N + �BZ,N = A�N � m⇡

2

d

dm⇡
BZ,N , (11)

where

�N = mhN | uu + dd |Ni = m
d

dm
MN =

m⇡

2

d

dm⇡
MN (12)

is the nucleon �-term and |Ni is the single-nucleon state. The first term in Eq. (11) is the
noninteracting single-nucleon contribution to the nuclear �-term, while the second term cor-
responds to the corrections due to interactions between the nucleons, including the possibly
enhanced contributions from MECs. It is useful to define the ratio

��Z,N = � 1

A�N

m⇡

2

d

dm⇡
BZ,N (13)

to quantify the deviations from the impulse approximation. In addition to representing de-
viations of nuclear �-terms from the impulse approximation, this quantity also describes the
deviation of the scalar-isoscalar WIMP-nucleus scattering matrix element from the impulse
approximation at zero momentum transfer,

��Z,N =
hZ,N(gs)| uu + dd|Z,N(gs)i

A hN | uu + dd|Ni � 1 . (14)

III. LIGHT NUCLEI FROM LATTICE QCD AND THEIR �-TERMS

Lattice QCD has evolved to the stage where the binding energies of the lightest nuclei and
hypernuclei have been determined at a small number of relatively heavy pion masses in the
limit of isospin symmetry. Further, the mass of the nucleon has been explored extensively
over a large range of light-quark masses, with calculations now being performed at the phys-
ical value of the pion mass. These sets of calculations, along with the experimental values
of the masses of the light nuclei, are su�cient to arrive at a first QCD determination of the
nuclear �-terms for these nuclei at a small number of pion masses. This work provides an es-
timate of the modifications to the impulse approximation for scalar-isoscalar WIMP-nucleus
interactions in light nuclei2. In particular, these results can be used to explore the conjec-
tured enhancement of MEC contributions to these interactions, and to investigate the size of
the uncertainties introduced by the use of the impulse approximation in phenomenological
analyses.

The binding energies of the deuteron, 3He and 4He at pion masses of m⇡ ⇠ 390, 510
and 806 MeV calculated with lattice QCD [36–38, 54, 55] are presented in Table I, along
with their values at the physical point, and are shown in Fig. 2. The binding energies
per nucleon are shown in Fig. 3. The lattice QCD calculations were performed with clover-
improved discretizations of the quark fields. The m⇡ ⇠ 806 MeV calculations were performed

2 The EFT description of the quark-mass dependence of the nuclear forces has been developed in Refs. [45–
48]. For estimates of nuclear � terms, see Refs. [49–53].
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with their values at the physical point, and are shown in Fig. 2. The binding energies
per nucleon are shown in Fig. 3. The lattice QCD calculations were performed with clover-
improved discretizations of the quark fields. The m⇡ ⇠ 806 MeV calculations were performed

2 The EFT description of the quark-mass dependence of the nuclear forces has been developed in Refs. [45–
48]. For estimates of nuclear � terms, see Refs. [49–53].
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Larger nuclei

A path to ab initio nuclear physics:	
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techniques onto QCD	



Hierarchy of methods	



QCD: focus on small A 	



... for now ...

3
3

3

3
Lattice QCD

Exact many body:	


GFMC, NCSM,	



lattice EFT

Shell model, 	


coupled cluster, 	



configuration-interaction

Density 
Functional,	


Mean field

Z
N



Heavy quark universe	



Already seeing LQCD and nuclear EFT coming together	



For heavy quarks, even spectroscopy requires QCD matching 
 
 
 
 
 
 
 
 
 

Equally important for matrix elements at the physical quark mass
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Matrix elements

Power counting of nuclear effective field theory:	



1-body currents are dominant	



2-body currents are sub-leading but non-negligible  
Higher-body currents are even less important	



Determine one body contributions from single nucleon	
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electroweak interactions



fin

Silas Beane, Emmanuel Chang, Saul Cohen, Parry Junnarkar, 	


Huey-wen Lin, Tom Luu,  Kostas Orginos, Assumpta Parreño, Martin 

Savage, Andre Walker-Loud

Acknowledgements



Hadron scattering

Maiani-Testa: extracting multi-hadron S-matrix elements  
from Euclidean lattice calculations of Green functions in  
infinite volume is impossible	



