Polynomial Filtering for a Single Fermion Flavour in Lattice QCD

Waseem Kamleh and Michael J. Peardon

CSSM & UNIVERSITY OF ADELAIDE

T(R)OPICAL QCD II, September 26th – October 1st, 2010

THE UNIVERSITY OF ADELAIDE AUSTRALIA

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
 - Domain Decomposition method (Luscher).
 - Mass Preconditioning (Hasenbuch).
 - Polynomial Filtering (Peardon & Sexton, Peardon & WK).
- We begin by reviewing the fundamentals of the HMC algorithm.

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
 - Domain Decomposition method (Luscher).
 - Mass Preconditioning (Hasenbuch).
 - Polynomial Filtering (Peardon & Sexton, Peardon & WK).
- We begin by reviewing the fundamentals of the HMC algorithm.

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
 - Domain Decomposition method (Luscher).
 - Mass Preconditioning (Hasenbuch).
 - Polynomial Filtering (Peardon & Sexton, Peardon & WK).
- We begin by reviewing the fundamentals of the HMC algorithm.

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
 - Domain Decomposition method (Luscher).
 - Mass Preconditioning (Hasenbuch).
 - Polynomial Filtering (Peardon & Sexton, Peardon & WK).
- We begin by reviewing the fundamentals of the HMC algorithm.

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
 - Domain Decomposition method (Luscher).
 - Mass Preconditioning (Hasenbuch).
 - Polynomial Filtering (Peardon & Sexton, Peardon & WK).
- We begin by reviewing the fundamentals of the HMC algorithm.

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
 - Domain Decomposition method (Luscher).
 - Mass Preconditioning (Hasenbuch).
 - Polynomial Filtering (Peardon & Sexton, Peardon & WK).
- We begin by reviewing the fundamentals of the HMC algorithm.

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
 - Domain Decomposition method (Luscher).
 - Mass Preconditioning (Hasenbuch).
 - Polynomial Filtering (Peardon & Sexton, Peardon & WK).
- We begin by reviewing the fundamentals of the HMC algorithm.

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
 - Domain Decomposition method (Luscher).
 - Mass Preconditioning (Hasenbuch).
 - Polynomial Filtering (Peardon & Sexton, Peardon & WK).
- We begin by reviewing the fundamentals of the HMC algorithm.

$$\mathcal{H}(P, U) = \sum_{x,\mu} \frac{1}{2} \operatorname{Tr} P_{\mu}(x)^{2} + S[U].$$

- The conjugate momenta $P_{\mu}(x)$ are drawn from a Gaussian distribution.
- In this way, the Hamiltonian \mathcal{H} is constructed so that after path integration the expectation values of observables are unaltered.
- Where are the fermions?

$$\mathcal{H}(P, U) = \sum_{x,\mu} \frac{1}{2} \operatorname{Tr} P_{\mu}(x)^2 + S[U].$$

- The conjugate momenta $P_{\mu}(x)$ are drawn from a Gaussian distribution.
- In this way, the Hamiltonian \mathcal{H} is constructed so that after path integration the expectation values of observables are unaltered.
- Where are the fermions?

$$\mathcal{H}(P, U) = \sum_{x,\mu} \frac{1}{2} \operatorname{Tr} P_{\mu}(x)^2 + S[U].$$

- The conjugate momenta $P_{\mu}(x)$ are drawn from a Gaussian distribution.
- In this way, the Hamiltonian \mathcal{H} is constructed so that after path integration the expectation values of observables are unaltered.
- Where are the fermions?

$$\mathcal{H}(P, U) = \sum_{x,\mu} \frac{1}{2} \operatorname{Tr} P_{\mu}(x)^{2} + S[U].$$

- The conjugate momenta $P_{\mu}(x)$ are drawn from a Gaussian distribution.
- In this way, the Hamiltonian \mathcal{H} is constructed so that after path integration the expectation values of observables are unaltered.
- Where are the fermions?

Fermion Determinant

• The fermion fields ψ and $\bar{\psi}$ are Grassmannian, hence to perform simulations we need to integrate them out. We have that

$$\det D_{\mathrm{w}} = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \ e^{-\int d^{4}x\bar{\psi}(x)D_{\mathrm{w}}\psi(x)}.$$

• Define the effective action as

$$S_{\rm eff}[U] = S_{\rm g}[U] - \ln \det D_{\rm w}[U].$$

 We can write the action for full QCD in terms of bosonic fields *φ* using the identity

$$\det M = \frac{1}{\det M^{-1}} = \int \mathcal{D}\phi^{\dagger} \mathcal{D}\phi \ e^{-\int d^4x \ \phi^{\dagger}(x)M^{-1}\phi(x)}.$$

Fermion Determinant

• The fermion fields ψ and $\bar{\psi}$ are Grassmannian, hence to perform simulations we need to integrate them out. We have that

$$\det D_{\mathbf{w}} = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \ e^{-\int d^4x \bar{\psi}(x)D_{\mathbf{w}}\psi(x)}.$$

• Define the effective action as

$$S_{\rm eff}[U] = S_{\rm g}[U] - \ln \det D_{\rm w}[U].$$

 We can write the action for full QCD in terms of bosonic fields *φ* using the identity

$$\det M = \frac{1}{\det M^{-1}} = \int \mathcal{D}\phi^{\dagger} \mathcal{D}\phi \ e^{-\int d^4x \ \phi^{\dagger}(x)M^{-1}\phi(x)}.$$

Fermion Determinant

• The fermion fields ψ and $\bar{\psi}$ are Grassmannian, hence to perform simulations we need to integrate them out. We have that

$$\det D_{\mathbf{w}} = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \ e^{-\int d^4x \bar{\psi}(x)D_{\mathbf{w}}\psi(x)}.$$

• Define the effective action as

$$S_{\rm eff}[U] = S_{\rm g}[U] - \ln \det D_{\rm w}[U].$$

 We can write the action for full QCD in terms of bosonic fields φ using the identity

$$\det M = \frac{1}{\det M^{-1}} = \int \mathcal{D}\phi^{\dagger} \mathcal{D}\phi \ e^{-\int d^4x \ \phi^{\dagger}(x)M^{-1}\phi(x)}.$$

- The convergence of the Gaussian integral in ϕ is only guaranteed for Hermitian positive definite (Hpd) *M*.
- For Wilson-type fermions, *D*_w is a complex matrix, but det *D*_w is real and positive.
- So, we can define $M = D_w^{\dagger} D_w$, and M will be Hpd with det $M = \det D_f^2$.
- Then the *pseudofermionic* effective action for full QCD with two flavours of degenerate quarks is

$$S_{\rm eff}[U] = S_{\rm g}[U] + \int d^4x \, \phi^{\dagger}(x) M^{-1}[U] \phi(x).$$

- The convergence of the Gaussian integral in ϕ is only guaranteed for Hermitian positive definite (Hpd) *M*.
- For Wilson-type fermions, *D*_w is a complex matrix, but det *D*_w is real and positive.
- So, we can define $M = D_w^{\dagger} D_w$, and M will be Hpd with det $M = \det D_f^2$.
- Then the *pseudofermionic* effective action for full QCD with two flavours of degenerate quarks is

$$S_{\rm eff}[U] = S_{\rm g}[U] + \int d^4x \, \phi^{\dagger}(x) M^{-1}[U] \phi(x).$$

- The convergence of the Gaussian integral in *φ* is only guaranteed for Hermitian positive definite (Hpd) *M*.
- For Wilson-type fermions, *D*_w is a complex matrix, but det *D*_w is real and positive.
- So, we can define $M = D_w^{\dagger} D_w$, and M will be Hpd with det $M = \det D_f^2$.
- Then the *pseudofermionic* effective action for full QCD with two flavours of degenerate quarks is

$$S_{\rm eff}[U] = S_{\rm g}[U] + \int d^4x \, \phi^{\dagger}(x) M^{-1}[U] \phi(x).$$

- The convergence of the Gaussian integral in *φ* is only guaranteed for Hermitian positive definite (Hpd) *M*.
- For Wilson-type fermions, *D*_w is a complex matrix, but det *D*_w is real and positive.
- So, we can define $M = D_w^{\dagger} D_w$, and M will be Hpd with det $M = \det D_f^2$.
- Then the *pseudofermionic* effective action for full QCD with two flavours of degenerate quarks is

$$S_{\rm eff}[U] = S_{\rm g}[U] + \int d^4x \, \phi^{\dagger}(x) M^{-1}[U] \phi(x).$$

