
Polynomial Filtering for a Single Fermion
Flavour in Lattice QCD

Waseem Kamleh and Michael J. Peardon

CSSM & UNIVERSITY OF ADELAIDE

T(R)OPICAL QCD II,
September 26th – October 1st, 2010

Introduction

• The dominant expense of Lattice QCD is generating
dynamical gauge field configurations.

• Hybrid Monte Carlo (HMC) is still the most used
algorithm for generating dynamical configurations.

• There have been many improvements to the basic HMC
algorithm developed over the years.

• A partial list of “multi-scale” type algorithmic
improvements:

• Domain Decomposition method (Luscher).
• Mass Preconditioning (Hasenbuch).
• Polynomial Filtering (Peardon & Sexton, Peardon & WK).

• We begin by reviewing the fundamentals of the HMC
algorithm.

Introduction

• The dominant expense of Lattice QCD is generating
dynamical gauge field configurations.

• Hybrid Monte Carlo (HMC) is still the most used
algorithm for generating dynamical configurations.

• There have been many improvements to the basic HMC
algorithm developed over the years.

• A partial list of “multi-scale” type algorithmic
improvements:

• Domain Decomposition method (Luscher).
• Mass Preconditioning (Hasenbuch).
• Polynomial Filtering (Peardon & Sexton, Peardon & WK).

• We begin by reviewing the fundamentals of the HMC
algorithm.

Introduction

• The dominant expense of Lattice QCD is generating
dynamical gauge field configurations.

• Hybrid Monte Carlo (HMC) is still the most used
algorithm for generating dynamical configurations.

• There have been many improvements to the basic HMC
algorithm developed over the years.

• A partial list of “multi-scale” type algorithmic
improvements:

• Domain Decomposition method (Luscher).
• Mass Preconditioning (Hasenbuch).
• Polynomial Filtering (Peardon & Sexton, Peardon & WK).

• We begin by reviewing the fundamentals of the HMC
algorithm.

Introduction

• The dominant expense of Lattice QCD is generating
dynamical gauge field configurations.

• Hybrid Monte Carlo (HMC) is still the most used
algorithm for generating dynamical configurations.

• There have been many improvements to the basic HMC
algorithm developed over the years.

• A partial list of “multi-scale” type algorithmic
improvements:

• Domain Decomposition method (Luscher).
• Mass Preconditioning (Hasenbuch).
• Polynomial Filtering (Peardon & Sexton, Peardon & WK).

• We begin by reviewing the fundamentals of the HMC
algorithm.

Introduction

• The dominant expense of Lattice QCD is generating
dynamical gauge field configurations.

• Hybrid Monte Carlo (HMC) is still the most used
algorithm for generating dynamical configurations.

• There have been many improvements to the basic HMC
algorithm developed over the years.

• A partial list of “multi-scale” type algorithmic
improvements:

• Domain Decomposition method (Luscher).
• Mass Preconditioning (Hasenbuch).
• Polynomial Filtering (Peardon & Sexton, Peardon & WK).

• We begin by reviewing the fundamentals of the HMC
algorithm.

Introduction

• The dominant expense of Lattice QCD is generating
dynamical gauge field configurations.

• Hybrid Monte Carlo (HMC) is still the most used
algorithm for generating dynamical configurations.

• There have been many improvements to the basic HMC
algorithm developed over the years.

• A partial list of “multi-scale” type algorithmic
improvements:

• Domain Decomposition method (Luscher).
• Mass Preconditioning (Hasenbuch).
• Polynomial Filtering (Peardon & Sexton, Peardon & WK).

• We begin by reviewing the fundamentals of the HMC
algorithm.

Introduction

• The dominant expense of Lattice QCD is generating
dynamical gauge field configurations.

• Hybrid Monte Carlo (HMC) is still the most used
algorithm for generating dynamical configurations.

• There have been many improvements to the basic HMC
algorithm developed over the years.

• A partial list of “multi-scale” type algorithmic
improvements:

• Domain Decomposition method (Luscher).
• Mass Preconditioning (Hasenbuch).
• Polynomial Filtering (Peardon & Sexton, Peardon & WK).

• We begin by reviewing the fundamentals of the HMC
algorithm.

Introduction

• The dominant expense of Lattice QCD is generating
dynamical gauge field configurations.