Lüscher: volume dependence of two-particle energy 
levels  
⇒ scattering phase-shift, δ(p), up to inelastic threshold

E

2M

Bound state

Scattering 
continuumS(⌘) = lim

⇤!1

2

4
|~n|<⇤X

~n

1
|~n|2 � ⌘2

� 4⇡⇤

3

5

�E(n) =
q

|q(n)|2 + m2
A +

q
|q(n)|2 + m2

B �mA �mB

q(n) cot �(q(n)) =

1

⇡ L
S

✓
q(n)L

2⇡

◆



Hadron scattering

Maiani-Testa: extracting multi-hadron S-matrix elements  
from Euclidean lattice calculations of Green functions in  
infinite volume is impossible	



Lüscher: volume dependence of two-particle energy 
levels  
⇒ scattering phase-shift, δ(p), up to inelastic threshold

E

2M

Bound state

Scattering poles
S(⌘) = lim

⇤!1

2

4
|~n|<⇤X

~n

1
|~n|2 � ⌘2

� 4⇡⇤

3

5

�E(n) =
q

|q(n)|2 + m2
A +

q
|q(n)|2 + m2

B �mA �mB

q(n) cot �(q(n)) =

1

⇡ L
S

✓
q(n)L

2⇡

◆



Maiani-Testa: extracting multi-hadron S-matrix elements  
from Euclidean lattice calculations of Green functions in  
infinite volume is impossible	



Lüscher: volume dependence of two-particle energy 
levels  
⇒ scattering phase-shift, δ(p), up to inelastic threshold	



Exact relation provided r«L	



Used for ππ, KK, ... 	



A precision science for stretched states	



Known for many years in QM, NP

E

2M

Bound state

Scattering poles

Hadron scattering



NN phase shifts
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FIG. 10: The phase shift in the 3S1 channel. The left panel is a two-parameter fit to the ERE, while
the right panel is a three-parameter fit to the ERE, as described in the text. The inner (outer)
shaded region corresponds to the statistical uncertainty (statistical and systematic uncertainties
combined in quadrature) in two- and three-parameter ERE fit to the results of the Lattice QCD
calculation. The vertical (red) dashed line corresponds to the start of the t-channel cut and the
upper limit of the range of validity of the ERE. The light (green) dashed line corresponds to the
phase shift at the physical pion mass from the Nijmegen phase-shift analysis [38].

V. NUCLEON-NUCLEON EFFECTIVE RANGES

Unlike the scattering length, the size of the e↵ective range and the higher-order contributions
to the ERE are set by the range of the interaction. The leading estimate of the e↵ective range
for light quarks is r ⇠ 1/m

⇡

, and higher order contributions are expected to be suppressed
by further powers of the light-quark masses. It is natural to consider an expansion of the
product m

⇡

r in the light-quark masses. While the most general form of the expansion
contains terms that are non-analytic in the pion mass [40–43], for instance of the form
m

q

logm
q

, with determinations at only two pion masses (including the experimental value)
a polynomial fit function is chosen,

m

⇡

r = A + B m

⇡

+ ... . (7)

In fig. 11, the results of our LQCD calculations of m
⇡

r are shown, along with the experi-
mental value in each channel and a fit to the form given in eq. (7). While the uncertainties
in the lattice determinations are somewhat large compared to those of the experimental de-
termination, it appears that there is modest dependence upon the light-quark masses. The
fit values are

A

(1S0) = 1.348+0.080
�0.080

+0.079
�0.083 , B

(1S0) = 4.23+0.55
�0.56

+0.59
�0.57 GeV�1

A

(3S1) = 0.726+0.065
�0.059

+0.072
�0.059 , B

(3S1) = 3.70+0.42
�0.47

+0.42
�0.52 GeV�1

. (8)

The two-parameter fit is clearly over simplistic and more precise LQCD calculations are
required at smaller light-quark masses to better constrain the light-quark mass dependence
of the e↵ective ranges.
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In fig. 8, the extracted values of k cot �/m

⇡

given in Table III and from the deuteron
binding energy are shown as a function of |k|2/m2
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. Following the procedure used to analyze
the results in the 1

S0-channel, again with three points to fit, two-parameter (left panel) and
three-parameter (right panel) fits to the ERE of k cot �/m