- The convergence of the Gaussian integral in *φ* is only guaranteed for Hermitian positive definite (Hpd) *M*.
- For Wilson-type fermions, *D*_w is a complex matrix, but det *D*_w is real and positive.
- So, we can define $M = D_w^{\dagger} D_w$, and M will be Hpd with det $M = \det D_f^2$.
- Then the *pseudofermionic* effective action for full QCD with two flavours of degenerate quarks is

$$S_{\rm eff}[U] = S_{\rm g}[U] + \int d^4x \, \phi^{\dagger}(x) M^{-1}[U] \phi(x).$$

- The Hybrid Monte Carlo algorithm creates a Markov chain by alternately performing two steps:
 - A Molecular Dynamics (MD) integration to generate a new configuration $(U \rightarrow U', P \rightarrow P')$.
 - A Metropolis accept/reject step on the proposed configuration (*U*', *P*').
- The accept/reject step is based upon the change in the Hamiltonian

$$\rho(U \to U', P \to P') \propto e^{-\Delta \mathcal{H}}.$$

- The Hybrid Monte Carlo algorithm creates a Markov chain by alternately performing two steps:
 - A Molecular Dynamics (MD) integration to generate a new configuration (*U* → *U*′, *P* → *P*′).
 - A Metropolis accept/reject step on the proposed configuration (*U*', *P*').
- The accept/reject step is based upon the change in the Hamiltonian

$$\rho(U \to U', P \to P') \propto e^{-\Delta \mathcal{H}}.$$

- The Hybrid Monte Carlo algorithm creates a Markov chain by alternately performing two steps:
 - A Molecular Dynamics (MD) integration to generate a new configuration $(U \rightarrow U', P \rightarrow P')$.
 - A Metropolis accept/reject step on the proposed configuration (*U*', *P*').
- The accept/reject step is based upon the change in the Hamiltonian

$$\rho(U \to U', P \to P') \propto e^{-\Delta \mathcal{H}}.$$

- The Hybrid Monte Carlo algorithm creates a Markov chain by alternately performing two steps:
 - A Molecular Dynamics (MD) integration to generate a new configuration $(U \rightarrow U', P \rightarrow P')$.
 - A Metropolis accept/reject step on the proposed configuration (*U*', *P*').
- The accept/reject step is based upon the change in the Hamiltonian

$$\rho(U \to U', P \to P') \propto e^{-\Delta \mathcal{H}}.$$

- The Hybrid Monte Carlo algorithm creates a Markov chain by alternately performing two steps:
 - A Molecular Dynamics (MD) integration to generate a new configuration $(U \rightarrow U', P \rightarrow P')$.
 - A Metropolis accept/reject step on the proposed configuration (*U*', *P*').
- The accept/reject step is based upon the change in the Hamiltonian

$$\rho(U \to U', P \to P') \propto e^{-\Delta \mathcal{H}}.$$

Molecular Dynamics

• Start by requiring that the Hamiltonian be conserved along the trajectory

$$\frac{d\mathcal{H}}{d\tau} = 0.$$

• Then derive the discretised equations of motion,

$$U_{\mu}(x,\tau + \Delta \tau) = U_{\mu}(x,\tau) \exp\left(i\Delta\tau P_{\mu}(x,\tau)\right),$$
$$P_{\mu}(x,\tau + \Delta\tau) = P_{\mu}(x,\tau) - U_{\mu}(x,\tau) \frac{\delta S}{\delta U_{\mu}(x,\tau)}.$$

• The derivative of the action with respect to the gauge fields is known as the *force term*,

$$F_{\mu}(x) = \frac{\delta S}{\delta U_{\mu}(x)}.$$

Molecular Dynamics

• Start by requiring that the Hamiltonian be conserved along the trajectory

$$\frac{d\mathcal{H}}{d\tau} = 0.$$

• Then derive the discretised equations of motion,

$$U_{\mu}(x,\tau + \Delta \tau) = U_{\mu}(x,\tau) \exp\left(i\Delta\tau P_{\mu}(x,\tau)\right),$$
$$P_{\mu}(x,\tau + \Delta \tau) = P_{\mu}(x,\tau) - U_{\mu}(x,\tau) \frac{\delta S}{\delta U_{\mu}(x,\tau)}.$$

• The derivative of the action with respect to the gauge fields is known as the *force term*,

$$F_{\mu}(x) = \frac{\delta S}{\delta U_{\mu}(x)}.$$

Molecular Dynamics

• Start by requiring that the Hamiltonian be conserved along the trajectory

$$\frac{d\mathcal{H}}{d\tau} = 0.$$

• Then derive the discretised equations of motion,

$$U_{\mu}(x,\tau + \Delta \tau) = U_{\mu}(x,\tau) \exp\left(i\Delta\tau P_{\mu}(x,\tau)\right),$$
$$P_{\mu}(x,\tau + \Delta \tau) = P_{\mu}(x,\tau) - U_{\mu}(x,\tau) \frac{\delta S}{\delta U_{\mu}(x,\tau)}.$$

• The derivative of the action with respect to the gauge fields is known as the *force term*,

$$F_{\mu}(x) = rac{\delta S}{\delta U_{\mu}(x)}.$$

• Lets split our action into its gauge field and pseudofermion field components, $S = S_g + S_{pf}$, where

$$S_{\rm g} = \beta \sum_{x,\mu < \nu} \frac{1}{3} \operatorname{Re} \operatorname{Tr}(1 - U_{\mu\nu}(x)),$$

$$S_{\rm pf} = \sum_{x} \phi^{\dagger}(x) (D_{\rm w}^{\dagger} D_{\rm w})^{-1} \phi(x),$$

and $D_{\rm W}$ is the Wilson fermion matrix.

- Each of the terms in the action induces a force term.
- The size of the force term is the dominant factor in determining what step size Δτ is need for a given acceptance probability ρ_{acc}.
- As the quark mass becomes lighter, the size of the pseudofermion force term increases.

• Lets split our action into its gauge field and pseudofermion field components, $S = S_g + S_{pf}$, where

$$S_{g} = \beta \sum_{x,\mu < \nu} \frac{1}{3} \operatorname{Re} \operatorname{Tr}(1 - U_{\mu\nu}(x)),$$

$$S_{\rm pf} = \sum_{x} \phi^{\dagger}(x) (D_{\rm w}^{\dagger} D_{\rm w})^{-1} \phi(x),$$

and D_{w} is the Wilson fermion matrix.

- Each of the terms in the action induces a force term.
- The size of the force term is the dominant factor in determining what step size Δτ is need for a given acceptance probability ρ_{acc}.
- As the quark mass becomes lighter, the size of the pseudofermion force term increases.

• Lets split our action into its gauge field and pseudofermion field components, $S = S_g + S_{pf}$, where

$$S_{\rm g} = \beta \sum_{x,\mu < \nu} \frac{1}{3} \operatorname{Re} \operatorname{Tr}(1 - U_{\mu\nu}(x)),$$

$$S_{\rm pf} = \sum_{x} \phi^{\dagger}(x) (D_{\rm w}^{\dagger} D_{\rm w})^{-1} \phi(x),$$

and $D_{\rm w}$ is the Wilson fermion matrix.

- Each of the terms in the action induces a force term.
- The size of the force term is the dominant factor in determining what step size $\Delta \tau$ is need for a given acceptance probability ρ_{acc} .
- As the quark mass becomes lighter, the size of the pseudofermion force term increases.

• Lets split our action into its gauge field and pseudofermion field components, $S = S_g + S_{pf}$, where

$$S_{\rm g} = \beta \sum_{x,\mu < \nu} \frac{1}{3} \operatorname{Re} \operatorname{Tr}(1 - U_{\mu\nu}(x)),$$

$$S_{\rm pf} = \sum_{x} \phi^{\mathsf{T}}(x) (D_{\rm w}^{\mathsf{T}} D_{\rm w})^{-1} \phi(x),$$

and D_w is the Wilson fermion matrix.

- Each of the terms in the action induces a force term.
- The size of the force term is the dominant factor in determining what step size Δτ is need for a given acceptance probability ρ_{acc}.
- As the quark mass becomes lighter, the size of the pseudofermion force term increases.

Leapfrog Integration

٦

• The MD equations of motion induce corresponding time evolution operators,

$$W_T(\Delta \tau): \{U(\tau), P(\tau)\} \rightarrow \{U(\tau + \Delta \tau), P(\tau)\},$$

 $V_{\mathcal{S}}(\Delta \tau) : \{ U(\tau), P(\tau) \} \to \{ U(\tau), P(\tau + \Delta \tau) \}.$

• The simplest MD integration scheme is the leapfrog

$$V(\Delta \tau) = V_S(\frac{\Delta \tau}{2}) V_T(\Delta \tau) V_S(\frac{\Delta \tau}{2}).$$

 MD Integration trajectories typically have unit length, and hence as the step size Δτ decreases, the number of integration steps increases.

