Polynomial Filtering for a Single Fermion

 Flavour in Lattice QCDWaseem Kamleh and Michael J. Peardon
CSSM \& UNIVERSITY OF ADELAIDE
T(R)OPICAL QCD II,
September $26^{\text {th }}-$ October $1^{\text {st }}, 2010$
"
SUBATOMIC

Introduction

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
- We begin by reviewing the fundamentals of the HMC algorithm.

Introduction

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
- We begin by reviewing the fundamentals of the HMC algorithm.

Introduction

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
- We begin by reviewing the fundamentals of the HMC algorithm.

Introduction

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
- Domain Decomposition method (Luscher).
- Mass Preconditioning (Hasenbuch).
- Polynomial Filtering (Peardon \& Sexton, Peardon \& WK).
- We begin by reviewing the fundamentals of the HMC algorithm.

Introduction

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
- Domain Decomposition method (Luscher).
- Mass Preconditioning (Hasenbuch).
- Polynomial Filtering (Peardon \& Sexton, Peardon \& WK).
- We begin by reviewing the fundamentals of the HMC algorithm.

Introduction

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
- Domain Decomposition method (Luscher).
- Mass Preconditioning (Hasenbuch).
- Polynomial Filtering (Peardon \& Sexton, Peardon \& WK).
- We begin by reviewing the fundamentals of the HMC algorithm.

Introduction

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
- Domain Decomposition method (Luscher).
- Mass Preconditioning (Hasenbuch).
- Polynomial Filtering (Peardon \& Sexton, Peardon \& WK).
- We begin by reviewing the fundamentals of the HMC algorithm.

Introduction

- The dominant expense of Lattice QCD is generating dynamical gauge field configurations.
- Hybrid Monte Carlo (HMC) is still the most used algorithm for generating dynamical configurations.
- There have been many improvements to the basic HMC algorithm developed over the years.
- A partial list of "multi-scale" type algorithmic improvements:
- Domain Decomposition method (Luscher).
- Mass Preconditioning (Hasenbuch).
- Polynomial Filtering (Peardon \& Sexton, Peardon \& WK).
- We begin by reviewing the fundamentals of the HMC algorithm.

Hybrid Monte Carlo Review

- The lattice is embedded in a Hamiltonian system by the addition of a fictitious "simulation" time τ, along with an additional fictitious field P which are the conjugate momenta to U,

$$
\mathcal{H}(P, U)=\sum_{x, \mu} \frac{1}{2} \operatorname{Tr} P_{\mu}(x)^{2}+S[U]
$$

- The conjugate momenta $P_{\mu}(x)$ are drawn from a Gaussian distribution.
- In this way, the Hamiltonian \mathcal{H} is constructed so that after path integration the expectation values of observables are unaltered.
-Where are the fermions?

Hybrid Monte Carlo Review

- The lattice is embedded in a Hamiltonian system by the addition of a fictitious "simulation" time τ, along with an additional fictitious field P which are the conjugate momenta to U,

$$
\mathcal{H}(P, U)=\sum_{x, \mu} \frac{1}{2} \operatorname{Tr} P_{\mu}(x)^{2}+S[U]
$$

- The conjugate momenta $P_{\mu}(x)$ are drawn from a Gaussian distribution.
- In this way, the Hamiltonian \mathcal{H} is constructed so that after path integration the expectation values of observables are unaltered.
- Where are the fermions?

Hybrid Monte Carlo Review

- The lattice is embedded in a Hamiltonian system by the addition of a fictitious "simulation" time τ, along with an additional fictitious field P which are the conjugate momenta to U,

$$
\mathcal{H}(P, U)=\sum_{x, \mu} \frac{1}{2} \operatorname{Tr} P_{\mu}(x)^{2}+S[U]
$$

- The conjugate momenta $P_{\mu}(x)$ are drawn from a Gaussian distribution.
- In this way, the Hamiltonian \mathcal{H} is constructed so that after path integration the expectation values of observables are unaltered.
- Where are the fermions?

Hybrid Monte Carlo Review

- The lattice is embedded in a Hamiltonian system by the addition of a fictitious "simulation" time τ, along with an additional fictitious field P which are the conjugate momenta to U,

$$
\mathcal{H}(P, U)=\sum_{x, \mu} \frac{1}{2} \operatorname{Tr} P_{\mu}(x)^{2}+S[U]
$$

- The conjugate momenta $P_{\mu}(x)$ are drawn from a Gaussian distribution.
- In this way, the Hamiltonian \mathcal{H} is constructed so that after path integration the expectation values of observables are unaltered.
- Where are the fermions?

Fermion Determinant

- The fermion fields ψ and $\bar{\psi}$ are Grassmannian, hence to perform simulations we need to integrate them out. We have that

$$
\operatorname{det} D_{\mathrm{w}}=\int \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-\int d^{4} x \bar{\psi}(x) D_{\mathrm{w}} \psi(x)}
$$

- Define the effective action as

$$
S_{\mathrm{eff}}[U]=S_{\mathrm{g}}[U]-\ln \operatorname{det} D_{\mathrm{w}}[U] .
$$

- We can write the action for full QCD in terms of bosonic fields ϕ using the identity

$$
\operatorname{det} M=\frac{1}{\operatorname{det} M^{-1}}=\int \mathcal{D} \phi^{\dagger} \mathcal{D} \phi e^{-\int d^{4} x \phi^{\dagger}(x) M^{-1} \phi(x)}
$$

Fermion Determinant

- The fermion fields ψ and $\bar{\psi}$ are Grassmannian, hence to perform simulations we need to integrate them out. We have that

$$
\operatorname{det} D_{\mathrm{w}}=\int \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-\int d^{4} x \bar{\psi}(x) D_{\mathrm{w}} \psi(x)}
$$

- Define the effective action as

$$
S_{\mathrm{eff}}[U]=S_{\mathrm{g}}[U]-\ln \operatorname{det} D_{\mathrm{w}}[U] .
$$

- We can write the action for full QCD in terms of bosonic fields ϕ using the identity

$$
\operatorname{det} M=\frac{1}{\operatorname{det} M^{-1}}=\int \mathcal{D} \phi^{\dagger} \mathcal{D} \phi e^{-\int d^{4} x \phi^{\dagger}(x) M^{-1} \phi(x)}
$$

Fermion Determinant

- The fermion fields ψ and $\bar{\psi}$ are Grassmannian, hence to perform simulations we need to integrate them out. We have that

$$
\operatorname{det} D_{\mathrm{w}}=\int \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-\int d^{4} x \bar{\psi}(x) D_{\mathrm{w}} \psi(x)}
$$

- Define the effective action as

$$
S_{\mathrm{eff}}[U]=S_{\mathrm{g}}[U]-\ln \operatorname{det} D_{\mathrm{w}}[U] .
$$

- We can write the action for full QCD in terms of bosonic fields ϕ using the identity

$$
\operatorname{det} M=\frac{1}{\operatorname{det} M^{-1}}=\int \mathcal{D} \phi^{\dagger} \mathcal{D} \phi e^{-\int d^{4} x \phi^{\dagger}(x) M^{-1} \phi(x)}
$$

Pseudofermions

- The convergence of the Gaussian integral in ϕ is only guaranteed for Hermitian positive definite (Hpd) M.
- For Wilson-type fermions, D_{w} is a complex matrix, but $\operatorname{det} D_{\mathrm{w}}$ is real and positive.
- So, we can define $M=D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}$, and M will be Hpd with $\operatorname{det} M=\operatorname{det} D_{f}^{2}$.
- Then the pseudofermionic effective action for full QCD with two flavours of degenerate quarks is

$$
S_{\mathrm{eff}}[U]=S_{\mathrm{g}}[U]+\int d^{4} x \phi^{\dagger}(x) M^{-1}[U] \phi(x)
$$

- The pseudofermion fields $\phi(x)$ are drawn from a Gaussian distribution.

Pseudofermions

- The convergence of the Gaussian integral in ϕ is only guaranteed for Hermitian positive definite (Hpd) M.
- For Wilson-type fermions, D_{w} is a complex matrix, but $\operatorname{det} D_{\mathrm{w}}$ is real and positive.
- So, we can define $M=D_{\mathrm{w}}^{+} D_{\mathrm{w}}$, and M will be Hpd with $\operatorname{det} M=\operatorname{det} D_{\mathrm{f}}^{2}$.
- Then the p seudofermionic effective action for full QCD with two flavours of degenerate quarks is

$$
S_{\mathrm{eff}}[U]=S_{\mathrm{g}}[U]+\int d^{4} x \phi^{\dagger}(x) M^{-1}[U] \phi(x)
$$

- The pseudofermion fields $\phi(x)$ are drawn from a Gaussian distribution.

Pseudofermions

- The convergence of the Gaussian integral in ϕ is only guaranteed for Hermitian positive definite (Hpd) M.
- For Wilson-type fermions, D_{w} is a complex matrix, but $\operatorname{det} D_{\mathrm{w}}$ is real and positive.
- So, we can define $M=D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}$, and M will be Hpd with $\operatorname{det} M=\operatorname{det} D_{\mathrm{f}}^{2}$.
- Then the pseudofermionic effective action for full QCD with two flavours of degenerate quarks is

$$
S_{\mathrm{eff}}[U]=S_{\mathrm{g}}[U]+\int d^{4} x \phi^{\dagger}(x) M^{-1}[U] \phi(x)
$$

- The pseudofermion fields $\phi(x)$ are drawn from a Gaussian distribution.

Pseudofermions

- The convergence of the Gaussian integral in ϕ is only guaranteed for Hermitian positive definite (Hpd) M.
- For Wilson-type fermions, D_{w} is a complex matrix, but $\operatorname{det} D_{\mathrm{w}}$ is real and positive.
- So, we can define $M=D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}$, and M will be Hpd with $\operatorname{det} M=\operatorname{det} D_{\mathrm{f}}^{2}$.
- Then the pseudofermionic effective action for full QCD with two flavours of degenerate quarks is

$$
S_{\mathrm{eff}}[U]=S_{\mathrm{g}}[U]+\int d^{4} x \phi^{\dagger}(x) M^{-1}[U] \phi(x)
$$

- The pseudofermion fields $\phi(x)$ are drawn from a Gaussian distribution.