⇡

are performed and shown as
the shaded regions in fig. 8. The scattering length and e↵ective range determined from the
two-parameter fit are

m
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a

(3S1) = 7.45+0.57
�0.53

+0.71
�0.49 , m
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r

(3S1) = 3.71+0.28
�0.31

+0.28
�0.35 , (5)

corresponding to

a

(3S1) = 1.82+0.14
�0.13

+0.17
�0.12 fm , r

(3S1) = 0.906+0.068
�0.075

+0.068
�0.084 fm , (6)

and fig. 9 shows the 68% confidence region for the extracted values of a(
3
S1) and r

(3S1). The
shape parameter obtained from the three parameter fit to the ERE expansion is consistent
with zero: Pm

3
⇡

= 2+5
�6

+5
�6. Again the scattering length and e↵ective range extracted from the

three-parameter fit are consistent with the two-parameter fit, but with larger uncertainties.
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FIG. 9: The 68% confidence region associated with m
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a(
3
S1) and m
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r(
3
S1) in the 3S1 channel. The

inner region corresponds to statistical uncertainties and the outer region corresponds to statistical
and systematic uncertainties combined in quadrature.

The phase shift below the t-channel cut can be determined from these fit parameters, and
is shown in fig. 10, along with the results of the LQCD calculations and the phase shift at
the physical point. As in the 1

S0 channel, the phase shift predicted by the ERE is expected
to deviate significantly from the true phase shift near the t-channel cut, and this is seen in
fig. 10. Like the 3

S1 phase shift at the physical point, and the phase shift we have obtained
in the 1

S0 channel, the phase shift at the SU(3) symmetric point is found to change sign at
larger momenta, consistent with the presence of a repulsive hard core in the NN interaction.
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isospin violating e↵ects due to light-quark mass di↵erences and electromagnetism. However,
given the experimental determinations of the nn, np and pp scattering lengths, these e↵ects
are expected to be small.

It is interesting to note that the ratio of the scattering length to the e↵ective range in
the two channels have very similar values at the quark masses used in this work:

a

(3S1)
/r

(3S1) = 2.06+0.22
�0.18

+0.25
�0.19 , a

(1S0)
/r

(1S0) = 2.02+0.23
�0.19

+0.29
�0.18 , (9)

and that the scattering lengths in the two channels, and also the e↵ective ranges, are within
⇠ 20% of each other. In the large-N

c

limit of QCD, the nuclear forces in the two spin
channels are equal up to corrections suppressed by O(1/N2

c

) [52], and the two channels
transform in the 6 of the Wigner SU(4) symmetry. In addition, inequalities for the binding
energies of light nuclei in the Wigner-symmetry limit have been found in Ref. [53]. The
closeness of the values of the scattering parameters at m

⇡

⇠ 800 MeV is consistent with the
expectations of the large-N

c

limit of QCD.

VII. CONCLUSIONS AND DISCUSSIONS

We have presented the results of Lattice QCD calculations of low-energy NN scattering
phase-shifts and scattering parameters at the SU(3) symmetric point with a pion mass
of m

⇡

⇠ 800 MeV. For the first time, the e↵ective ranges of the NN interactions have
been determined using lattice QCD. The calculated scattering lengths and e↵ective ranges
indicate that the pion is not the dominant contribution to the long range part of the nuclear
force at these large light-quark masses, as anticipated from the single-hadron spectrum. In
both spin channels, the NN phase shifts change sign at higher momentum, near the start
of the t-channel cut, indicating that the nuclear interactions have a repulsive core even
for heavier quark masses. This suggests that the form of the nuclear interactions, and the
e↵ective potentials that will reproduce the scattering amplitude below the inelastic threshold,
is qualitatively similar to the phenomenological potentials that describe the experimental
scattering data at the physical pion mass.

Both spin channels are, in a sense, more natural at m
⇡

⇠ 800 MeV, where both satisfy
a/r ⇠ +2.0, than at the physical pion mass where a

(1S0)
/r

(1S0) ⇠ �8.7 and a

(3S1)
/r

(3S1) ⇠
+3.1. The relatively large size of the deuteron compared with the range of the nuclear forces
may persist over a large range of light-quark masses, and therefore might, in fact, not be
usefully regarded as a fine-tuning in n

f

= 2+ 1 QCD, but rather a generic feature. The 1
S0

channel, in contrast, is finely tuned at the physical light-quark masses and it remains to be
seen over what range of masses this persists.