Leapfrog Integration

• The MD equations of motion induce corresponding time evolution operators,

$$V_T(\Delta \tau): \{U(\tau), P(\tau)\} \to \{U(\tau + \Delta \tau), P(\tau)\},\$$

$$V_{\mathcal{S}}(\Delta \tau): \{U(\tau), P(\tau)\} \rightarrow \{U(\tau), P(\tau + \Delta \tau)\}.$$

• The simplest MD integration scheme is the leapfrog

$$V(\Delta au) = V_S(rac{\Delta au}{2})V_T(\Delta au)V_S(rac{\Delta au}{2}).$$

 MD Integration trajectories typically have unit length, and hence as the step size Δτ decreases, the number of integration steps increases.

Leapfrog Integration

• The MD equations of motion induce corresponding time evolution operators,

$$V_T(\Delta \tau): \{U(\tau), P(\tau)\} \to \{U(\tau + \Delta \tau), P(\tau)\},\$$

$$V_{\mathcal{S}}(\Delta \tau): \{U(\tau), P(\tau)\} \rightarrow \{U(\tau), P(\tau + \Delta \tau)\}.$$

• The simplest MD integration scheme is the leapfrog

$$V(\Delta au) = V_S(rac{\Delta au}{2})V_T(\Delta au)V_S(rac{\Delta au}{2}).$$

 MD Integration trajectories typically have unit length, and hence as the step size Δτ decreases, the number of integration steps increases.
Pseudofermion Force

• Each time we act with $V_S(\Delta \tau)$ we need to evaluate the pseudofermion force term,

$$F_{\rm pf} = rac{\delta S_{\rm pf}}{\delta U}.$$

- This involves inverting the fermion matrix, and hence is expensive!
- However, for split actions *S* = *S*₁ + *S*₂ we can use a multiple time scale integration scheme (*nested leapfrog*),

$$V(\Delta \tau) = V_2(\frac{\Delta \tau}{2}) \left[V_1(\frac{\Delta \tau}{m}) \right]^m V_2(\frac{\Delta \tau}{2}),$$

$$V_1(\Delta \tau) = V_{S_1}(\frac{\Delta \tau}{2}) V_T(\Delta \tau) V_{S_1}(\frac{\Delta \tau}{2}), \quad V_2 = V_{S_2}(\Delta \tau).$$

Pseudofermion Force

• Each time we act with $V_S(\Delta \tau)$ we need to evaluate the pseudofermion force term,

$$F_{\rm pf} = rac{\delta S_{\rm pf}}{\delta U}.$$

- This involves inverting the fermion matrix, and hence is expensive!
- However, for split actions *S* = *S*₁ + *S*₂ we can use a multiple time scale integration scheme (*nested leapfrog*),

$$V(\Delta \tau) = V_2(\frac{\Delta \tau}{2}) \left[V_1(\frac{\Delta \tau}{m}) \right]^m V_2(\frac{\Delta \tau}{2}),$$

$$V_1(\Delta \tau) = V_{S_1}(\frac{\Delta \tau}{2}) V_T(\Delta \tau) V_{S_1}(\frac{\Delta \tau}{2}), \quad V_2 = V_{S_2}(\Delta \tau).$$

Pseudofermion Force

• Each time we act with $V_S(\Delta \tau)$ we need to evaluate the pseudofermion force term,

$$F_{\rm pf} = rac{\delta S_{\rm pf}}{\delta U}.$$

- This involves inverting the fermion matrix, and hence is expensive!
- However, for split actions *S* = *S*₁ + *S*₂ we can use a multiple time scale integration scheme (*nested leapfrog*),

$$V(\Delta \tau) = V_2(\frac{\Delta \tau}{2}) \left[V_1(\frac{\Delta \tau}{m}) \right]^m V_2(\frac{\Delta \tau}{2}),$$

$$V_1(\Delta \tau) = V_{S_1}(\frac{\Delta \tau}{2}) V_T(\Delta \tau) V_{S_1}(\frac{\Delta \tau}{2}), \quad V_2 = V_{S_2}(\Delta \tau).$$

- Multiple time scale integration is effective when the force term *F*₁ due to *S*₁ is cheap to evaluate compared to *F*₂ (that of *S*₂).
- However, as the step-size for *S*₂ is larger, we also require that the size of the force term for *S*₂ is relatively small compared to that of *S*₁.
- The gauge force F_g is cheap compared to the pseudofermion force F_{pf} , and at heavy quark masses $F_g > F_{pf}$, but at light quark masses the UV fluctuations in the pseudo fermion force become too large for multiple time scales to be effective.
- This is where polynomial filtering steps in.

- Multiple time scale integration is effective when the force term *F*₁ due to *S*₁ is cheap to evaluate compared to *F*₂ (that of *S*₂).
- However, as the step-size for *S*₂ is larger, we also require that the size of the force term for *S*₂ is relatively small compared to that of *S*₁.
- The gauge force F_g is cheap compared to the pseudofermion force F_{pf} , and at heavy quark masses $F_g > F_{pf}$, but at light quark masses the UV fluctuations in the pseudo fermion force become too large for multiple time scales to be effective.
- This is where polynomial filtering steps in.

- Multiple time scale integration is effective when the force term *F*₁ due to *S*₁ is cheap to evaluate compared to *F*₂ (that of *S*₂).
- However, as the step-size for *S*₂ is larger, we also require that the size of the force term for *S*₂ is relatively small compared to that of *S*₁.
- The gauge force F_g is cheap compared to the pseudofermion force F_{pf} , and at heavy quark masses $F_g > F_{pf}$, but at light quark masses the UV fluctuations in the pseudo fermion force become too large for multiple time scales to be effective.
- This is where polynomial filtering steps in.

- Multiple time scale integration is effective when the force term *F*₁ due to *S*₁ is cheap to evaluate compared to *F*₂ (that of *S*₂).
- However, as the step-size for *S*₂ is larger, we also require that the size of the force term for *S*₂ is relatively small compared to that of *S*₁.
- The gauge force F_g is cheap compared to the pseudofermion force F_{pf} , and at heavy quark masses $F_g > F_{pf}$, but at light quark masses the UV fluctuations in the pseudo fermion force become too large for multiple time scales to be effective.
- This is where polynomial filtering steps in.

• We can use a polynomial filter $\mathcal{P} = \mathcal{P}(M)$ to separate the ultraviolet and infrared physics in the pseudofermion force,

$$S_{
m poly} = \chi^{\dagger} \mathcal{P} \chi,$$

 $S_{
m pf} = \phi^{\dagger} (M \mathcal{P})^{-1} \phi$

- Recall $M = D_{w}^{\dagger}D_{w}$ is Hermitian positive definite.
- As *S*_{poly} is fast to evaluate compared to *S*_{pf} we split the action in the following way,

$$S_1 = S_g + S_{\text{poly}}, \quad S_2 = S_{\text{pf}}.$$

• If $\mathcal{P} \approx 1/z$ then it will capture the short-distance physics in S_{poly} and act as a UV filter in S_{pf} .

• We can use a polynomial filter $\mathcal{P} = \mathcal{P}(M)$ to separate the ultraviolet and infrared physics in the pseudofermion force,

$$S_{\text{poly}} = \chi^{\dagger} \mathcal{P} \chi,$$

 $S_{\text{pf}} = \phi^{\dagger} (M \mathcal{P})^{-1} \phi$

- Recall $M = D_w^{\dagger} D_w$ is Hermitian positive definite.
- As *S*_{poly} is fast to evaluate compared to *S*_{pf} we split the action in the following way,

$$S_1 = S_g + S_{\text{poly}}, \quad S_2 = S_{\text{pf}}.$$

 If *P* ≈ 1/z then it will capture the short-distance physics in *S*_{poly} and act as a UV filter in *S*_{pf}.

• We can use a polynomial filter $\mathcal{P} = \mathcal{P}(M)$ to separate the ultraviolet and infrared physics in the pseudofermion force,

$$S_{\text{poly}} = \chi^{\dagger} \mathcal{P} \chi,$$

 $S_{\text{pf}} = \phi^{\dagger} (M \mathcal{P})^{-1} \phi$

- Recall $M = D_w^{\dagger} D_w$ is Hermitian positive definite.
- As *S*_{poly} is fast to evaluate compared to *S*_{pf} we split the action in the following way,

$$S_1 = S_g + S_{\text{poly}}, \quad S_2 = S_{\text{pf}}.$$

 If *P* ≈ 1/z then it will capture the short-distance physics in S_{poly} and act as a UV filter in S_{pf}.