Pseudofermions

- The convergence of the Gaussian integral in ϕ is only guaranteed for Hermitian positive definite (Hpd) M.
- For Wilson-type fermions, D_{w} is a complex matrix, but $\operatorname{det} D_{\mathrm{w}}$ is real and positive.
- So, we can define $M=D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}$, and M will be Hpd with $\operatorname{det} M=\operatorname{det} D_{\mathrm{f}}^{2}$.
- Then the pseudofermionic effective action for full QCD with two flavours of degenerate quarks is

$$
S_{\mathrm{eff}}[U]=S_{\mathrm{g}}[U]+\int d^{4} x \phi^{\dagger}(x) M^{-1}[U] \phi(x)
$$

- The pseudofermion fields $\phi(x)$ are drawn from a Gaussian distribution.

Hybrid Monte Carlo

- The Hybrid Monte Carlo algorithm creates a Markov chain by alternately performing two steps:
- A Molecular Dynamics (MD) integration to generate a new configuration $\left(U \rightarrow U^{\prime}, P \rightarrow P^{\prime}\right)$.
- A Metropolis accept/reject step on the proposed configuration $\left(U^{\prime}, P^{\prime}\right)$.
- The accept/reject step is based upon the change in the Hamiltonian

$$
\rho\left(U \rightarrow U^{\prime}, P \rightarrow P^{\prime}\right) \propto e^{-\Delta \mathcal{H}} .
$$

- The Molecular Dynamics integration takes place along a trajectory which for sufficiently small integration step sizes $\Delta \tau$ approximately conserves \mathcal{H}, hence yielding high acceptance rates.

Hybrid Monte Carlo

- The Hybrid Monte Carlo algorithm creates a Markov chain by alternately performing two steps:
- A Molecular Dynamics (MD) integration to generate a new configuration $\left(U \rightarrow U^{\prime}, P \rightarrow P^{\prime}\right)$.
- A Metropolis accept/reject step on the proposed configuration $\left(U^{\prime}, P^{\prime}\right)$.
- The accept/reject step is based upon the change in the Hamiltonian

$$
\rho\left(U \rightarrow U^{\prime}, P \rightarrow P^{\prime}\right) \propto e^{-\Delta \mathcal{H}} .
$$

- The Molecular Dynamics integration takes place along a trajectory which for sufficiently small integration step sizes $\Delta \tau$ approximately conserves \mathcal{H}, hence yielding high acceptance rates.

Hybrid Monte Carlo

- The Hybrid Monte Carlo algorithm creates a Markov chain by alternately performing two steps:
- A Molecular Dynamics (MD) integration to generate a new configuration $\left(U \rightarrow U^{\prime}, P \rightarrow P^{\prime}\right)$.
- A Metropolis accept/reject step on the proposed configuration $\left(U^{\prime}, P^{\prime}\right)$.
- The accept/reject step is based upon the change in the Hamiltonian

$$
\rho\left(U \rightarrow U^{\prime}, P \rightarrow P^{\prime}\right) \propto e^{-\Delta \mathcal{H}} .
$$

- The Molecular Dynamics integration takes place along a trajectory which for sufficiently small integration step sizes $\Delta \tau$ approximately conserves \mathcal{H}, hence yielding high acceptance rates.

Hybrid Monte Carlo

- The Hybrid Monte Carlo algorithm creates a Markov chain by alternately performing two steps:
- A Molecular Dynamics (MD) integration to generate a new configuration ($U \rightarrow U^{\prime}, P \rightarrow P^{\prime}$).
- A Metropolis accept/reject step on the proposed configuration $\left(U^{\prime}, P^{\prime}\right)$.
- The accept/reject step is based upon the change in the Hamiltonian

$$
\rho\left(U \rightarrow U^{\prime}, P \rightarrow P^{\prime}\right) \propto e^{-\Delta \mathcal{H}} .
$$

- The Molecular Dynamics integration takes place along a trajectory which for sufficiently small integration step sizes $\Delta \tau$ approximately conserves \mathcal{H}, hence yielding high acceptance rates.

Hybrid Monte Carlo

- The Hybrid Monte Carlo algorithm creates a Markov chain by alternately performing two steps:
- A Molecular Dynamics (MD) integration to generate a new configuration ($U \rightarrow U^{\prime}, P \rightarrow P^{\prime}$).
- A Metropolis accept/reject step on the proposed configuration $\left(U^{\prime}, P^{\prime}\right)$.
- The accept/reject step is based upon the change in the Hamiltonian

$$
\rho\left(U \rightarrow U^{\prime}, P \rightarrow P^{\prime}\right) \propto e^{-\Delta \mathcal{H}} .
$$

- The Molecular Dynamics integration takes place along a trajectory which for sufficiently small integration step sizes $\Delta \tau$ approximately conserves \mathcal{H}, hence yielding high acceptance rates.

Molecular Dynamics

- Start by requiring that the Hamiltonian be conserved along the trajectory

$$
\frac{d \mathcal{H}}{d \tau}=0 .
$$

- Then derive the discretised equations of motion,

$$
\begin{aligned}
U_{\mu}(x, \tau+\Delta \tau) & =U_{\mu}(x, \tau) \exp \left(i \Delta \tau P_{\mu}(x, \tau)\right) \\
P_{\mu}(x, \tau+\Delta \tau) & =P_{\mu}(x, \tau)-U_{\mu}(x, \tau) \frac{\delta S}{\delta U_{\mu}(x, \tau)}
\end{aligned}
$$

- The derivative of the action with respect to the gauge fields is known as the force term,

$$
F_{\mu}(x)=\frac{\delta S}{\delta U_{\mu}(x)}
$$

Molecular Dynamics

- Start by requiring that the Hamiltonian be conserved along the trajectory

$$
\frac{d \mathcal{H}}{d \tau}=0
$$

- Then derive the discretised equations of motion,

$$
\begin{aligned}
U_{\mu}(x, \tau+\Delta \tau) & =U_{\mu}(x, \tau) \exp \left(i \Delta \tau P_{\mu}(x, \tau)\right) \\
P_{\mu}(x, \tau+\Delta \tau) & =P_{\mu}(x, \tau)-U_{\mu}(x, \tau) \frac{\delta S}{\delta U_{\mu}(x, \tau)}
\end{aligned}
$$

- The derivative of the action with respect to the gauge fields is known as the force term,

$$
F_{\mu}(x)=\frac{\delta S}{\delta U_{\mu}(x)}
$$

Molecular Dynamics

- Start by requiring that the Hamiltonian be conserved along the trajectory

$$
\frac{d \mathcal{H}}{d \tau}=0
$$

- Then derive the discretised equations of motion,

$$
\begin{aligned}
U_{\mu}(x, \tau+\Delta \tau) & =U_{\mu}(x, \tau) \exp \left(i \Delta \tau P_{\mu}(x, \tau)\right) \\
P_{\mu}(x, \tau+\Delta \tau) & =P_{\mu}(x, \tau)-U_{\mu}(x, \tau) \frac{\delta S}{\delta U_{\mu}(x, \tau)}
\end{aligned}
$$

- The derivative of the action with respect to the gauge fields is known as the force term,

$$
F_{\mu}(x)=\frac{\delta S}{\delta U_{\mu}(x)}
$$

Splitting The Action

- Lets split our action into its gauge field and pseudofermion field components, $S=S_{\mathrm{g}}+S_{\mathrm{pf}}$, where

$$
\begin{gathered}
S_{\mathrm{g}}=\beta \sum_{x, \mu<v} \frac{1}{3} \operatorname{Re} \operatorname{Tr}\left(1-U_{\mu v}(x)\right), \\
S_{\mathrm{pf}}=\sum_{x} \phi^{\dagger}(x)\left(D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}\right)^{-1} \phi(x),
\end{gathered}
$$

and D_{w} is the Wilson fermion matrix.

- Each of the terms in the action induces a force term.
- The size of the force term is the dominant factor in determining what step size $\Delta \tau$ is need for a given acceptance probability $\rho_{\text {acc }}$.
- As the quark mass becomes lighter, the size of the pseudofermion force term increases.

Splitting The Action

- Lets split our action into its gauge field and pseudofermion field components, $S=S_{\mathrm{g}}+S_{\mathrm{pf}}$, where

$$
\begin{gathered}
S_{\mathrm{g}}=\beta \sum_{x, \mu<v} \frac{1}{3} \operatorname{Re} \operatorname{Tr}\left(1-U_{\mu v}(x)\right), \\
S_{\mathrm{pf}}=\sum_{x} \phi^{\dagger}(x)\left(D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}\right)^{-1} \phi(x)
\end{gathered}
$$

and D_{w} is the Wilson fermion matrix.

- Each of the terms in the action induces a force term.
- The size of the force term is the dominant factor in determining what step size $\Delta \tau$ is need for a given acceptance probability $\rho_{\text {acc }}$.
- As the quark mass becomes lighter, the size of the pseudofermion force term increases.

Splitting The Action

- Lets split our action into its gauge field and pseudofermion field components, $S=S_{\mathrm{g}}+S_{\mathrm{pf}}$, where

$$
\begin{gathered}
S_{\mathrm{g}}=\beta \sum_{x, \mu<v} \frac{1}{3} \operatorname{Re} \operatorname{Tr}\left(1-U_{\mu v}(x)\right), \\
S_{\mathrm{pf}}=\sum_{x} \phi^{\dagger}(x)\left(D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}\right)^{-1} \phi(x),
\end{gathered}
$$

and D_{w} is the Wilson fermion matrix.

- Each of the terms in the action induces a force term.
- The size of the force term is the dominant factor in determining what step size $\Delta \tau$ is need for a given acceptance probability $\rho_{\text {acc }}$.
- As the quark mass becomes lighter, the size of the pseudofermion force term increases.