Our calculations were performed at a single pion mass with one lattice spacing and in the
absence of electromagnetic interactions. It should be stressed that in the presence of fine-
tuning, as in the 1

S0 channel at the physical point, lattice-spacing artifacts can be enhanced
with respect to expectations based on naive dimensional analysis and scaling arguments. In
order to fully explore the behavior of the scattering phase shifts and scattering parameters
with fully quantified uncertainties, along with the issues of spin-flavor symmetry and fine
tunings, calculations at multiple lattice spacings and smaller light-quark masses are essential
and are planned for the future.
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In fig. 8, the extracted values of k cot �/m
⇡

given in Table III and from the deuteron
binding energy are shown as a function of |k|2/m2

⇡

. Following the procedure used to analyze
the results in the 1

S0-channel, again with three points to fit, two-parameter (left panel) and
three-parameter (right panel) fits to the ERE of k cot �/m

⇡

are performed and shown as
the shaded regions in fig. 8. The scattering length and e↵ective range determined from the
two-parameter fit are

m

⇡

a

(3S1) = 7.45+0.57
�0.53

+0.71
�0.49 , m

⇡

r

(3S1) = 3.71+0.28
�0.31

+0.28
�0.35 , (5)

corresponding to

a

(3S1) = 1.82+0.14
�0.13

+0.17
�0.12 fm , r

(3S1) = 0.906+0.068
�0.075

+0.068
�0.084 fm , (6)

and fig. 9 shows the 68% confidence region for the extracted values of a(
3
S1) and r

(3S1). The
shape parameter obtained from the three parameter fit to the ERE expansion is consistent
with zero: Pm

3
⇡

= 2+5
�6

+5
�6. Again the scattering length and e↵ective range extracted from the

three-parameter fit are consistent with the two-parameter fit, but with larger uncertainties.
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FIG. 9: The 68% confidence region associated with m
⇡

a(
3
S1) and m

⇡

r(
3
S1) in the 3S1 channel. The

inner region corresponds to statistical uncertainties and the outer region corresponds to statistical
and systematic uncertainties combined in quadrature.

The phase shift below the t-channel cut can be determined from these fit parameters, and
is shown in fig. 10, along with the results of the LQCD calculations and the phase shift at
the physical point. As in the 1

S0 channel, the phase shift predicted by the ERE is expected
to deviate significantly from the true phase shift near the t-channel cut, and this is seen in
fig. 10. Like the 3

S1 phase shift at the physical point, and the phase shift we have obtained
in the 1

S0 channel, the phase shift at the SU(3) symmetric point is found to change sign at
larger momenta, consistent with the presence of a repulsive hard core in the NN interaction.
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is shown in fig. 10, along with the results of the LQCD calculations and the phase shift at
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fig. 10. Like the 3

S1 phase shift at the physical point, and the phase shift we have obtained
in the 1

S0 channel, the phase shift at the SU(3) symmetric point is found to change sign at
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panel) fits to the ERE of k cot �/m

⇡

are performed and are shown as the shaded regions in
fig. 3.

The successful description by a two-parameter fit indicates small values of the terms that
are higher order in the ERE, consistent with what is observed at the physical pion mass.
The scattering length and e↵ective range determined from the two-parameter fit are

m

⇡

a

(1S0) = 9.50+0.78
�0.69

+1.10
�0.80 , m

⇡

r

(1S0) = 4.61+0.29
�0.31

+0.24
�0.26 , (3)

corresponding to

a

(1S0) = 2.33+0.19
�0.17

+0.27
�0.20 fm , r

(1S0) = 1.130+0.071
�0.077

+0.059
�0.063 fm . (4)

The uncertainties associated with a

(1S0) and r

(1S0) are correlated, and their 68% confidence
region is shown in fig. 4. The uncertainty in the scattering length is asymmetric as it is
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FIG. 4: The 68% confidence region associated with m
⇡

a(1S0) and m
⇡

r(1S0) in the 1S0 channel. The
inner region corresponds to statistical uncertainties and the outer region corresponds to statistical
and systematic uncertainties combined in quadrature.

the inverse scattering length that is the fit parameter. The shape parameter obtained from
the three parameter fit to the ERE expansion is consistent with zero: Pm

3
⇡

= �1+4
�5

+5
�8. The

scattering length and e↵ective range extracted from the three-parameter fit are consistent
with the two-parameter fit, but with larger uncertainties. A full quantification of the the-
oretical error in the determination of the ERE parameters requires more calculations than
are currently available.