• We can use a polynomial filter $\mathcal{P} = \mathcal{P}(M)$ to separate the ultraviolet and infrared physics in the pseudofermion force,

$$S_{
m poly} = \chi^{\dagger} \mathcal{P} \chi,$$

 $S_{
m pf} = \phi^{\dagger} (M \mathcal{P})^{-1} \phi$

- Recall $M = D_w^{\dagger} D_w$ is Hermitian positive definite.
- As *S*_{poly} is fast to evaluate compared to *S*_{pf} we split the action in the following way,

$$S_1 = S_g + S_{\text{poly}}, \quad S_2 = S_{\text{pf}}.$$

• If $\mathcal{P} \approx 1/z$ then it will capture the short-distance physics in S_{poly} and act as a UV filter in S_{pf} .

- Note that the fermionic determinant is unchanged by the introduction of the polynomial filter.
- To see this we note that

$$\int \mathcal{D}\phi^{\dagger} \mathcal{D}\phi \mathcal{D}\chi^{\dagger} \mathcal{D}\chi \ e^{-\int d^{4}x \ \chi^{\dagger} \mathcal{P}\chi + \phi^{\dagger}(x)(M\mathcal{P})^{-1}\phi(x)}$$
$$= \frac{\det \mathcal{P}}{\det(M\mathcal{P})} = \frac{1}{\det M^{-1}} = \det M$$

- In the limit as the order of the polynomial $n \to \infty$ we have $M\mathcal{P} \to 1$ and $\mathcal{P}(M) \to M^{-1}$.
- In this way the polynomial term can reproduce as much or as little of the pseudofermion term as we want.

- Note that the fermionic determinant is unchanged by the introduction of the polynomial filter.
- To see this we note that

$$\int \mathcal{D}\phi^{\dagger} \mathcal{D}\phi \mathcal{D}\chi^{\dagger} \mathcal{D}\chi \ e^{-\int d^{4}x \ \chi^{\dagger} \mathcal{P}\chi + \phi^{\dagger}(x)(M\mathcal{P})^{-1}\phi(x)}$$
$$= \frac{\det \mathcal{P}}{\det(M\mathcal{P})} = \frac{1}{\det M^{-1}} = \det M$$

- In the limit as the order of the polynomial $n \to \infty$ we have $M\mathcal{P} \to 1$ and $\mathcal{P}(M) \to M^{-1}$.
- In this way the polynomial term can reproduce as much or as little of the pseudofermion term as we want.

- Note that the fermionic determinant is unchanged by the introduction of the polynomial filter.
- To see this we note that

$$\int \mathcal{D}\phi^{\dagger} \mathcal{D}\phi \mathcal{D}\chi^{\dagger} \mathcal{D}\chi \ e^{-\int d^{4}x \ \chi^{\dagger} \mathcal{P}\chi + \phi^{\dagger}(x)(M\mathcal{P})^{-1}\phi(x)}$$
$$= \frac{\det \mathcal{P}}{\det(M\mathcal{P})} = \frac{1}{\det M^{-1}} = \det M$$

- In the limit as the order of the polynomial $n \to \infty$ we have $M\mathcal{P} \to 1$ and $\mathcal{P}(M) \to M^{-1}$.
- In this way the polynomial term can reproduce as much or as little of the pseudofermion term as we want.

- Note that the fermionic determinant is unchanged by the introduction of the polynomial filter.
- To see this we note that

$$\int \mathcal{D}\phi^{\dagger} \mathcal{D}\phi \mathcal{D}\chi^{\dagger} \mathcal{D}\chi \ e^{-\int d^{4}x \ \chi^{\dagger} \mathcal{P}\chi + \phi^{\dagger}(x)(M\mathcal{P})^{-1}\phi(x)}$$
$$= \frac{\det \mathcal{P}}{\det(M\mathcal{P})} = \frac{1}{\det M^{-1}} = \det M$$

- In the limit as the order of the polynomial $n \to \infty$ we have $M\mathcal{P} \to 1$ and $\mathcal{P}(M) \to M^{-1}$.
- In this way the polynomial term can reproduce as much or as little of the pseudofermion term as we want.

Chebyshev Filter

• An effective UV filter is the *n*th order Hermitian Chebyshev polynomial approximation to 1/*z*,

$$\mathcal{P}_n(z) = a_n \prod_{k=1}^n (z - z_k) \approx \frac{1}{z},$$

where we set $\theta_k = \frac{2\pi k}{n+1}$ to obtain the roots

$$z_k = \lambda [\frac{1}{2}(1+\epsilon)(1-\cos\theta_k) - i\sqrt{\epsilon}\sin\theta_k].$$

• The normalisation is defined by $z_0 = \frac{1}{2}(1 + \epsilon)$, with

$$a_n = rac{1}{z_0 \prod_{k=1}^n (z_0 - z_k)}.$$

• The approximation is good between [*c*, 1], so we rescale with

$$\lambda = 1 + 8\kappa.$$

Chebyshev Filter

• An effective UV filter is the *n*th order Hermitian Chebyshev polynomial approximation to 1/*z*,

$$\mathcal{P}_n(z) = a_n \prod_{k=1}^n (z - z_k) \approx \frac{1}{z},$$

where we set $\theta_k = \frac{2\pi k}{n+1}$ to obtain the roots

$$z_k = \lambda [\frac{1}{2}(1+\epsilon)(1-\cos\theta_k) - i\sqrt{\epsilon}\sin\theta_k].$$

• The normalisation is defined by $z_0 = \frac{1}{2}(1 + \epsilon)$, with

$$a_n = \frac{1}{z_0 \prod_{k=1}^n (z_0 - z_k)}.$$

• The approximation is good between [*e*, 1], so we rescale with

$$\lambda = 1 + 8\kappa.$$

Chebyshev Filter

• An effective UV filter is the *n*th order Hermitian Chebyshev polynomial approximation to 1/*z*,

$$\mathcal{P}_n(z) = a_n \prod_{k=1}^n (z - z_k) \approx \frac{1}{z},$$

where we set $\theta_k = \frac{2\pi k}{n+1}$ to obtain the roots

$$z_k = \lambda [\frac{1}{2}(1+\epsilon)(1-\cos\theta_k) - i\sqrt{\epsilon}\sin\theta_k].$$

• The normalisation is defined by $z_0 = \frac{1}{2}(1 + \epsilon)$, with

$$a_n = \frac{1}{z_0 \prod_{k=1}^n (z_0 - z_k)}.$$

• The approximation is good between [*ε*, 1], so we rescale with

$$\lambda = 1 + 8\kappa.$$

Chebyshev Roots

Chebyshev Roots

$$S_1 = S_g \qquad S_2 = \chi^{\dagger} \mathcal{P}_m \chi, \\ S_3 = \chi^{\dagger} \mathcal{P}_{m|n} \chi, \quad S_4 = \phi^{\dagger} (M \mathcal{P}_n)^{-1} \phi.$$

- \mathcal{P}_n denotes the Chebyshev polynomial of order *n*.
- $\mathcal{P}_{m|n}$ is defined so that $\mathcal{P}_n = \mathcal{P}_m \mathcal{P}_{m|n}$.
- This allows us to perform fermion matrix inversions even less frequently.
- This may(?) be more efficient than a single filter algorithm.
- Note: filter implementation makes use of multi-shift linear solvers for efficiency.

$$S_1 = S_g \qquad S_2 = \chi^{\dagger} \mathcal{P}_m \chi, S_3 = \chi^{\dagger} \mathcal{P}_{m|n} \chi, \quad S_4 = \phi^{\dagger} (M \mathcal{P}_n)^{-1} \phi.$$

- \mathcal{P}_n denotes the Chebyshev polynomial of order *n*.
- $\mathcal{P}_{m|n}$ is defined so that $\mathcal{P}_n = \mathcal{P}_m \mathcal{P}_{m|n}$.
- This allows us to perform fermion matrix inversions even less frequently.
- This may(?) be more efficient than a single filter algorithm.
- Note: filter implementation makes use of multi-shift linear solvers for efficiency.

$$S_1 = S_g \qquad S_2 = \chi^{\dagger} \mathcal{P}_m \chi, S_3 = \chi^{\dagger} \mathcal{P}_{m|n} \chi, \quad S_4 = \phi^{\dagger} (M \mathcal{P}_n)^{-1} \phi.$$

- \mathcal{P}_n denotes the Chebyshev polynomial of order *n*.
- $\mathcal{P}_{m|n}$ is defined so that $\mathcal{P}_n = \mathcal{P}_m \mathcal{P}_{m|n}$.
- This allows us to perform fermion matrix inversions even less frequently.
- This may(?) be more efficient than a single filter algorithm.
- Note: filter implementation makes use of multi-shift linear solvers for efficiency.