Splitting The Action

- Lets split our action into its gauge field and pseudofermion field components, $S=S_{\mathrm{g}}+S_{\mathrm{pf}}$, where

$$
\begin{gathered}
S_{\mathrm{g}}=\beta \sum_{x, \mu<v} \frac{1}{3} \operatorname{Re} \operatorname{Tr}\left(1-U_{\mu v}(x)\right) \\
S_{\mathrm{pf}}=\sum_{x} \phi^{\dagger}(x)\left(D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}\right)^{-1} \phi(x)
\end{gathered}
$$

and D_{w} is the Wilson fermion matrix.

- Each of the terms in the action induces a force term.
- The size of the force term is the dominant factor in determining what step size $\Delta \tau$ is need for a given acceptance probability $\rho_{\text {acc }}$.
- As the quark mass becomes lighter, the size of the pseudofermion force term increases.

Leapfrog Integration

- The MD equations of motion induce corresponding time evolution operators,

$$
\begin{aligned}
& V_{T}(\Delta \tau):\{U(\tau), P(\tau)\} \rightarrow\{U(\tau+\Delta \tau), P(\tau)\}, \\
& V_{S}(\Delta \tau):\{U(\tau), P(\tau)\} \rightarrow\{U(\tau), P(\tau+\Delta \tau)\} .
\end{aligned}
$$

- The simplest MD integration scheme is the leapfrog

$$
V(\Delta \tau)=V_{S}\left(\frac{\Delta \tau}{2}\right) V_{T}(\Delta \tau) V_{S}\left(\frac{\Delta \tau}{2}\right)
$$

- MD Integration trajectories typically have unit length, and hence as the step size $\Delta \tau$ decreases, the number of integration steps increases.

Leapfrog Integration

- The MD equations of motion induce corresponding time evolution operators,

$$
\begin{aligned}
& V_{T}(\Delta \tau):\{U(\tau), P(\tau)\} \rightarrow\{U(\tau+\Delta \tau), P(\tau)\}, \\
& V_{S}(\Delta \tau):\{U(\tau), P(\tau)\} \rightarrow\{U(\tau), P(\tau+\Delta \tau)\} .
\end{aligned}
$$

- The simplest MD integration scheme is the leapfrog

$$
V(\Delta \tau)=V_{S}\left(\frac{\Delta \tau}{2}\right) V_{T}(\Delta \tau) V_{S}\left(\frac{\Delta \tau}{2}\right)
$$

- MD Integration trajectories typically have unit length, and hence as the step size $\Delta \tau$ decreases, the number of integration steps increases.

Leapfrog Integration

- The MD equations of motion induce corresponding time evolution operators,

$$
\begin{aligned}
& V_{T}(\Delta \tau):\{U(\tau), P(\tau)\} \rightarrow\{U(\tau+\Delta \tau), P(\tau)\}, \\
& V_{S}(\Delta \tau):\{U(\tau), P(\tau)\} \rightarrow\{U(\tau), P(\tau+\Delta \tau)\} .
\end{aligned}
$$

- The simplest MD integration scheme is the leapfrog

$$
V(\Delta \tau)=V_{S}\left(\frac{\Delta \tau}{2}\right) V_{T}(\Delta \tau) V_{S}\left(\frac{\Delta \tau}{2}\right)
$$

- MD Integration trajectories typically have unit length, and hence as the step size $\Delta \tau$ decreases, the number of integration steps increases.

Pseudofermion Force

- Each time we act with $V_{S}(\Delta \tau)$ we need to evaluate the pseudofermion force term,

$$
F_{\mathrm{pf}}=\frac{\delta S_{\mathrm{pf}}}{\delta U}
$$

- This involves inverting the fermion matrix, and hence is expensive!
- However, for split actions $S=S_{1}+S_{2}$ we can use a multiple time scale integration scheme (nested leapfrog),

$$
\begin{gathered}
V(\Delta \tau)=V_{2}\left(\frac{\Delta \tau}{2}\right)\left[V_{1}\left(\frac{\Delta \tau}{m}\right)\right]^{m} V_{2}\left(\frac{\Delta \tau}{2}\right), \\
V_{1}(\Delta \tau)=V_{S_{1}}\left(\frac{\Delta \tau}{2}\right) V_{T}(\Delta \tau) V_{S_{1}}\left(\frac{\Delta \tau}{2}\right), \quad V_{2}=V_{S_{2}}(\Delta \tau) .
\end{gathered}
$$

Pseudofermion Force

- Each time we act with $V_{S}(\Delta \tau)$ we need to evaluate the pseudofermion force term,

$$
F_{\mathrm{pf}}=\frac{\delta S_{\mathrm{pf}}}{\delta U}
$$

- This involves inverting the fermion matrix, and hence is expensive!
- However, for split actions $S=S_{1}+S_{2}$ we can use a multiple time scale integration scheme (nested leapfrog),

$$
V(\Delta \tau)=V_{2}\left(\frac{\Delta \tau}{2}\right)\left[V_{1}\left(\frac{\Delta \tau}{m}\right)\right]^{m} V_{2}\left(\frac{\Delta \tau}{2}\right)
$$

$$
V_{1}(\Delta \tau)=V_{S_{1}}\left(\frac{\Delta \tau}{2}\right) V_{T}(\Delta \tau) V_{S_{1}}\left(\frac{\Delta \tau}{2}\right), \quad V_{2}=V_{S_{2}}(\Delta \tau)
$$

Pseudofermion Force

- Each time we act with $V_{S}(\Delta \tau)$ we need to evaluate the pseudofermion force term,

$$
F_{\mathrm{pf}}=\frac{\delta S_{\mathrm{pf}}}{\delta U}
$$

- This involves inverting the fermion matrix, and hence is expensive!
- However, for split actions $S=S_{1}+S_{2}$ we can use a multiple time scale integration scheme (nested leapfrog),

$$
\begin{gathered}
V(\Delta \tau)=V_{2}\left(\frac{\Delta \tau}{2}\right)\left[V_{1}\left(\frac{\Delta \tau}{m}\right)\right]^{m} V_{2}\left(\frac{\Delta \tau}{2}\right), \\
V_{1}(\Delta \tau)=V_{S_{1}}\left(\frac{\Delta \tau}{2}\right) V_{T}(\Delta \tau) V_{S_{1}}\left(\frac{\Delta \tau}{2}\right), \quad V_{2}=V_{S_{2}}(\Delta \tau) .
\end{gathered}
$$

Multiple Time Scales

- Multiple time scale integration is effective when the force term F_{1} due to S_{1} is cheap to evaluate compared to F_{2} (that of S_{2}).
- However, as the step-size for S_{2} is larger, we also require that the size of the force term for S_{2} is relatively small compared to that of S_{1}.
- The gauge force F_{g} is cheap compared to the pseudofermion force F_{pf}, and at heavy quark masses $F_{\mathrm{g}}>F_{\mathrm{pf}}$, but at light quark masses the UV fluctuations in the pseudo fermion force become too large for multiple time scales to be effective.
- This is where polynomial filtering steps in.

Multiple Time Scales

- Multiple time scale integration is effective when the force term F_{1} due to S_{1} is cheap to evaluate compared to F_{2} (that of S_{2}).
- However, as the step-size for S_{2} is larger, we also require that the size of the force term for S_{2} is relatively small compared to that of S_{1}.
- The gauge force F_{g} is cheap compared to the pseudofermion force F_{pf}, and at heavy quark masses $F_{\mathrm{g}}>F_{\mathrm{pf}}$, but at light quark masses the UV fluctuations in the pseudo fermion force become too large for multiple time scales to be effective.
- This is where polynomial filtering steps in.

Multiple Time Scales

- Multiple time scale integration is effective when the force term F_{1} due to S_{1} is cheap to evaluate compared to F_{2} (that of S_{2}).
- However, as the step-size for S_{2} is larger, we also require that the size of the force term for S_{2} is relatively small compared to that of S_{1}.
- The gauge force F_{g} is cheap compared to the pseudofermion force F_{pf}, and at heavy quark masses $F_{\mathrm{g}}>F_{\mathrm{pf}}$, but at light quark masses the UV fluctuations in the pseudo fermion force become too large for multiple time scales to be effective.
- This is where polynomial filtering steps in.

Multiple Time Scales

- Multiple time scale integration is effective when the force term F_{1} due to S_{1} is cheap to evaluate compared to F_{2} (that of S_{2}).
- However, as the step-size for S_{2} is larger, we also require that the size of the force term for S_{2} is relatively small compared to that of S_{1}.
- The gauge force F_{g} is cheap compared to the pseudofermion force F_{pf}, and at heavy quark masses $F_{\mathrm{g}}>F_{\mathrm{pf}}$, but at light quark masses the UV fluctuations in the pseudo fermion force become too large for multiple time scales to be effective.
- This is where polynomial filtering steps in.

Polynomial Filtering

- We can use a polynomial filter $\mathcal{P}=\mathcal{P}(M)$ to separate the ultraviolet and infrared physics in the pseudofermion force,

$$
\begin{gathered}
S_{\text {poly }}=\chi^{\dagger} \mathcal{P} \chi, \\
S_{\text {pf }}=\phi^{\dagger}(M \mathcal{P})^{-1} \phi
\end{gathered}
$$

- Recall $M=D_{\mathrm{w}}^{+} D_{\mathrm{w}}$ is Hermitian positive definite.
- As $S_{\text {poly }}$ is fast to evaluate compared to $S_{\text {pf }}$ we split the action in the following way,

$$
S_{1}=S_{\mathrm{g}}+S_{\text {poly }}, \quad S_{2}=S_{\mathrm{pf}}
$$

- If $\mathcal{P} \approx 1 / z$ then it will capture the short-distance physics in $S_{\text {poly }}$ and act as a UV filter in S_{pf}.