The phase shift below the t-channel cut can be determined from these fit parameters,
and is shown in fig. 5, along with the results of the LQCD calculations and the phase shift
at the physical values of the quark masses. We expect the phase shift predicted by the ERE
to deviate significantly from the true phase shift near the start of the t-channel cut, and this
is indeed suggested by fig. 5. Like the phase shift at the physical point, the phase shift at
the SU(3) symmetric point is found to change sign at larger momenta, consistent with the
presence of a repulsive hard core in the NN interaction.
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Recent calculation of NN phase shifts 
at mπ=800 MeV	



Scattering length and effective range  
extracted with O(10%) precision  
 

Fine-tuning of NN at physical mass? 
 
 

Wigner SU(4) symmetry



NN fine tuning
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FIG. 11: The NN e↵ective range in the 1S0 channel (left panel) and the 3S1 channel (right panel).
The inner (outer) shaded region corresponds to the statistical uncertainty (statistical and systematic
uncertainties combined in quadrature) in a two-parameter fit to the results of the Lattice QCD
calculation and the experimental value.

VI. FINE TUNINGS AND SU(4) SPIN-FLAVOR SYMMETRY

At the physical values of the quark masses, the deuteron is an interesting system as it is
much larger than the range of the nuclear force. Its binding energy is determined by the pole
in the scattering amplitude in the 3

S1 �3
D1 coupled channels. It is known very precisely at

the physical light-quark masses, B

d

= 2.224644(34) MeV, and recently LQCD calculations of
the deuteron binding have been performed at unphysical light-quark masses [8, 11, 13, 14].
Given that both the scattering lengths and e↵ective ranges calculated in this work are
large compared with the pion Compton wavelength (which naively dictates the range of the
interaction for light pions), we explore the naturalness of the two-nucleon systems. In this
context, naturalness is defined by the length scales of the system as compared to the range
of the interaction. By contrast, a fine-tuned quantity is one in which the length scales of
the system are unnatural over a small range of parameters of the underlying theory.
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FIG. 12: The left panel shows the ratio of the scattering length to e↵ective range in the 3S1

channel. The right panel shows the normalized deuteron binding momentum versus the pion
mass [8, 11, 13, 14]. The black point denotes the experimental value.
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The left panel of fig. 12 gives the ratio of the scattering length to e↵ective range in the
3
S1 channel as a function of the pion mass. As the e↵ective range is a measure of the
range of the interaction, this figure reveals that the deuteron is becoming more natural at
heavier light-quark masses. In the right panel of fig. 12, the deuteron binding momentum
�

d

(related to the binding energy by B

d

= �

2
d

/M

N

) normalized to the pion mass is shown
as a function of the pion mass. In the chiral regime one would expect that that �

d

scales
as m

2
⇡

as suggested by e↵ective field theory [44–51]. However, at the heavy up and down
quark masses used here, naive expectations based on the uncertainty principle suggest that
the deuteron binding momentum, if natural, would scale roughly as the inverse of the range
of the interaction. As the ratio of �

d

to m

⇡

as a function of m

⇡

is not constant, but rather
is falling, we conclude that pion exchange is no longer the only significant contribution to
the long-range component of the nuclear force, consistent with the meson spectrum found
at these quark masses.

While more precise calculations at these quark masses are desirable, and LQCD cal-
culations at other light-quark masses and at other lattice spacings are required to make
definitive statements, the present calculations suggest that the deuteron remains unnatural
over a large range of light-quark masses. This would imply that the unnaturalness of the
deuteron binding energy at the physical point is a generic feature of QCD with three light
quarks and does not result from a fine-tuning of their masses. If subsequently confirmed,
this would be a very interesting result.
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FIG. 13: The left panel shows the ratio of the scattering length to e↵ective range in the 1S0

channel. The right panel shows the normalized di-neutron binding momentum versus the pion
mass [8, 11, 13, 14].