$$S_1 = S_g \qquad S_2 = \chi^{\dagger} \mathcal{P}_m \chi, S_3 = \chi^{\dagger} \mathcal{P}_{m|n} \chi, \quad S_4 = \phi^{\dagger} (M \mathcal{P}_n)^{-1} \phi.$$

- \mathcal{P}_n denotes the Chebyshev polynomial of order *n*.
- $\mathcal{P}_{m|n}$ is defined so that $\mathcal{P}_n = \mathcal{P}_m \mathcal{P}_{m|n}$.
- This allows us to perform fermion matrix inversions even less frequently.
- This may(?) be more efficient than a single filter algorithm.
- Note: filter implementation makes use of multi-shift linear solvers for efficiency.

$$S_1 = S_g \qquad S_2 = \chi^{\dagger} \mathcal{P}_m \chi, S_3 = \chi^{\dagger} \mathcal{P}_{m|n} \chi, \quad S_4 = \phi^{\dagger} (M \mathcal{P}_n)^{-1} \phi.$$

- \mathcal{P}_n denotes the Chebyshev polynomial of order *n*.
- $\mathcal{P}_{m|n}$ is defined so that $\mathcal{P}_n = \mathcal{P}_m \mathcal{P}_{m|n}$.
- This allows us to perform fermion matrix inversions even less frequently.
- This may(?) be more efficient than a single filter algorithm.
- Note: filter implementation makes use of multi-shift linear solvers for efficiency.

$$S_1 = S_g \qquad S_2 = \chi^{\dagger} \mathcal{P}_m \chi, S_3 = \chi^{\dagger} \mathcal{P}_{m|n} \chi, \quad S_4 = \phi^{\dagger} (M \mathcal{P}_n)^{-1} \phi.$$

- \mathcal{P}_n denotes the Chebyshev polynomial of order *n*.
- $\mathcal{P}_{m|n}$ is defined so that $\mathcal{P}_n = \mathcal{P}_m \mathcal{P}_{m|n}$.
- This allows us to perform fermion matrix inversions even less frequently.
- This may(?) be more efficient than a single filter algorithm.
- Note: filter implementation makes use of multi-shift linear solvers for efficiency.

- With a second filter, we have four different scales, five (or more) if we are doing a 2+1 flavour simulation.
- Nested leapfrog is too cumbersome for fine tuning these scales.
- We make use of the fact that $V_i = V_{S_i}$ all commute to introduce a generalised integration scheme.
- If *N_i* is the number of integration steps per trajectory, then nested leapfrog requires

$$N_i | N_{i-1} \forall i$$

• The new integration scheme requires only that

- With a second filter, we have four different scales, five (or more) if we are doing a 2+1 flavour simulation.
- Nested leapfrog is too cumbersome for fine tuning these scales.
- We make use of the fact that $V_i = V_{S_i}$ all commute to introduce a generalised integration scheme.
- If *N_i* is the number of integration steps per trajectory, then nested leapfrog requires

$$N_i | N_{i-1} \forall i$$

• The new integration scheme requires only that

- With a second filter, we have four different scales, five (or more) if we are doing a 2+1 flavour simulation.
- Nested leapfrog is too cumbersome for fine tuning these scales.
- We make use of the fact that $V_i = V_{S_i}$ all commute to introduce a generalised integration scheme.
- If *N_i* is the number of integration steps per trajectory, then nested leapfrog requires

$$N_i | N_{i-1} \forall i$$

• The new integration scheme requires only that

- With a second filter, we have four different scales, five (or more) if we are doing a 2+1 flavour simulation.
- Nested leapfrog is too cumbersome for fine tuning these scales.
- We make use of the fact that $V_i = V_{S_i}$ all commute to introduce a generalised integration scheme.
- If *N_i* is the number of integration steps per trajectory, then nested leapfrog requires

$$N_i | N_{i-1} \forall i$$

• The new integration scheme requires only that

- With a second filter, we have four different scales, five (or more) if we are doing a 2+1 flavour simulation.
- Nested leapfrog is too cumbersome for fine tuning these scales.
- We make use of the fact that $V_i = V_{S_i}$ all commute to introduce a generalised integration scheme.
- If *N_i* is the number of integration steps per trajectory, then nested leapfrog requires

$$N_i | N_{i-1} \forall i$$

• The new integration scheme requires only that

Generalised Leapfrog

• Set $N = N_1$ and set $n_i = N_1/N_i$

• The generalised leapfrog algorithm is then:

1 Perform an initial half-step $V_i(\frac{1}{2}\Delta \tau_i)$ updating *P* for all *i*. **2** Loop over j = 1 to N - 1

Apply V_T(Δτ) to update U.

If $\{0 \equiv j \mod N_i\}$ apply $V_i(\Delta \tau_i)$ to update P

• Apply $V_T(\Delta \tau)$ to update U.

① Perform a final half-step $V_i(\frac{1}{2}\Delta\tau_i)$ updating *P* for all *i*.

- Can show using BCH that it has errors of $\mathcal{O}[(\Delta \tau)^3]$.
- Reduces to nested leapfrog for $N_i | N_{i-1}$.

- Set $N = N_1$ and set $n_i = N_1/N_i$
- The generalised leapfrog algorithm is then:
 - Perform an initial half-step V_i(¹/₂Δτ_i) updating *P* for all *i*.
 Loop over *j* = 1 to *N* − 1
 - Apply $V_T(\Delta \tau)$ to update U.
 - If $\{0 \equiv j \mod N_i\}$ apply $V_i(\Delta \tau_i)$ to update P
 - **3** Apply $V_T(\Delta \tau)$ to update *U*.
 - 4 Perform a final half-step $V_i(\frac{1}{2}\Delta\tau_i)$ updating *P* for all *i*.
- Can show using BCH that it has errors of $\mathcal{O}[(\Delta \tau)^3]$.
- Reduces to nested leapfrog for $N_i | N_{i-1}$.

- Set $N = N_1$ and set $n_i = N_1/N_i$
- The generalised leapfrog algorithm is then:
 - 1 Perform an initial half-step $V_i(\frac{1}{2}\Delta\tau_i)$ updating *P* for all *i*. 2 Loop over j = 1 to N - 1
 - Apply $V_T(\Delta \tau)$ to update *U*.
 - If $\{0 \equiv j \mod N_i\}$ apply $V_i(\Delta \tau_i)$ to update P
 - **3** Apply $V_T(\Delta \tau)$ to update *U*.
 - 4 Perform a final half-step $V_i(\frac{1}{2}\Delta\tau_i)$ updating *P* for all *i*.
- Can show using BCH that it has errors of $\mathcal{O}[(\Delta \tau)^3]$.
- Reduces to nested leapfrog for $N_i | N_{i-1}$.

- Set $N = N_1$ and set $n_i = N_1/N_i$
- The generalised leapfrog algorithm is then:
 - **1** Perform an initial half-step $V_i(\frac{1}{2}\Delta\tau_i)$ updating *P* for all *i*.
 - **2** Loop over j = 1 to N 1
 - Apply $V_T(\Delta \tau)$ to update U.
 - If $\{0 \equiv j \mod N_i\}$ apply $V_i(\Delta \tau_i)$ to update *P*
 - **3** Apply $V_T(\Delta \tau)$ to update *U*.
 - 4 Perform a final half-step $V_i(\frac{1}{2}\Delta\tau_i)$ updating *P* for all *i*.
- Can show using BCH that it has errors of $\mathcal{O}[(\Delta \tau)^3]$.
- Reduces to nested leapfrog for $N_i | N_{i-1}$.

- Set $N = N_1$ and set $n_i = N_1/N_i$
- The generalised leapfrog algorithm is then:
 - **1** Perform an initial half-step $V_i(\frac{1}{2}\Delta\tau_i)$ updating *P* for all *i*.
 - **2** Loop over j = 1 to N 1
 - Apply $V_T(\Delta \tau)$ to update U.
 - If $\{0 \equiv j \mod N_i\}$ apply $V_i(\Delta \tau_i)$ to update *P*
 - **3** Apply $V_T(\Delta \tau)$ to update *U*.
 - 4 Perform a final half-step $V_i(\frac{1}{2}\Delta \tau_i)$ updating *P* for all *i*.
- Can show using BCH that it has errors of $\mathcal{O}[(\Delta \tau)^3]$.
- Reduces to nested leapfrog for $N_i | N_{i-1}$.
- Set $N = N_1$ and set $n_i = N_1/N_i$
- The generalised leapfrog algorithm is then:
 - **1** Perform an initial half-step $V_i(\frac{1}{2}\Delta\tau_i)$ updating *P* for all *i*.
 - **2** Loop over j = 1 to N 1
 - Apply $V_T(\Delta \tau)$ to update U.
 - If $\{0 \equiv j \mod N_i\}$ apply $V_i(\Delta \tau_i)$ to update *P*
 - **3** Apply $V_T(\Delta \tau)$ to update *U*.
 - 4 Perform a final half-step $V_i(\frac{1}{2}\Delta \tau_i)$ updating *P* for all *i*.
- Can show using BCH that it has errors of $\mathcal{O}[(\Delta \tau)^3]$.
- Reduces to nested leapfrog for $N_i | N_{i-1}$.