Polynomial Filtering

- We can use a polynomial filter $\mathcal{P}=\mathcal{P}(M)$ to separate the ultraviolet and infrared physics in the pseudofermion force,

$$
\begin{gathered}
S_{\text {poly }}=\chi^{\dagger} \mathcal{P} \chi, \\
S_{\text {pf }}=\phi^{\dagger}(M \mathcal{P})^{-1} \phi
\end{gathered}
$$

- Recall $M=D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}$ is Hermitian positive definite.
- As $S_{\text {poly }}$ is fast to evaluate compared to $S_{\text {pf }}$ we split the action in the following way,

$$
S_{1}=S_{\mathrm{g}}+S_{\text {poly },} \quad S_{2}=S_{p f}
$$

- If $\mathcal{P} \approx 1 / z$ then it will capture the short-distance physics in $S_{\text {poly }}$ and act as a UV filter in S_{pf}.

Polynomial Filtering

- We can use a polynomial filter $\mathcal{P}=\mathcal{P}(M)$ to separate the ultraviolet and infrared physics in the pseudofermion force,

$$
\begin{gathered}
S_{\text {poly }}=\chi^{\dagger} \mathcal{P} \chi, \\
S_{\text {pf }}=\phi^{\dagger}(M \mathcal{P})^{-1} \phi
\end{gathered}
$$

- Recall $M=D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}$ is Hermitian positive definite.
- As $S_{\text {poly }}$ is fast to evaluate compared to $S_{\text {pf }}$ we split the action in the following way,

$$
S_{1}=S_{\mathrm{g}}+S_{\mathrm{poly}}, \quad S_{2}=S_{\mathrm{pf}}
$$

- If $\mathcal{P} \approx 1 / z$ then it will capture the short-distance physics in $S_{\text {poly }}$ and act as a UV filter in S_{pf}.

Polynomial Filtering

- We can use a polynomial filter $\mathcal{P}=\mathcal{P}(M)$ to separate the ultraviolet and infrared physics in the pseudofermion force,

$$
\begin{gathered}
S_{\text {poly }}=\chi^{\dagger} \mathcal{P} \chi, \\
S_{\text {pf }}=\phi^{\dagger}(M \mathcal{P})^{-1} \phi
\end{gathered}
$$

- Recall $M=D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}$ is Hermitian positive definite.
- As $S_{\text {poly }}$ is fast to evaluate compared to $S_{\text {pf }}$ we split the action in the following way,

$$
S_{1}=S_{\mathrm{g}}+S_{\text {poly }}, \quad S_{2}=S_{\mathrm{pf}}
$$

- If $\mathcal{P} \approx 1 / z$ then it will capture the short-distance physics in $S_{\text {poly }}$ and act as a UV filter in $S_{\text {pf }}$.

Fermionic Determinant

- Note that the fermionic determinant is unchanged by the introduction of the polynomial filter.
- To see this we note that

$$
\begin{aligned}
& \int \mathcal{D} \phi^{+} \mathcal{D} \phi \mathcal{D} \chi^{\dagger} \mathcal{D} \chi e^{-\int d^{4} x} \chi^{\dagger} \mathcal{P} \chi+\phi^{\dagger}(x)(M \mathcal{P})^{-1} \phi(x) \\
& =\frac{\operatorname{det} \mathcal{P}}{\operatorname{det}(M \mathcal{P})}=\frac{1}{\operatorname{det} M^{-1}}=\operatorname{det} M
\end{aligned}
$$

- In the limit as the order of the polynomial $n \rightarrow \infty$ we have $M \mathcal{P} \rightarrow 1$ and $\mathcal{P}(M) \rightarrow M^{-1}$.
- In this way the polynomial term can reproduce as much or as little of the pseudofermion term as we want.

Fermionic Determinant

- Note that the fermionic determinant is unchanged by the introduction of the polynomial filter.
- To see this we note that

$$
\begin{aligned}
& \int \mathcal{D} \phi^{\dagger} \mathcal{D} \phi \mathcal{D} \chi^{\dagger} \mathcal{D} \chi e^{-\int d^{4} x \chi^{\dagger} \mathcal{P} \chi+\phi^{\dagger}(x)(M \mathcal{P})^{-1} \phi(x)} \\
& =\frac{\operatorname{det} \mathcal{P}}{\operatorname{det}(M \mathcal{P})}=\frac{1}{\operatorname{det} M^{-1}}=\operatorname{det} M
\end{aligned}
$$

- In the limit as the order of the polynomial $n \rightarrow \infty$ we have $M \mathcal{P} \rightarrow 1$ and $\mathcal{P}(M) \rightarrow M^{-1}$.
- In this way the polynomial term can reproduce as much or as little of the pseudofermion term as we want.

Fermionic Determinant

- Note that the fermionic determinant is unchanged by the introduction of the polynomial filter.
- To see this we note that

$$
\begin{aligned}
& \int \mathcal{D} \phi^{\dagger} \mathcal{D} \phi \mathcal{D} \chi^{\dagger} \mathcal{D} \chi e^{-\int d^{4} x} \chi^{\dagger} \mathcal{P} \chi+\phi^{\dagger}(x)(M \mathcal{P})^{-1} \phi(x) \\
& =\frac{\operatorname{det} \mathcal{P}}{\operatorname{det}(M \mathcal{P})}=\frac{1}{\operatorname{det} M^{-1}}=\operatorname{det} M
\end{aligned}
$$

- In the limit as the order of the polynomial $n \rightarrow \infty$ we have $M \mathcal{P} \rightarrow 1$ and $\mathcal{P}(M) \rightarrow M^{-1}$.
- In this way the polynomial term can reproduce as much or as little of the pseudofermion term as we want.

Fermionic Determinant

- Note that the fermionic determinant is unchanged by the introduction of the polynomial filter.
- To see this we note that

$$
\begin{aligned}
& \int \mathcal{D} \phi^{\dagger} \mathcal{D} \phi \mathcal{D} \chi^{\dagger} \mathcal{D} \chi e^{-\int d^{4} x \chi^{\dagger} \mathcal{P} \chi+\phi^{\dagger}(x)(M \mathcal{P})^{-1} \phi(x)} \\
& =\frac{\operatorname{det} \mathcal{P}}{\operatorname{det}(M \mathcal{P})}=\frac{1}{\operatorname{det} M^{-1}}=\operatorname{det} M
\end{aligned}
$$

- In the limit as the order of the polynomial $n \rightarrow \infty$ we have $M \mathcal{P} \rightarrow 1$ and $\mathcal{P}(M) \rightarrow M^{-1}$.
- In this way the polynomial term can reproduce as much or as little of the pseudofermion term as we want.

Chebyshev Filter

- An effective UV filter is the $n^{\text {th }}$ order Hermitian Chebyshev polynomial approximation to $1 / z$,

$$
\mathcal{P}_{n}(z)=a_{n} \prod_{k=1}^{n}\left(z-z_{k}\right) \approx \frac{1}{z},
$$

where we set $\theta_{k}=\frac{2 \pi k}{n+1}$ to obtain the roots

$$
z_{k}=\lambda\left[\frac{1}{2}(1+\epsilon)\left(1-\cos \theta_{k}\right)-i \sqrt{\epsilon} \sin \theta_{k}\right] .
$$

- The normalisation is defined by $z_{0}=\frac{1}{2}(1+\epsilon)$, with

$$
a_{n}=\frac{1}{z_{0} \prod_{k=1}^{n}\left(z_{0}-z_{k}\right)}
$$

- The approximation is good between $[\epsilon, 1]$, so we rescale with

Chebyshev Filter

- An effective UV filter is the $n^{\text {th }}$ order Hermitian Chebyshev polynomial approximation to $1 / z$,

$$
\mathcal{P}_{n}(z)=a_{n} \prod_{k=1}^{n}\left(z-z_{k}\right) \approx \frac{1}{z},
$$

where we set $\theta_{k}=\frac{2 \pi k}{n+1}$ to obtain the roots

$$
z_{k}=\lambda\left[\frac{1}{2}(1+\epsilon)\left(1-\cos \theta_{k}\right)-i \sqrt{\epsilon} \sin \theta_{k}\right] .
$$

- The normalisation is defined by $z_{0}=\frac{1}{2}(1+\epsilon)$, with

$$
a_{n}=\frac{1}{z_{0} \prod_{k=1}^{n}\left(z_{0}-z_{k}\right)}
$$

- The approximation is good between $[\epsilon, 1]$, so we rescale with

Chebyshev Filter

- An effective UV filter is the $n^{\text {th }}$ order Hermitian Chebyshev polynomial approximation to $1 / z$,

$$
\mathcal{P}_{n}(z)=a_{n} \prod_{k=1}^{n}\left(z-z_{k}\right) \approx \frac{1}{z},
$$

where we set $\theta_{k}=\frac{2 \pi k}{n+1}$ to obtain the roots

$$
z_{k}=\lambda\left[\frac{1}{2}(1+\epsilon)\left(1-\cos \theta_{k}\right)-i \sqrt{\epsilon} \sin \theta_{k}\right] .
$$

- The normalisation is defined by $z_{0}=\frac{1}{2}(1+\epsilon)$, with

$$
a_{n}=\frac{1}{z_{0} \prod_{k=1}^{n}\left(z_{0}-z_{k}\right)}
$$

- The approximation is good between $[\epsilon, 1]$, so we rescale with

$$
\lambda=1+8 \kappa .
$$

Chebyshev Roots

Chebyshev Roots

Intermediate Filter

- Using this property of the Chebyshev polynomials, we can add an intermediate filter to our action as a bridge between the high and low energy scales, e.g.

$$
\begin{gathered}
S_{1}=S_{\mathrm{g}} \\
S_{3}=\chi^{\dagger} \mathcal{P}_{m \mid n} \chi, \quad S_{2}=\chi^{\dagger} \mathcal{P}_{m} \chi, \\
\phi^{\dagger}\left(M \mathcal{P}_{n}\right)^{-1} \phi
\end{gathered}
$$

- \mathcal{P}_{n} denotes the Chebyshev polynomial of order n.
- $\mathcal{P}_{m \mid n}$ is defined so that $\mathcal{P}_{n}=\mathcal{P}_{m} \mathcal{P}_{m \mid n}$.
- This allows us to perform fermion matrix inversions even less frequently.
- This may(?) be more efficient than a single filter algorithm.
- Note: filter implementation makes use of multi-shift linear solvers for efficiency.