The 1
S0 channel is unnatural at the physical point with a very large scattering length,

but the system appears to be more natural at heavier pion masses. Nonetheless, as shown in
fig. 13 (left panel), the scattering length is approximately twice the e↵ective range at a pion
mass of m

⇡

⇠ 800 MeV, similar to the 3
S1 channel. In the right panel of fig. 13, the di-neutron

binding momentum �

nn

(related to the binding energy by B

nn

= �

2
nn

/M

N

) normalized to the
pion mass is shown as a function of the pion mass. As in the 3

S1 channel, it appears that
the pion is not providing the only significant contribution to the long-range component of
the nuclear force. However, in contrast to the 3

S1 channel, the 1
S0-channel is clearly finely-

tuned at the physical light-quark masses. The range of light-quark masses over which it is
fine-tuned requires further LQCD calculations to determine, and eventual consideration of

13
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�

channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�

phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R ⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.
The n⌃� interactions presented here are the crucial

ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:

�E = � 1

⇡µ

Z kf

0
dk k

h 3

2
�3S1

(k) +
1

2
�1S0

(k)
i
, (2)

where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃+�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�
channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�
phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.

The n⌃� interactions presented here are the crucial
ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:

�E = � 1
⇡µ

Z kf

0
dk k

h 3
2
�3S1(k) +

1
2
�1S0(k)

i
, (2)

where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃ +�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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FIG. 3: The energy shift versus neutron density of a single
⌃� in a non-interacting Fermi gas of neutrons as determined
from Fumi’s theorem in Eq. (2). The inner (outer) band en-
compasses statistical (systematic) uncertainties.

relevance of hyperons in dense neutron matter, and we
have used the LQCD predictions of the phase shifts to es-
timate the ⌃� energy shift in the medium. Our calcula-
tion suggests that hyperons are important degrees of free-
dom in dense matter, consistent with expectations based
upon the available experimental data and hadronic mod-
eling. It is important that more sophisticated many-body
techniques be combined with the interactions determined
in this work to obtain a more precise determination of the
energy shift of the ⌃� in medium. This will refine the
prediction for the role of strange quarks in astrophysi-
cal environments, and, in particular, will quantitatively
address questions posed by the recent observation of a
1.9M� neutron star [50].
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�

channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�

phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R ⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.
The n⌃� interactions presented here are the crucial

ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:

�E = � 1

⇡µ

Z kf

0
dk k

h 3

2
�3S1

(k) +
1

2
�1S0

(k)
i
, (2)

where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃+�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�

channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�

phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R ⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.
The n⌃� interactions presented here are the crucial

ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:
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where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃+�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�

channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�

phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R ⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.
The n⌃� interactions presented here are the crucial

ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:
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where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃+�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�

channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�

phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R ⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.
The n⌃� interactions presented here are the crucial

ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:

�E = � 1

⇡µ
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0
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(k) +
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where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃+�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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Study multiple energy levels of two pions in a box for multiple 
volumes and with multiple PCM
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Study multiple energy levels of two pions in a box for multiple 
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Example: I=2 ππ

Allows phase shift to be extracted at multiple energies
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Combine with chiral perturbation theory to interpolate to 
physical pion mass	



D wave phase shift also extracted [JLab]



Lattice QCD potentials?

HALQCD collaboration determine a Bethe-Salpeter (BS) 
wavefunction from QCD correlation functions  
 
  
 
 

Satisfies Schrödinger equation  
 
 
 

G(r, t� t0;JP ) =
X

x

D
0

���h(1)(x, t)h(2)(x + r, t)J(t0; {Q})
��� 0

E
,

=
1X

n=0

An 
(n)(r; {Q}) e�En(t�t0)

 (n)(r; {Q}) ⌘
X

x

h0|h(1)
a (x, 0)h(2)

b (x + r, 0)|ni

(En=0 �H0) (n=0)(r, {Q}) =
Z

d3r0 U(r, r0) (n=0)(r0, {Q}) .

U(r, r0) = V (r,�ir)�(3)(r� r0) V (r,�ir) = V0(r) +O(r2/M2)

V (n=0)
0 (r) =

1
M

(r2 + |k|2) (n=0)(r, {Q}))
 (n=0)(r, {Q})



Lattice QCD potentials?

Potential is energy dependent: only guaranteed to reproduce 
phase shift at the energy of the NN system in the calculation	



Potential is dependent on choice of sink operators	



Complicated analysis in the presence of statistical uncertainty 	



Serious issues with excited states and finite volume effects	



Caveat emptor!