- Set $N = N_1$ and set $n_i = N_1/N_i$
- The generalised leapfrog algorithm is then:
 - **1** Perform an initial half-step $V_i(\frac{1}{2}\Delta\tau_i)$ updating *P* for all *i*.
 - **2** Loop over j = 1 to N 1
 - Apply $V_T(\Delta \tau)$ to update U.
 - If $\{0 \equiv j \mod N_i\}$ apply $V_i(\Delta \tau_i)$ to update *P*
 - **3** Apply $V_T(\Delta \tau)$ to update *U*.
 - 4 Perform a final half-step $V_i(\frac{1}{2}\Delta \tau_i)$ updating *P* for all *i*.
- Can show using BCH that it has errors of $\mathcal{O}[(\Delta \tau)^3]$.
- Reduces to nested leapfrog for $N_i | N_{i-1}$.

- Set $N = N_1$ and set $n_i = N_1/N_i$
- The generalised leapfrog algorithm is then:
 - **1** Perform an initial half-step $V_i(\frac{1}{2}\Delta\tau_i)$ updating *P* for all *i*.
 - **2** Loop over j = 1 to N 1
 - Apply $V_T(\Delta \tau)$ to update U.
 - If $\{0 \equiv j \mod N_i\}$ apply $V_i(\Delta \tau_i)$ to update *P*
 - **3** Apply $V_T(\Delta \tau)$ to update *U*.
 - 4 Perform a final half-step $V_i(\frac{1}{2}\Delta\tau_i)$ updating *P* for all *i*.
- Can show using BCH that it has errors of $\mathcal{O}[(\Delta \tau)^3]$.
- Reduces to nested leapfrog for $N_i | N_{i-1}$.

- Set $N = N_1$ and set $n_i = N_1/N_i$
- The generalised leapfrog algorithm is then:
 - **1** Perform an initial half-step $V_i(\frac{1}{2}\Delta\tau_i)$ updating *P* for all *i*.
 - **2** Loop over j = 1 to N 1
 - Apply $V_T(\Delta \tau)$ to update U.
 - If $\{0 \equiv j \mod N_i\}$ apply $V_i(\Delta \tau_i)$ to update *P*
 - **3** Apply $V_T(\Delta \tau)$ to update *U*.
 - 4 Perform a final half-step $V_i(\frac{1}{2}\Delta \tau_i)$ updating *P* for all *i*.
- Can show using BCH that it has errors of $\mathcal{O}[(\Delta \tau)^3]$.
- Reduces to nested leapfrog for $N_i | N_{i-1}$.

- Set $N = N_1$ and set $n_i = N_1/N_i$
- The generalised leapfrog algorithm is then:
 - **1** Perform an initial half-step $V_i(\frac{1}{2}\Delta\tau_i)$ updating *P* for all *i*.
 - **2** Loop over j = 1 to N 1
 - Apply $V_T(\Delta \tau)$ to update U.
 - If $\{0 \equiv j \mod N_i\}$ apply $V_i(\Delta \tau_i)$ to update *P*
 - **3** Apply $V_T(\Delta \tau)$ to update *U*.
 - 4 Perform a final half-step $V_i(\frac{1}{2}\Delta\tau_i)$ updating *P* for all *i*.
- Can show using BCH that it has errors of $\mathcal{O}[(\Delta \tau)^3]$.
- Reduces to nested leapfrog for $N_i | N_{i-1}$.

Results $\kappa = 0.1575, m_{\pi} = 665 \text{MeV}$

Trajectory cost for $p_{acc}=0.7$ vs polynomial order

Results $\kappa = 0.15825, m_{\pi} \approx 400 \text{MeV}$

Trajectory cost for $\mathbf{p}_{acc}{=}0.7~vs$ polynomial order

• Single fermion flavours can be simulated using a rational polynomial,

$$\mathcal{R}(M) = \sum \frac{a_i}{M + b_i} \approx \frac{1}{\sqrt{M}}$$

(or some other method e.g. polynomial approx. to $1/\sqrt{M}$).

- Recall $M = D_w^{\dagger} D_w$ is Hermitian positive definite.
- Can we extend our polynomial filtering technique to single flavour simulations?
- Suppose we have a polynomial Q such that

$$\mathcal{Q}(M) \approx \frac{1}{\sqrt{M}}$$

• Single fermion flavours can be simulated using a rational polynomial,

$$\mathcal{R}(M) = \sum \frac{a_i}{M + b_i} \approx \frac{1}{\sqrt{M}}$$

(or some other method e.g. polynomial approx. to $1/\sqrt{M}$).

- Recall $M = D_w^{\dagger} D_w$ is Hermitian positive definite.
- Can we extend our polynomial filtering technique to single flavour simulations?
- Suppose we have a polynomial $\mathcal Q$ such that

$$\mathcal{Q}(M) \approx \frac{1}{\sqrt{M}}$$

• Single fermion flavours can be simulated using a rational polynomial,

$$\mathcal{R}(M) = \sum \frac{a_i}{M + b_i} \approx \frac{1}{\sqrt{M}}$$

(or some other method e.g. polynomial approx. to $1/\sqrt{M}$).

- Recall $M = D_w^{\dagger} D_w$ is Hermitian positive definite.
- Can we extend our polynomial filtering technique to single flavour simulations?
- Suppose we have a polynomial $\mathcal Q$ such that

$$\mathcal{Q}(M) \approx \frac{1}{\sqrt{M}}$$

• Single fermion flavours can be simulated using a rational polynomial,

$$\mathcal{R}(M) = \sum \frac{a_i}{M + b_i} \approx \frac{1}{\sqrt{M}}$$

(or some other method e.g. polynomial approx. to $1/\sqrt{M}$).

- Recall $M = D_w^{\dagger} D_w$ is Hermitian positive definite.
- Can we extend our polynomial filtering technique to single flavour simulations?
- Suppose we have a polynomial $\mathcal Q$ such that

$$\mathcal{Q}(M) \approx \frac{1}{\sqrt{M}}$$

• Single fermion flavours can be simulated using a rational polynomial,

$$\mathcal{R}(M) = \sum rac{a_i}{M+b_i} pprox rac{1}{\sqrt{M}}$$

(or some other method e.g. polynomial approx. to $1/\sqrt{M}$).

- Recall $M = D_w^{\dagger} D_w$ is Hermitian positive definite.
- Can we extend our polynomial filtering technique to single flavour simulations?
- Suppose we have a polynomial $\mathcal Q$ such that

$$\mathcal{Q}(M) \approx \frac{1}{\sqrt{M}}$$

$$S_{\text{poly1f}} = \chi_{1f}^{\dagger} \mathcal{Q} \chi_{1f},$$

 $S_{1\text{pf}} = \phi_{1f}^{\dagger} \mathcal{R} \mathcal{Q}^{-1} \phi_{1f}.$

- As before, the determinant is unaffected by the addition of the polynomial filter.
- Could add an intermediate filter for the single flavour as before but at the strange quark mass probably not worth it.
- Knowing roots of Q is needed to rewrite $\mathcal{R}Q^{-1}$ as a sum over poles.
- This allows the use of efficient linear multi-shift system solvers.

$$S_{\rm poly1f} = \chi_{\rm 1f}^{\dagger} \mathcal{Q} \chi_{\rm 1f},$$

$$S_{1\mathrm{pf}} = \phi_{1\mathrm{f}}^{\dagger} \mathcal{R} \mathcal{Q}^{-1} \phi_{1\mathrm{f}}.$$

- As before, the determinant is unaffected by the addition of the polynomial filter.
- Could add an intermediate filter for the single flavour as before but at the strange quark mass probably not worth it.
- Knowing roots of Q is needed to rewrite RQ⁻¹ as a sum over poles.
- This allows the use of efficient linear multi-shift system solvers.

$$S_{\rm poly1f} = \chi_{\rm 1f}^{\dagger} \mathcal{Q} \chi_{\rm 1f},$$

$$S_{1\mathrm{pf}} = \phi_{1\mathrm{f}}^{\dagger} \mathcal{R} \mathcal{Q}^{-1} \phi_{1\mathrm{f}}.$$

- As before, the determinant is unaffected by the addition of the polynomial filter.
- Could add an intermediate filter for the single flavour as before but at the strange quark mass probably not worth it.
- Knowing roots of Q is needed to rewrite RQ⁻¹ as a sum over poles.
- This allows the use of efficient linear multi-shift system solvers.