Intermediate Filter

- Using this property of the Chebyshev polynomials, we can add an intermediate filter to our action as a bridge between the high and low energy scales, e.g.

$$
\begin{gathered}
S_{1}=S_{\mathrm{g}} \\
S_{3}=\chi^{\dagger} \mathcal{P}_{m \mid n} \chi, \quad S_{4}=\chi^{\dagger} \mathcal{P}_{m} \chi, \\
\phi^{\dagger}\left(M \mathcal{P}_{n}\right)^{-1} \phi
\end{gathered}
$$

- \mathcal{P}_{n} denotes the Chebyshev polynomial of order n.
- $\mathcal{P}_{m \mid n}$ is defined so that $\mathcal{P}_{n}=\mathcal{P}_{m} \mathcal{P}_{m \mid n}$.
- This allows us to perform fermion matrix inversions even less frequently.
- This may(?) be more efficient than a single filter algorithm.
- Note: filter implementation makes use of multi-shift linear solvers for efficiency.

Intermediate Filter

- Using this property of the Chebyshev polynomials, we can add an intermediate filter to our action as a bridge between the high and low energy scales, e.g.

$$
\begin{array}{cc}
S_{1}=S_{\mathrm{g}} & S_{2}=\chi^{\dagger} \mathcal{P}_{m} \chi, \\
S_{3}=\chi^{\dagger} \mathcal{P}_{m \mid n} \chi, & S_{4}=\phi^{+}\left(M \mathcal{P}_{n}\right)^{-1} \phi
\end{array}
$$

- \mathcal{P}_{n} denotes the Chebyshev polynomial of order n.
- $\mathcal{P}_{m \mid n}$ is defined so that $\mathcal{P}_{n}=\mathcal{P}_{m} \mathcal{P}_{m \mid n}$.
- This allows us to perform fermion matrix inversions even less frequently.
- This may(?) be more efficient than a single filter algorithm.
- Note: filter implementation makes use of multi-shift linear solvers for efficiency.

Intermediate Filter

- Using this property of the Chebyshev polynomials, we can add an intermediate filter to our action as a bridge between the high and low energy scales, e.g.

$$
\begin{gathered}
S_{1}=S_{\mathrm{g}} \\
S_{3}=\chi^{\dagger} \mathcal{P}_{m \mid n} \chi, \quad S_{2}=\chi^{\dagger} \mathcal{P}_{m} \chi, \phi^{+}\left(M \mathcal{P}_{n}\right)^{-1} \phi
\end{gathered}
$$

- \mathcal{P}_{n} denotes the Chebyshev polynomial of order n.
- $\mathcal{P}_{m \mid n}$ is defined so that $\mathcal{P}_{n}=\mathcal{P}_{m} \mathcal{P}_{m \mid n}$.
- This allows us to perform fermion matrix inversions even less frequently.
- This may(?) be more efficient than a single filter algorithm.
- Note: filter implementation makes use of multi-shift linear solvers for efficiency.

Intermediate Filter

- Using this property of the Chebyshev polynomials, we can add an intermediate filter to our action as a bridge between the high and low energy scales, e.g.

$$
\begin{array}{cc}
S_{1}=S_{\mathrm{g}} & S_{2}=\chi^{\dagger} \mathcal{P}_{m} \chi \\
S_{3}=\chi^{\dagger} \mathcal{P}_{m \mid n} \chi, & S_{4}=\phi^{\dagger}\left(M \mathcal{P}_{n}\right)^{-1} \phi
\end{array}
$$

- \mathcal{P}_{n} denotes the Chebyshev polynomial of order n.
- $\mathcal{P}_{m \mid n}$ is defined so that $\mathcal{P}_{n}=\mathcal{P}_{m} \mathcal{P}_{m \mid n}$.
- This allows us to perform fermion matrix inversions even less frequently.
- This may(?) be more efficient than a single filter algorithm.
- Note: filter implementation makes use of multi-shift linear solvers for efficiency.

Intermediate Filter

- Using this property of the Chebyshev polynomials, we can add an intermediate filter to our action as a bridge between the high and low energy scales, e.g.

$$
\begin{array}{cc}
S_{1}=S_{\mathrm{g}} & S_{2}=\chi^{\dagger} \mathcal{P}_{m} \chi \\
S_{3}=\chi^{\dagger} \mathcal{P}_{m \mid n} \chi, & S_{4}=\phi^{\dagger}\left(M \mathcal{P}_{n}\right)^{-1} \phi
\end{array}
$$

- \mathcal{P}_{n} denotes the Chebyshev polynomial of order n.
- $\mathcal{P}_{m \mid n}$ is defined so that $\mathcal{P}_{n}=\mathcal{P}_{m} \mathcal{P}_{m \mid n}$.
- This allows us to perform fermion matrix inversions even less frequently.
- This may(?) be more efficient than a single filter algorithm.
- Note: filter implementation makes use of multi-shift linear solvers for efficiency.

Integration Scheme

- With a second filter, we have four different scales, five (or more) if we are doing a $2+1$ flavour simulation.
- Nested leapfrog is too cumbersome for fine tuning these scales.
- We make use of the fact that $V_{i}=V_{S_{i}}$ all commute to introduce a generalised integration scheme.
- If N_{i} is the number of integration steps per trajectory, then nested leapfrog requires

$$
N_{i} \mid N_{i-1} \forall i
$$

- The new integration scheme requires only that

$$
N_{i} \mid N_{1} \forall i
$$

Integration Scheme

- With a second filter, we have four different scales, five (or more) if we are doing a $2+1$ flavour simulation.
- Nested leapfrog is too cumbersome for fine tuning these scales.
- We make use of the fact that $V_{i}=V_{S_{i}}$ all commute to introduce a generalised integration scheme.
- If N_{i} is the number of integration steps per trajectory, then nested leapfrog requires

$$
N_{i} \mid N_{i-1} \forall i
$$

- The new integration scheme requires only that

Integration Scheme

- With a second filter, we have four different scales, five (or more) if we are doing a $2+1$ flavour simulation.
- Nested leapfrog is too cumbersome for fine tuning these scales.
- We make use of the fact that $V_{i}=V_{S_{i}}$ all commute to introduce a generalised integration scheme.
- If N_{i} is the number of integration steps per trajectory, then nested leapfrog requires

$$
N_{i} \mid N_{i-1} \forall i
$$

- The new integration scheme requires only that

Integration Scheme

- With a second filter, we have four different scales, five (or more) if we are doing a $2+1$ flavour simulation.
- Nested leapfrog is too cumbersome for fine tuning these scales.
- We make use of the fact that $V_{i}=V_{S_{i}}$ all commute to introduce a generalised integration scheme.
- If N_{i} is the number of integration steps per trajectory, then nested leapfrog requires

$$
N_{i} \mid N_{i-1} \forall i
$$

- The new integration scheme requires only that

Integration Scheme

- With a second filter, we have four different scales, five (or more) if we are doing a $2+1$ flavour simulation.
- Nested leapfrog is too cumbersome for fine tuning these scales.
- We make use of the fact that $V_{i}=V_{S_{i}}$ all commute to introduce a generalised integration scheme.
- If N_{i} is the number of integration steps per trajectory, then nested leapfrog requires

$$
N_{i} \mid N_{i-1} \forall i
$$

- The new integration scheme requires only that

$$
N_{i} \mid N_{1} \forall i
$$

Generalised Leapfrog

- Set $N=N_{1}$ and set $n_{i}=N_{1} / N_{i}$
- The generalised leapfrog algorithm is then:
- Can show using BCH that it has errors of $\mathcal{O}\left[(\Delta \tau)^{3}\right]$.
- Reduces to nested leapfrog for $N_{i} \mid N_{i-1}$.

Generalised Leapfrog

- Set $N=N_{1}$ and set $n_{i}=N_{1} / N_{i}$
- The generalised leapfrog algorithm is then:
(1) Perform an initial half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
(2) Loop over $j=1$ to $N-1$
(3) Apply $V_{T}(\Delta \tau)$ to update U.
(4) Perform a final half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
- Can show using BCH that it has errors of $\mathcal{O}\left[(\Delta \tau)^{3}\right]$.
- Reduces to nested leapfrog for $N_{i} \mid N_{i-1}$.

Generalised Leapfrog

- Set $N=N_{1}$ and set $n_{i}=N_{1} / N_{i}$
- The generalised leapfrog algorithm is then:
(1) Perform an initial half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
(2) Loop over $j=1$ to $N-1$
(3) Apply $V_{T}(\Delta \tau)$ to update U.
(4) Perform a final half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
- Can show using BCH that it has errors of $\mathcal{O}\left[(\Delta \tau)^{3}\right]$.
- Reduces to nested leapfrog for $N_{i} \mid N_{i-1}$.

Generalised Leapfrog

- Set $N=N_{1}$ and set $n_{i}=N_{1} / N_{i}$
- The generalised leapfrog algorithm is then:
(1) Perform an initial half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
(2. Loop over $j=1$ to $N-1$
- Apply $V_{T}(\Delta \tau)$ to update U.
- If $\left\{0 \equiv j \bmod N_{i}\right\}$ apply $V_{i}\left(\Delta \tau_{i}\right)$ to update P
(3) Apply $V_{T}(\Delta \tau)$ to update U.
(4) Perform a final half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
- Can show using BCH that it has errors of $\mathcal{O}\left[(\Delta \tau)^{3}\right]$.
- Reduces to nested leapfrog for $N_{i} \mid N_{i-1}$.

Generalised Leapfrog

- Set $N=N_{1}$ and set $n_{i}=N_{1} / N_{i}$
- The generalised leapfrog algorithm is then:
(1) Perform an initial half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
(2) Loop over $j=1$ to $N-1$
- Apply $V_{T}(\Delta \tau)$ to update U.
- If $\left\{0 \equiv j \bmod N_{i}\right\}$ apply $V_{i}\left(\Delta \tau_{i}\right)$ to update P
(3) Apply $V_{T}(\Delta \tau)$ to update U.
(4) Perform a final half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
- Can show using BCH that it has errors of $\mathcal{O}\left[(\Delta \tau)^{3}\right]$.
- Reduces to nested leapfrog for $N_{i} \mid N_{i-1}$.

Generalised Leapfrog

- Set $N=N_{1}$ and set $n_{i}=N_{1} / N_{i}$
- The generalised leapfrog algorithm is then:
(1) Perform an initial half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
(2) Loop over $j=1$ to $N-1$
- Apply $V_{T}(\Delta \tau)$ to update U.
- If $\left\{0 \equiv j \bmod N_{i}\right\}$ apply $V_{i}\left(\Delta \tau_{i}\right)$ to update P
(3) Apply $V_{T}(\Delta \tau)$ to update U.
(4) Perform a final half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
- Can show using BCH that it has errors of $\mathcal{O}\left[(\Delta \tau)^{3}\right]$.
- Reduces to nested leapfrog for $N_{i} \mid N_{i-1}$.

Generalised Leapfrog

- Set $N=N_{1}$ and set $n_{i}=N_{1} / N_{i}$
- The generalised leapfrog algorithm is then:
(1) Perform an initial half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
(2) Loop over $j=1$ to $N-1$
- Apply $V_{T}(\Delta \tau)$ to update U.
- If $\left\{0 \equiv j \bmod N_{i}\right\}$ apply $V_{i}\left(\Delta \tau_{i}\right)$ to update P
(3) Apply $V_{T}(\Delta \tau)$ to update U.
- Can show using BCH that it has errors of $\mathcal{O}\left[(\Delta \tau)^{3}\right]$.
- Reduces to nested leapfrog for $N_{i} \mid N_{i-1}$.

Generalised Leapfrog

- Set $N=N_{1}$ and set $n_{i}=N_{1} / N_{i}$
- The generalised leapfrog algorithm is then:
(1) Perform an initial half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
(2) Loop over $j=1$ to $N-1$
- Apply $V_{T}(\Delta \tau)$ to update U.
- If $\left\{0 \equiv j \bmod N_{i}\right\}$ apply $V_{i}\left(\Delta \tau_{i}\right)$ to update P
(3) Apply $V_{T}(\Delta \tau)$ to update U.
(4) Perform a final half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
- Can show using BCH that it has errors of $\mathcal{O}\left[(\Delta \tau)^{3}\right]$.
- Reduces to nested leapfrog for $N_{i} \mid N_{i-1}$.

Generalised Leapfrog

- Set $N=N_{1}$ and set $n_{i}=N_{1} / N_{i}$
- The generalised leapfrog algorithm is then:
(1) Perform an initial half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
(2) Loop over $j=1$ to $N-1$
- Apply $V_{T}(\Delta \tau)$ to update U.
- If $\left\{0 \equiv j \bmod N_{i}\right\}$ apply $V_{i}\left(\Delta \tau_{i}\right)$ to update P
(3) Apply $V_{T}(\Delta \tau)$ to update U.
(4) Perform a final half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
- Can show using BCH that it has errors of $\mathcal{O}\left[(\Delta \tau)^{3}\right]$.
- Reduces to nested leapfrog for $N_{i} \mid N_{i-1}$.

Generalised Leapfrog

- Set $N=N_{1}$ and set $n_{i}=N_{1} / N_{i}$
- The generalised leapfrog algorithm is then:
(1) Perform an initial half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
(2) Loop over $j=1$ to $N-1$
- Apply $V_{T}(\Delta \tau)$ to update U.
- If $\left\{0 \equiv j \bmod N_{i}\right\}$ apply $V_{i}\left(\Delta \tau_{i}\right)$ to update P
(3) Apply $V_{T}(\Delta \tau)$ to update U.
(4) Perform a final half-step $V_{i}\left(\frac{1}{2} \Delta \tau_{i}\right)$ updating P for all i.
- Can show using BCH that it has errors of $\mathcal{O}\left[(\Delta \tau)^{3}\right]$.
- Reduces to nested leapfrog for $N_{i} \mid N_{i-1}$.

Pseudofermion force vs n_{q}, with $\mathrm{n}_{\mathrm{p}}=4$

Results $\kappa=0.1575, m_{\pi}=665 \mathrm{MeV}$

Results $\kappa=0.15825, m_{\pi} \approx 400 \mathrm{MeV}$

Single Flavour QCD

- Single fermion flavours can be simulated using a rational polynomial,

$$
\mathcal{R}(M)=\sum \frac{a_{i}}{M+b_{i}} \approx \frac{1}{\sqrt{M}}
$$

(or some other method e.g. polynomial approx. to $1 / \sqrt{M}$).

- Recall $M=D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}$ is Hermitian positive definite.
- Can we extend our polynomial filtering technique to single flavour simulations?
- Suppose we have a polynomial \mathcal{Q} such that

$$
\mathcal{Q}(M) \approx \frac{1}{\sqrt{M}}
$$

- E.g. numerically calculate coefficients for Chebyshev approximation to $1 / \sqrt{z}$, then calculate the roots...

Single Flavour QCD

- Single fermion flavours can be simulated using a rational polynomial,

$$
\mathcal{R}(M)=\sum \frac{a_{i}}{M+b_{i}} \approx \frac{1}{\sqrt{M}}
$$

(or some other method e.g. polynomial approx. to $1 / \sqrt{M}$).

- Recall $M=D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}$ is Hermitian positive definite.
- Can we extend our polynomial filtering technique to single flavour simulations?
- Suppose we have a polynomial Q such that

$$
\mathcal{Q}(M) \approx \frac{1}{\sqrt{M}}
$$

- E.g. numerically calculate coefficients for Chebyshev approximation to $1 / \sqrt{z}$, then calculate the roots...

Single Flavour QCD

- Single fermion flavours can be simulated using a rational polynomial,

$$
\mathcal{R}(M)=\sum \frac{a_{i}}{M+b_{i}} \approx \frac{1}{\sqrt{M}}
$$

(or some other method e.g. polynomial approx. to $1 / \sqrt{M}$).

- Recall $M=D_{\mathrm{w}}^{+} D_{\mathrm{w}}$ is Hermitian positive definite.
- Can we extend our polynomial filtering technique to single flavour simulations?
- Suppose we have a polynomial \mathcal{Q} such that

- E.g. numerically calculate coefficients for Chebyshev approximation to $1 / \sqrt{z}$, then calculate the roots...

Single Flavour QCD

- Single fermion flavours can be simulated using a rational polynomial,

$$
\mathcal{R}(M)=\sum \frac{a_{i}}{M+b_{i}} \approx \frac{1}{\sqrt{M}}
$$

(or some other method e.g. polynomial approx. to $1 / \sqrt{M}$).

- Recall $M=D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}$ is Hermitian positive definite.
- Can we extend our polynomial filtering technique to single flavour simulations?
- Suppose we have a polynomial \mathcal{Q} such that

$$
\mathcal{Q}(M) \approx \frac{1}{\sqrt{M}}
$$

- E.g. numerically calculate coefficients for Chebyshev approximation to $1 / \sqrt{z}$, then calculate the roots...

Single Flavour QCD

- Single fermion flavours can be simulated using a rational polynomial,

$$
\mathcal{R}(M)=\sum \frac{a_{i}}{M+b_{i}} \approx \frac{1}{\sqrt{M}}
$$

(or some other method e.g. polynomial approx. to $1 / \sqrt{M}$).

- Recall $M=D_{\mathrm{w}}^{\dagger} D_{\mathrm{w}}$ is Hermitian positive definite.
- Can we extend our polynomial filtering technique to single flavour simulations?
- Suppose we have a polynomial \mathcal{Q} such that

$$
\mathcal{Q}(M) \approx \frac{1}{\sqrt{M}}
$$

- E.g. numerically calculate coefficients for Chebyshev approximation to $1 / \sqrt{z}$, then calculate the roots...

Single Flavour Polynomial Filter

- Then we can write

$$
\begin{gathered}
S_{\mathrm{poly1f}}=\chi_{1 \mathrm{f}}^{\dagger} \mathcal{Q} \chi_{1 \mathrm{f}} \\
S_{1 \mathrm{pf}}=\phi_{1 \mathrm{f}}^{\dagger} \mathcal{R} \mathcal{Q}^{-1} \phi_{1 \mathrm{f}}
\end{gathered}
$$

- As before, the determinant is unaffected by the addition of the polynomial filter.
- Could add an intermediate filter for the single flavour as before but at the strange quark mass probably not worth it.
- Knowing roots of \mathcal{Q} is needed to rewrite $\mathcal{R} \mathcal{Q}^{-1}$ as a sum over poles.
- This allows the use of efficient linear multi-shift system solvers.

Single Flavour Polynomial Filter

- Then we can write

$$
\begin{gathered}
S_{\mathrm{poly1f}}=\chi_{1 \mathrm{f}}^{\dagger} \mathcal{Q} \chi_{1 \mathrm{f}} \\
S_{1 \mathrm{pf}}=\phi_{1 \mathrm{f}}^{\dagger} \mathcal{R} \mathcal{Q}^{-1} \phi_{1 \mathrm{f}}
\end{gathered}
$$

- As before, the determinant is unaffected by the addition of the polynomial filter.
- Could add an intermediate filter for the single flavour as before but at the strange quark mass probably not worth it.
- Knowing roots of \mathcal{Q} is needed to rewrite $\mathcal{R} \mathcal{Q}^{-1}$ as a sum over poles.
- This allows the use of efficient linear multi-shift system solvers.

Single Flavour Polynomial Filter

- Then we can write

$$
\begin{gathered}
S_{\text {poly1f }}=\chi_{1 \mathrm{f}}^{\dagger} \mathcal{Q} \chi_{1 \mathrm{f}} \\
S_{1 \mathrm{pf}}=\phi_{1 \mathrm{f}}^{\dagger} \mathcal{R} \mathcal{Q}^{-1} \phi_{1 \mathrm{f}}
\end{gathered}
$$

- As before, the determinant is unaffected by the addition of the polynomial filter.
- Could add an intermediate filter for the single flavour as before but at the strange quark mass probably not worth it.
- Knowing roots of \mathcal{Q} is needed to rewrite $\mathcal{R} \mathcal{Q}^{-1}$ as a sum over poles.
- This allows the use of efficient linear multi-shift system solvers.