$$S_{\text{poly1f}} = \chi_{1f}^{\dagger} \mathcal{Q} \chi_{1f},$$

$$S_{1\mathrm{pf}} = \phi_{1\mathrm{f}}^{\dagger} \mathcal{R} \mathcal{Q}^{-1} \phi_{1\mathrm{f}}.$$

- As before, the determinant is unaffected by the addition of the polynomial filter.
- Could add an intermediate filter for the single flavour as before but at the strange quark mass probably not worth it.
- Knowing roots of Q is needed to rewrite RQ⁻¹ as a sum over poles.
- This allows the use of efficient linear multi-shift system solvers.

$$S_{\text{poly1f}} = \chi_{1f}^{\dagger} \mathcal{Q} \chi_{1f},$$

$$S_{1\mathrm{pf}} = \phi_{1\mathrm{f}}^{\dagger} \mathcal{R} \mathcal{Q}^{-1} \phi_{1\mathrm{f}}.$$

- As before, the determinant is unaffected by the addition of the polynomial filter.
- Could add an intermediate filter for the single flavour as before but at the strange quark mass probably not worth it.
- Knowing roots of Q is needed to rewrite RQ⁻¹ as a sum over poles.
- This allows the use of efficient linear multi-shift system solvers.

• Note that $\mathcal{RQ}^{-1} \approx 1$.

• May be advantageous to simply use the Remes algorithm to get a rational approximation to

$$\tilde{\mathcal{R}}(z) \approx f(z) = \frac{1}{\sqrt{z}\mathcal{Q}(z)}$$

and use that instead of the product \mathcal{RQ}^{-1} .

- What are the possible advantages?
- The rational approximation to *f* might have improved precision for a given order.
- Smallest shift for $\tilde{\mathcal{R}}$ expressed as a sum over poles might be bigger.

- Note that $\mathcal{RQ}^{-1} \approx 1$.
- May be advantageous to simply use the Remes algorithm to get a rational approximation to

$$\tilde{\mathcal{R}}(z) \approx f(z) = \frac{1}{\sqrt{z}\mathcal{Q}(z)}$$

and use that instead of the product \mathcal{RQ}^{-1} .

- What are the possible advantages?
- The rational approximation to *f* might have improved precision for a given order.
- Smallest shift for $\tilde{\mathcal{R}}$ expressed as a sum over poles might be bigger.

- Note that $\mathcal{RQ}^{-1} \approx 1$.
- May be advantageous to simply use the Remes algorithm to get a rational approximation to

$$\tilde{\mathcal{R}}(z) \approx f(z) = \frac{1}{\sqrt{z}\mathcal{Q}(z)}$$

and use that instead of the product \mathcal{RQ}^{-1} .

- What are the possible advantages?
- The rational approximation to *f* might have improved precision for a given order.
- Smallest shift for $\tilde{\mathcal{R}}$ expressed as a sum over poles might be bigger.

 \implies Less iterations to solve.

- Note that $\mathcal{RQ}^{-1} \approx 1$.
- May be advantageous to simply use the Remes algorithm to get a rational approximation to

$$\tilde{\mathcal{R}}(z) \approx f(z) = \frac{1}{\sqrt{z}\mathcal{Q}(z)}$$

and use that instead of the product \mathcal{RQ}^{-1} .

- What are the possible advantages?
- The rational approximation to *f* might have improved precision for a given order.
- Smallest shift for $\tilde{\mathcal{R}}$ expressed as a sum over poles might be bigger.

 \implies Less iterations to solve.

- Note that $\mathcal{RQ}^{-1} \approx 1$.
- May be advantageous to simply use the Remes algorithm to get a rational approximation to

$$\tilde{\mathcal{R}}(z) \approx f(z) = \frac{1}{\sqrt{z}\mathcal{Q}(z)}$$

and use that instead of the product \mathcal{RQ}^{-1} .

- What are the possible advantages?
- The rational approximation to *f* might have improved precision for a given order.
- Smallest shift for $\tilde{\mathcal{R}}$ expressed as a sum over poles might be bigger.

 \Rightarrow Less iterations to solve.

- Note that $\mathcal{RQ}^{-1} \approx 1$.
- May be advantageous to simply use the Remes algorithm to get a rational approximation to

$$\tilde{\mathcal{R}}(z) \approx f(z) = \frac{1}{\sqrt{z}\mathcal{Q}(z)}$$

and use that instead of the product \mathcal{RQ}^{-1} .

- What are the possible advantages?
- The rational approximation to *f* might have improved precision for a given order.
- Smallest shift for $\tilde{\mathcal{R}}$ expressed as a sum over poles might be bigger.
 - \implies Less iterations to solve.

- Recall that we used the Hermitian Chebyshev approximation to 1/*z* in our two flavour polynomial filter.
- The non-Hermitian Chebyshev approximation $\mathcal{K}(z)$ to 1/z has the same normalisation, but slightly different roots,

$$y_k = d(1 - \cos \theta_k) + i\sqrt{d^2 - c^2} \sin \theta_k.$$

- Valid for an elliptical region in the complex plane.
- So long as the spectrum of the non-Hermitian matrix *D*_w is within this ellipse, we can write

$$\mathcal{K}(D_{\rm w}) = a_n \prod_{k=1}^{n/2} (D_{\rm w} - y_k) (D_{\rm w} - y_k^*) \approx \frac{1}{D_{\rm w}}$$

- Recall that we used the Hermitian Chebyshev approximation to 1/*z* in our two flavour polynomial filter.
- The non-Hermitian Chebyshev approximation $\mathcal{K}(z)$ to 1/z has the same normalisation, but slightly different roots,

$$y_k = d(1 - \cos \theta_k) + i\sqrt{d^2 - c^2} \sin \theta_k.$$

- Valid for an elliptical region in the complex plane.
- So long as the spectrum of the non-Hermitian matrix *D*_w is within this ellipse, we can write

$$\mathcal{K}(D_{\rm w}) = a_n \prod_{k=1}^{n/2} (D_{\rm w} - y_k) (D_{\rm w} - y_k^*) \approx \frac{1}{D_{\rm w}}$$

- Recall that we used the Hermitian Chebyshev approximation to 1/*z* in our two flavour polynomial filter.
- The non-Hermitian Chebyshev approximation $\mathcal{K}(z)$ to 1/z has the same normalisation, but slightly different roots,

$$y_k = d(1 - \cos \theta_k) + i\sqrt{d^2 - c^2} \sin \theta_k.$$

- Valid for an elliptical region in the complex plane.
- So long as the spectrum of the non-Hermitian matrix *D*_w is within this ellipse, we can write

$$\mathcal{K}(D_{\rm w}) = a_n \prod_{k=1}^{n/2} (D_{\rm w} - y_k) (D_{\rm w} - y_k^*) \approx \frac{1}{D_{\rm w}}$$

- Recall that we used the Hermitian Chebyshev approximation to 1/*z* in our two flavour polynomial filter.
- The non-Hermitian Chebyshev approximation $\mathcal{K}(z)$ to 1/z has the same normalisation, but slightly different roots,

$$y_k = d(1 - \cos \theta_k) + i\sqrt{d^2 - c^2} \sin \theta_k.$$

- Valid for an elliptical region in the complex plane.
- So long as the spectrum of the non-Hermitian matrix *D*_w is within this ellipse, we can write

$$\mathcal{K}(D_{\mathrm{w}}) = a_n \prod_{k=1}^{n/2} (D_{\mathrm{w}} - y_k) (D_{\mathrm{w}} - y_k^*) \approx \frac{1}{D_{\mathrm{w}}}$$

• Now construct a polynomial using only half the roots (say those with positive imaginary parts),

$$\mathcal{K}_+(D_{\mathrm{w}}) = \sqrt{a_n} \prod_{k=1}^{n/2} (D_{\mathrm{w}} - y_k)$$

• We need the following two properties of determinants,

det(AB) = det A det B $det A^{\dagger} = (det A)^{*}$

• Using these we can deduce that

 $\det \mathcal{K}^{\dagger}_{+}(D_{\mathrm{w}})\mathcal{K}_{+}(D_{\mathrm{w}}) = \det \mathcal{K}(D_{\mathrm{w}}) \approx (\det D_{\mathrm{w}})^{-1}$

• Now construct a polynomial using only half the roots (say those with positive imaginary parts),

$$\mathcal{K}_+(D_{\mathrm{w}}) = \sqrt{a_n} \prod_{k=1}^{n/2} (D_{\mathrm{w}} - y_k)$$