Single Flavour Polynomial Filter

- Then we can write

$$
\begin{gathered}
S_{\text {poly1f }}=\chi_{1 \mathrm{f}}^{\dagger} \mathcal{Q} \chi_{1 \mathrm{f}} \\
S_{1 \mathrm{pf}}=\phi_{1 \mathrm{f}}^{\dagger} \mathcal{R} \mathcal{Q}^{-1} \phi_{1 \mathrm{f}}
\end{gathered}
$$

- As before, the determinant is unaffected by the addition of the polynomial filter.
- Could add an intermediate filter for the single flavour as before but at the strange quark mass probably not worth it.
- Knowing roots of \mathcal{Q} is needed to rewrite $\mathcal{R} \mathcal{Q}^{-1}$ as a sum over poles.
- This allows the use of efficient linear multi-shift system solvers.

Single Flavour Polynomial Filter

- Then we can write

$$
\begin{gathered}
S_{\mathrm{poly1f}}=\chi_{1 \mathrm{f}}^{\dagger} \mathcal{Q} \chi_{1 \mathrm{f}} \\
S_{1 \mathrm{pf}}=\phi_{1 \mathrm{f}}^{\dagger} \mathcal{R} \mathcal{Q}^{-1} \phi_{1 \mathrm{f}}
\end{gathered}
$$

- As before, the determinant is unaffected by the addition of the polynomial filter.
- Could add an intermediate filter for the single flavour as before but at the strange quark mass probably not worth it.
- Knowing roots of \mathcal{Q} is needed to rewrite $\mathcal{R} \mathcal{Q}^{-1}$ as a sum over poles.
- This allows the use of efficient linear multi-shift system solvers.

Alternative Approximation

- Note that $\mathcal{R} \mathcal{Q}^{-1} \approx 1$.
- May be advantageous to simply use the Remes algorithm to get a rational approximation to

$$
\tilde{\mathcal{R}}(z) \approx f(z)=\frac{1}{\sqrt{z Q}(z)}
$$

and use that instead of the product $\mathcal{R} \mathcal{Q}^{-1}$.

- What are the possible advantages?
- The rational approximation to f might have improved precision for a given order.
- Smallest shift for $\tilde{\mathcal{R}}$ expressed as a sum over poles might be bigger.

Alternative Approximation

- Note that $\mathcal{R} \mathcal{Q}^{-1} \approx 1$.
- May be advantageous to simply use the Remes algorithm to get a rational approximation to

$$
\tilde{\mathcal{R}}(z) \approx f(z)=\frac{1}{\sqrt{z} \mathcal{Q}(z)}
$$

and use that instead of the product $\mathcal{R} \mathcal{Q}^{-1}$.

- What are the possible advantages?
- The rational approximation to f might have improved precision for a given order.
- Smallest shift for $\tilde{\mathcal{R}}$ expressed as a sum over poles might be bigger.

Alternative Approximation

- Note that $\mathcal{R} \mathcal{Q}^{-1} \approx 1$.
- May be advantageous to simply use the Remes algorithm to get a rational approximation to

$$
\tilde{\mathcal{R}}(z) \approx f(z)=\frac{1}{\sqrt{z} \mathcal{Q}(z)}
$$

and use that instead of the product $\mathcal{R} \mathcal{Q}^{-1}$.

- What are the possible advantages?
- The rational approximation to f might have improved precision for a given order.
- Smallest shift for $\tilde{\mathcal{R}}$ expressed as a sum over poles might be bigger.

Alternative Approximation

- Note that $\mathcal{R} \mathcal{Q}^{-1} \approx 1$.
- May be advantageous to simply use the Remes algorithm to get a rational approximation to

$$
\tilde{\mathcal{R}}(z) \approx f(z)=\frac{1}{\sqrt{z} \mathcal{Q}(z)}
$$

and use that instead of the product $\mathcal{R} \mathcal{Q}^{-1}$.

- What are the possible advantages?
- The rational approximation to f might have improved precision for a given order.
- Smallest shift for $\tilde{\mathcal{R}}$ expressed as a sum over poles might be bigger.

Alternative Approximation

- Note that $\mathcal{R} \mathcal{Q}^{-1} \approx 1$.
- May be advantageous to simply use the Remes algorithm to get a rational approximation to

$$
\tilde{\mathcal{R}}(z) \approx f(z)=\frac{1}{\sqrt{z} \mathcal{Q}(z)}
$$

and use that instead of the product $\mathcal{R} \mathcal{Q}^{-1}$.

- What are the possible advantages?
- The rational approximation to f might have improved precision for a given order.
- Smallest shift for $\tilde{\mathcal{R}}$ expressed as a sum over poles might be bigger.

Alternative Approximation

- Note that $\mathcal{R} \mathcal{Q}^{-1} \approx 1$.
- May be advantageous to simply use the Remes algorithm to get a rational approximation to

$$
\tilde{\mathcal{R}}(z) \approx f(z)=\frac{1}{\sqrt{z} \mathcal{Q}(z)}
$$

and use that instead of the product $\mathcal{R} \mathcal{Q}^{-1}$.

- What are the possible advantages?
- The rational approximation to f might have improved precision for a given order.
- Smallest shift for $\tilde{\mathcal{R}}$ expressed as a sum over poles might be bigger.
\Longrightarrow Less iterations to solve.

Another Variant

- Recall that we used the Hermitian Chebyshev approximation to $1 / z$ in our two flavour polynomial filter.
- The non-Hermitian Chebyshev approximation $\mathcal{K}(z)$ to $1 / z$ has the same normalisation, but slightly different roots,

$$
y_{k}=d\left(1-\cos \theta_{k}\right)+i \sqrt{d^{2}-c^{2}} \sin \theta_{k} .
$$

- Valid for an elliptical region in the complex plane.
- So long as the spectrum of the non-Hermitian matrix D_{w} is within this ellipse, we can write

$$
\mathcal{K}\left(D_{\mathrm{w}}\right)=a_{n} \prod_{k=1}^{n / 2}\left(D_{\mathrm{w}}-y_{k}\right)\left(D_{\mathrm{w}}-y_{k}^{*}\right) \approx \frac{1}{D_{\mathrm{w}}}
$$

Another Variant

- Recall that we used the Hermitian Chebyshev approximation to $1 / z$ in our two flavour polynomial filter.
- The non-Hermitian Chebyshev approximation $\mathcal{K}(z)$ to $1 / z$ has the same normalisation, but slightly different roots,

$$
y_{k}=d\left(1-\cos \theta_{k}\right)+i \sqrt{d^{2}-c^{2}} \sin \theta_{k} .
$$

- Valid for an elliptical region in the complex plane.
- So long as the spectrum of the non-Hermitian matrix D_{w} is within this ellipse, we can write

Another Variant

- Recall that we used the Hermitian Chebyshev approximation to $1 / z$ in our two flavour polynomial filter.
- The non-Hermitian Chebyshev approximation $\mathcal{K}(z)$ to $1 / z$ has the same normalisation, but slightly different roots,

$$
y_{k}=d\left(1-\cos \theta_{k}\right)+i \sqrt{d^{2}-c^{2}} \sin \theta_{k} .
$$

- Valid for an elliptical region in the complex plane.
- So long as the spectrum of the non-Hermitian matrix D_{w} is within this ellipse, we can write

Another Variant

- Recall that we used the Hermitian Chebyshev approximation to $1 / z$ in our two flavour polynomial filter.
- The non-Hermitian Chebyshev approximation $\mathcal{K}(z)$ to $1 / z$ has the same normalisation, but slightly different roots,

$$
y_{k}=d\left(1-\cos \theta_{k}\right)+i \sqrt{d^{2}-c^{2}} \sin \theta_{k} .
$$

- Valid for an elliptical region in the complex plane.
- So long as the spectrum of the non-Hermitian matrix D_{w} is within this ellipse, we can write

$$
\mathcal{K}\left(D_{\mathrm{w}}\right)=a_{n} \prod_{k=1}^{n / 2}\left(D_{\mathrm{w}}-y_{k}\right)\left(D_{\mathrm{w}}-y_{k}^{*}\right) \approx \frac{1}{D_{\mathrm{w}}}
$$

Factoring the Polynomial

- Now construct a polynomial using only half the roots (say those with positive imaginary parts),

$$
\mathcal{K}_{+}\left(D_{\mathrm{w}}\right)=\sqrt{a_{n}} \prod_{k=1}^{n / 2}\left(D_{\mathrm{w}}-y_{k}\right)
$$

- We need the following two properties of determinants,

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det} A \operatorname{det} B \\
\operatorname{det} A^{+} & =(\operatorname{det} A)^{*}
\end{aligned}
$$

- Using these we can deduce that

$$
\operatorname{det} \mathcal{K}_{+}^{+}\left(D_{\mathrm{w}}\right) \mathcal{K}_{+}\left(D_{\mathrm{w}}\right)=\operatorname{det} \mathcal{K}\left(D_{\mathrm{w}}\right) \approx\left(\operatorname{det} D_{\mathrm{w}}\right)^{-1}
$$

- So long as $\operatorname{det} D_{\mathrm{w}}$ is real and positive, this is the correct weighting for a single fermion flavour.

Factoring the Polynomial

- Now construct a polynomial using only half the roots (say those with positive imaginary parts),

$$
\mathcal{K}_{+}\left(D_{\mathrm{w}}\right)=\sqrt{a_{n}} \prod_{k=1}^{n / 2}\left(D_{\mathrm{w}}-y_{k}\right)
$$

- We need the following two properties of determinants,

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det} A \operatorname{det} B \\
\operatorname{det} A^{\dagger} & =(\operatorname{det} A)^{*}
\end{aligned}
$$

- Using these we can deduce that

- So long as $\operatorname{det} D_{\mathrm{w}}$ is real and positive, this is the correct weighting for a single fermion flavour.

Factoring the Polynomial

- Now construct a polynomial using only half the roots (say those with positive imaginary parts),

$$
\mathcal{K}_{+}\left(D_{\mathrm{w}}\right)=\sqrt{a_{n}} \prod_{k=1}^{n / 2}\left(D_{\mathrm{w}}-y_{k}\right)
$$

- We need the following two properties of determinants,

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det} A \operatorname{det} B \\
\operatorname{det} A^{\dagger} & =(\operatorname{det} A)^{*}
\end{aligned}
$$

- Using these we can deduce that

$$
\operatorname{det} \mathcal{K}_{+}^{+}\left(D_{\mathrm{w}}\right) \mathcal{K}_{+}\left(D_{\mathrm{w}}\right)=\operatorname{det} \mathcal{K}\left(D_{\mathrm{w}}\right) \approx\left(\operatorname{det} D_{\mathrm{w}}\right)^{-1}
$$

- So long as $\operatorname{det} D_{\mathrm{w}}$ is real and positive, this is the correct weighting for a single fermion flavour.

Factoring the Polynomial

- Now construct a polynomial using only half the roots (say those with positive imaginary parts),

$$
\mathcal{K}_{+}\left(D_{\mathrm{w}}\right)=\sqrt{a_{n}} \prod_{k=1}^{n / 2}\left(D_{\mathrm{w}}-y_{k}\right)
$$

- We need the following two properties of determinants,

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det} A \operatorname{det} B \\
\operatorname{det} A^{+} & =(\operatorname{det} A)^{*}
\end{aligned}
$$

- Using these we can deduce that

$$
\operatorname{det} \mathcal{K}_{+}^{+}\left(D_{\mathrm{w}}\right) \mathcal{K}_{+}\left(D_{\mathrm{w}}\right)=\operatorname{det} \mathcal{K}\left(D_{\mathrm{w}}\right) \approx\left(\operatorname{det} D_{\mathrm{w}}\right)^{-1}
$$

- So long as $\operatorname{det} D_{\mathrm{w}}$ is real and positive, this is the correct weighting for a single fermion flavour.

The Action

- So we can the construct a polynomial filtered one-flavour action using \mathcal{K}_{+},

$$
\begin{gathered}
S_{\text {poly1f }}=\chi_{1 \mathrm{f}}^{\dagger} \mathcal{K}_{+}^{\dagger} \mathcal{K}_{+} \chi_{1 \mathrm{f}} \\
S_{1 \mathrm{pf}}=\phi_{1 \mathrm{f}}^{\dagger} \mathcal{W}^{\dagger}\left(D_{\mathrm{w}}\right) \mathcal{W}\left(D_{\mathrm{w}}\right) \phi_{1 \mathrm{f}}
\end{gathered}
$$

- Here, \mathcal{W} needs to be a rational polynomial approximation to $\left\{z \mathcal{K}_{+}^{*}(z) \mathcal{K}_{+}(z)\right\}^{-1}$.
- Should be able to obtain this by factoring $\mathcal{R}(z)$ the Zolotarev approximation to $1 / z$ and setting

$$
\mathcal{W}(z)=\mathcal{R}_{+}(z) \mathcal{K}_{+}^{-1}
$$

- At this point, it might be more efficient to take large n polynomial limit for \mathcal{K}_{+}, split it into two and do filtered polynomial HMC for the single flavour...

The Action

- So we can the construct a polynomial filtered one-flavour action using \mathcal{K}_{+},

$$
\begin{gathered}
S_{\text {poly1f }}=\chi_{1 \mathrm{f}}^{\dagger} \mathcal{K}_{+}^{\dagger} \mathcal{K}_{+} \chi_{1 \mathrm{f}} \\
S_{1 \mathrm{pf}}=\phi_{1 \mathrm{f}}^{\dagger} \mathcal{W}^{+}\left(D_{\mathrm{w}}\right) \mathcal{W}\left(D_{\mathrm{w}}\right) \phi_{1 \mathrm{f}}
\end{gathered}
$$

- Here, \mathcal{W} needs to be a rational polynomial approximation to $\left\{z \mathcal{K}_{+}^{*}(z) \mathcal{K}_{+}(z)\right\}^{-1}$.
- Should be able to obtain this by factoring $\mathcal{R}(z)$ the Zolotarev approximation to $1 / z$ and setting

$$
\mathcal{W}(z)=\mathcal{R}_{+}(z) \mathcal{K}_{+}^{-1}
$$

- At this point, it might be more efficient to take large n polynomial limit for \mathcal{K}_{+}, split it into two and do filtered polynomial HMC for the single flavour...

The Action

- So we can the construct a polynomial filtered one-flavour action using \mathcal{K}_{+},

$$
\begin{gathered}
S_{\text {poly1f }}=\chi_{1 \mathrm{f}}^{\dagger} \mathcal{K}_{+}^{\dagger} \mathcal{K}_{+} \chi_{1 \mathrm{f}} \\
S_{1 \mathrm{pf}}=\phi_{1 \mathrm{f}}^{\dagger} \mathcal{W}^{+}\left(D_{\mathrm{w}}\right) \mathcal{W}\left(D_{\mathrm{w}}\right) \phi_{1 \mathrm{f}}
\end{gathered}
$$

- Here, \mathcal{W} needs to be a rational polynomial approximation to $\left\{z \mathcal{K}_{+}^{*}(z) \mathcal{K}_{+}(z)\right\}^{-1}$.
- Should be able to obtain this by factoring $\mathcal{R}(z)$ the Zolotarev approximation to $1 / z$ and setting

$$
\mathcal{W}(z)=\mathcal{R}_{+}(z) \mathcal{K}_{+}^{-1}
$$

- At this point, it might be more efficient to take large n polynomial limit for \mathcal{K}_{+}, split it into two and do filtered polynomial HMC for the single flavour...

The Action

- So we can the construct a polynomial filtered one-flavour action using \mathcal{K}_{+},

$$
\begin{gathered}
S_{\text {poly1f }}=\chi_{1 \mathrm{f}}^{\dagger} \mathcal{K}_{+}^{\dagger} \mathcal{K}_{+} \chi_{1 \mathrm{f}} \\
S_{1 \mathrm{pf}}=\phi_{1 \mathrm{f}}^{\dagger} \mathcal{W}^{\dagger}\left(D_{\mathrm{w}}\right) \mathcal{W}\left(D_{\mathrm{w}}\right) \phi_{1 \mathrm{f}}
\end{gathered}
$$

- Here, \mathcal{W} needs to be a rational polynomial approximation to $\left\{z \mathcal{K}_{+}^{*}(z) \mathcal{K}_{+}(z)\right\}^{-1}$.
- Should be able to obtain this by factoring $\mathcal{R}(z)$ the Zolotarev approximation to $1 / z$ and setting

$$
\mathcal{W}(z)=\mathcal{R}_{+}(z) \mathcal{K}_{+}^{-1}
$$

- At this point, it might be more efficient to take large n polynomial limit for \mathcal{K}_{+}, split it into two and do filtered polynomial HMC for the single flavour...

Conclusions

- The use of a polynomial approximation to the inverse as a filter successfully separates the UV and IR pseudofermion dynamics.
- In combination with a generalise leapfrog algorithm we successfully reduce the cost of dynamical simulations.
- The generalised leapfrog algorithm is applicable to any multiple time scale integration scheme, far more flexible than nested leapfrog.
- Technique is not necessarily orthogonal to other improvements (e.g. DD, Hasenbuch trick).
- Polynomial filtering can also be extended to single flavour simulations.
- More results to come...

Conclusions

- The use of a polynomial approximation to the inverse as a filter successfully separates the UV and IR pseudofermion dynamics.
- In combination with a generalise leapfrog algorithm we successfully reduce the cost of dynamical simulations.
- The generalised leapfrog algorithm is applicable to any multiple time scale integration scheme, far more flexible than nested leapfrog.
- Technique is not necessarily orthogonal to other improvements (e.g. DD, Hasenbuch trick).
- Polynomial filtering can also be extended to single flavour simulations.
- More results to come...

Conclusions

- The use of a polynomial approximation to the inverse as a filter successfully separates the UV and IR pseudofermion dynamics.
- In combination with a generalise leapfrog algorithm we successfully reduce the cost of dynamical simulations.
- The generalised leapfrog algorithm is applicable to any multiple time scale integration scheme, far more flexible than nested leapfrog.
- Technique is not necessarily orthogonal to other improvements (e.g. DD, Hasenbuch trick).
- Polynomial filtering can also be extended to single flavour simulations.
- More results to come...

Conclusions

- The use of a polynomial approximation to the inverse as a filter successfully separates the UV and IR pseudofermion dynamics.
- In combination with a generalise leapfrog algorithm we successfully reduce the cost of dynamical simulations.
- The generalised leapfrog algorithm is applicable to any multiple time scale integration scheme, far more flexible than nested leapfrog.
- Technique is not necessarily orthogonal to other improvements (e.g. DD, Hasenbuch trick).
- Polynomial filtering can also be extended to single flavour simulations.
- More results to come...

Conclusions

- The use of a polynomial approximation to the inverse as a filter successfully separates the UV and IR pseudofermion dynamics.
- In combination with a generalise leapfrog algorithm we successfully reduce the cost of dynamical simulations.
- The generalised leapfrog algorithm is applicable to any multiple time scale integration scheme, far more flexible than nested leapfrog.
- Technique is not necessarily orthogonal to other improvements (e.g. DD, Hasenbuch trick).
- Polynomial filtering can also be extended to single flavour simulations.
- More results to come...

Conclusions

- The use of a polynomial approximation to the inverse as a filter successfully separates the UV and IR pseudofermion dynamics.
- In combination with a generalise leapfrog algorithm we successfully reduce the cost of dynamical simulations.
- The generalised leapfrog algorithm is applicable to any multiple time scale integration scheme, far more flexible than nested leapfrog.
- Technique is not necessarily orthogonal to other improvements (e.g. DD, Hasenbuch trick).
- Polynomial filtering can also be extended to single flavour simulations.
- More results to come...