• We need the following two properties of determinants,

det(AB) = det A det B $det A^{\dagger} = (det A)^{*}$

• Using these we can deduce that

 $\det \mathcal{K}_{+}^{\dagger}(D_{w})\mathcal{K}_{+}(D_{w}) = \det \mathcal{K}(D_{w}) \approx (\det D_{w})^{-1}$

• Now construct a polynomial using only half the roots (say those with positive imaginary parts),

$$\mathcal{K}_+(D_{\mathrm{w}}) = \sqrt{a_n} \prod_{k=1}^{n/2} (D_{\mathrm{w}} - y_k)$$

We need the following two properties of determinants,

$$det(AB) = det A det B$$
$$det A^{\dagger} = (det A)^{*}$$

• Using these we can deduce that

 $\det \mathcal{K}_{+}^{\dagger}(D_{w})\mathcal{K}_{+}(D_{w}) = \det \mathcal{K}(D_{w}) \approx (\det D_{w})^{-1}$

• Now construct a polynomial using only half the roots (say those with positive imaginary parts),

$$\mathcal{K}_+(D_{\mathrm{w}}) = \sqrt{a_n} \prod_{k=1}^{n/2} (D_{\mathrm{w}} - y_k)$$

• We need the following two properties of determinants,

$$det(AB) = det A det B$$
$$det A^{\dagger} = (det A)^{*}$$

• Using these we can deduce that

 $\det \mathcal{K}_{+}^{\dagger}(D_{w})\mathcal{K}_{+}(D_{w}) = \det \mathcal{K}(D_{w}) \approx (\det D_{w})^{-1}$

The Action

• So we can the construct a polynomial filtered one-flavour action using \mathcal{K}_{+} ,

$$\begin{split} S_{\text{poly1f}} &= \chi_{1f}^{\dagger} \mathcal{K}_{+}^{\dagger} \mathcal{K}_{+} \chi_{1f}, \\ S_{1\text{pf}} &= \phi_{1f}^{\dagger} \mathcal{W}^{\dagger}(D_{\text{w}}) \mathcal{W}(D_{\text{w}}) \phi_{1f}. \end{split}$$

- Here, \mathcal{W} needs to be a rational polynomial approximation to $\{z\mathcal{K}^*_+(z)\mathcal{K}_+(z)\}^{-1}$.
- Should be able to obtain this by factoring $\mathcal{R}(z)$ the Zolotarev approximation to 1/z and setting

$$\mathcal{W}(z) = \mathcal{R}_+(z)\mathcal{K}_+^{-1}.$$

• At this point, it might be more efficient to take large *n* polynomial limit for \mathcal{K}_+ , split it into two and do filtered polynomial HMC for the single flavour...

The Action

• So we can the construct a polynomial filtered one-flavour action using \mathcal{K}_{+} ,

$$\begin{split} S_{\text{poly1f}} &= \chi_{1f}^{\dagger} \mathcal{K}_{+}^{\dagger} \mathcal{K}_{+} \chi_{1f}, \\ S_{1\text{pf}} &= \phi_{1f}^{\dagger} \mathcal{W}^{\dagger}(D_{\text{w}}) \mathcal{W}(D_{\text{w}}) \phi_{1f} \end{split}$$

- Here, \mathcal{W} needs to be a rational polynomial approximation to $\{z\mathcal{K}^*_+(z)\mathcal{K}_+(z)\}^{-1}$.
- Should be able to obtain this by factoring $\mathcal{R}(z)$ the Zolotarev approximation to 1/z and setting

$$\mathcal{W}(z) = \mathcal{R}_+(z)\mathcal{K}_+^{-1}.$$

• At this point, it might be more efficient to take large *n* polynomial limit for \mathcal{K}_+ , split it into two and do filtered polynomial HMC for the single flavour...

The Action

• So we can the construct a polynomial filtered one-flavour action using \mathcal{K}_{+} ,

$$\begin{split} S_{\text{poly1f}} &= \chi_{1f}^{\dagger} \mathcal{K}_{+}^{\dagger} \mathcal{K}_{+} \chi_{1f}, \\ S_{1\text{pf}} &= \phi_{1f}^{\dagger} \mathcal{W}^{\dagger}(D_{\text{w}}) \mathcal{W}(D_{\text{w}}) \phi_{1f} \end{split}$$

- Here, \mathcal{W} needs to be a rational polynomial approximation to $\{z\mathcal{K}^*_+(z)\mathcal{K}_+(z)\}^{-1}$.
- Should be able to obtain this by factoring $\mathcal{R}(z)$ the Zolotarev approximation to 1/z and setting

$$\mathcal{W}(z) = \mathcal{R}_+(z)\mathcal{K}_+^{-1}.$$

• At this point, it might be more efficient to take large *n* polynomial limit for \mathcal{K}_+ , split it into two and do filtered polynomial HMC for the single flavour...
The Action

• So we can the construct a polynomial filtered one-flavour action using \mathcal{K}_+ ,

$$S_{\text{poly1f}} = \chi_{1f}^{\dagger} \mathcal{K}_{+}^{\dagger} \mathcal{K}_{+} \chi_{1f},$$
$$S_{1\text{pf}} = \phi_{1f}^{\dagger} \mathcal{W}^{\dagger}(D_{\text{w}}) \mathcal{W}(D_{\text{w}}) \phi_{1f}$$

- Here, \mathcal{W} needs to be a rational polynomial approximation to $\{z\mathcal{K}^*_+(z)\mathcal{K}_+(z)\}^{-1}$.
- Should be able to obtain this by factoring $\mathcal{R}(z)$ the Zolotarev approximation to 1/z and setting

$$\mathcal{W}(z) = \mathcal{R}_+(z)\mathcal{K}_+^{-1}.$$

• At this point, it might be more efficient to take large *n* polynomial limit for \mathcal{K}_+ , split it into two and do filtered polynomial HMC for the single flavour...

- The use of a polynomial approximation to the inverse as a filter successfully separates the UV and IR pseudofermion dynamics.
- In combination with a generalise leapfrog algorithm we successfully reduce the cost of dynamical simulations.
- The generalised leapfrog algorithm is applicable to any multiple time scale integration scheme, far more flexible than nested leapfrog.
- Technique is not necessarily orthogonal to other improvements (e.g. DD, Hasenbuch trick).
- Polynomial filtering can also be extended to single flavour simulations.
- More results to come...

- The use of a polynomial approximation to the inverse as a filter successfully separates the UV and IR pseudofermion dynamics.
- In combination with a generalise leapfrog algorithm we successfully reduce the cost of dynamical simulations.
- The generalised leapfrog algorithm is applicable to any multiple time scale integration scheme, far more flexible than nested leapfrog.
- Technique is not necessarily orthogonal to other improvements (e.g. DD, Hasenbuch trick).
- Polynomial filtering can also be extended to single flavour simulations.
- More results to come...

- The use of a polynomial approximation to the inverse as a filter successfully separates the UV and IR pseudofermion dynamics.
- In combination with a generalise leapfrog algorithm we successfully reduce the cost of dynamical simulations.
- The generalised leapfrog algorithm is applicable to any multiple time scale integration scheme, far more flexible than nested leapfrog.
- Technique is not necessarily orthogonal to other improvements (e.g. DD, Hasenbuch trick).
- Polynomial filtering can also be extended to single flavour simulations.
- More results to come...

- The use of a polynomial approximation to the inverse as a filter successfully separates the UV and IR pseudofermion dynamics.
- In combination with a generalise leapfrog algorithm we successfully reduce the cost of dynamical simulations.
- The generalised leapfrog algorithm is applicable to any multiple time scale integration scheme, far more flexible than nested leapfrog.
- Technique is not necessarily orthogonal to other improvements (e.g. DD, Hasenbuch trick).
- Polynomial filtering can also be extended to single flavour simulations.
- More results to come...

- The use of a polynomial approximation to the inverse as a filter successfully separates the UV and IR pseudofermion dynamics.
- In combination with a generalise leapfrog algorithm we successfully reduce the cost of dynamical simulations.
- The generalised leapfrog algorithm is applicable to any multiple time scale integration scheme, far more flexible than nested leapfrog.
- Technique is not necessarily orthogonal to other improvements (e.g. DD, Hasenbuch trick).
- Polynomial filtering can also be extended to single flavour simulations.
- More results to come...

- The use of a polynomial approximation to the inverse as a filter successfully separates the UV and IR pseudofermion dynamics.
- In combination with a generalise leapfrog algorithm we successfully reduce the cost of dynamical simulations.
- The generalised leapfrog algorithm is applicable to any multiple time scale integration scheme, far more flexible than nested leapfrog.
- Technique is not necessarily orthogonal to other improvements (e.g. DD, Hasenbuch trick).
- Polynomial filtering can also be extended to single flavour simulations.
- More results to come...