• Hybrid Monte Carlo (HMC) is still the most used
algorithm for generating dynamical configurations.

• There have been many improvements to the basic HMC
algorithm developed over the years.

• A partial list of “multi-scale” type algorithmic
improvements:

• Domain Decomposition method (Luscher).
• Mass Preconditioning (Hasenbuch).
• Polynomial Filtering (Peardon & Sexton, Peardon & WK).

• We begin by reviewing the fundamentals of the HMC
algorithm.

Hybrid Monte Carlo Review

• The lattice is embedded in a Hamiltonian system by the
addition of a fictitious “simulation” time τ, along with an
additional fictitious field P which are the conjugate
momenta to U,

H(P, U) = ∑
x,µ

1
2

Tr Pµ(x)2 + S[U].

• The conjugate momenta Pµ(x) are drawn from a Gaussian
distribution.

• In this way, the HamiltonianH is constructed so that after
path integration the expectation values of observables are
unaltered.

• Where are the fermions?

Hybrid Monte Carlo Review

• The lattice is embedded in a Hamiltonian system by the
addition of a fictitious “simulation” time τ, along with an
additional fictitious field P which are the conjugate
momenta to U,

H(P, U) = ∑
x,µ

1
2

Tr Pµ(x)2 + S[U].

• The conjugate momenta Pµ(x) are drawn from a Gaussian
distribution.

• In this way, the HamiltonianH is constructed so that after
path integration the expectation values of observables are
unaltered.

• Where are the fermions?

Hybrid Monte Carlo Review

• The lattice is embedded in a Hamiltonian system by the
addition of a fictitious “simulation” time τ, along with an
additional fictitious field P which are the conjugate
momenta to U,

H(P, U) = ∑
x,µ

1
2

Tr Pµ(x)2 + S[U].

• The conjugate momenta Pµ(x) are drawn from a Gaussian
distribution.

• In this way, the HamiltonianH is constructed so that after
path integration the expectation values of observables are
unaltered.

• Where are the fermions?

Hybrid Monte Carlo Review

• The lattice is embedded in a Hamiltonian system by the
addition of a fictitious “simulation” time τ, along with an
additional fictitious field P which are the conjugate
momenta to U,

H(P, U) = ∑
x,µ

1
2

Tr Pµ(x)2 + S[U].

• The conjugate momenta Pµ(x) are drawn from a Gaussian
distribution.

• In this way, the HamiltonianH is constructed so that after
path integration the expectation values of observables are
unaltered.

• Where are the fermions?

Fermion Determinant

• The fermion fields ψ and ψ̄ are Grassmannian, hence to
perform simulations we need to integrate them out. We
have that

det Dw =
∫
Dψ̄Dψ e−

∫
d4xψ̄(x)Dwψ(x).

• Define the effective action as

Seff[U] = Sg[U]− ln det Dw[U].

• We can write the action for full QCD in terms of bosonic
fields φ using the identity

det M =
1

det M−1 =
∫
Dφ†Dφ e−

∫
d4x φ†(x)M−1φ(x).

Fermion Determinant

• The fermion fields ψ and ψ̄ are Grassmannian, hence to
perform simulations we need to integrate them out. We
have that

det Dw =
∫
Dψ̄Dψ e−

∫
d4xψ̄(x)Dwψ(x).

• Define the effective action as

Seff[U] = Sg[U]− ln det Dw[U].

• We can write the action for full QCD in terms of bosonic
fields φ using the identity

det M =
1

det M−1 =
∫
Dφ†Dφ e−

∫
d4x φ†(x)M−1φ(x).

Fermion Determinant

• The fermion fields ψ and ψ̄ are Grassmannian, hence to
perform simulations we need to integrate them out. We
have that

det Dw =
∫
Dψ̄Dψ e−

∫
d4xψ̄(x)Dwψ(x).

• Define the effective action as

Seff[U] = Sg[U]− ln det Dw[U].

• We can write the action for full QCD in terms of bosonic
fields φ using the identity

det M =
1

det M−1 =
∫
Dφ†Dφ e−

∫
d4x φ†(x)M−1φ(x).

Pseudofermions

• The convergence of the Gaussian integral in φ is only
guaranteed for Hermitian positive definite (Hpd) M.

• For Wilson-type fermions, Dw is a complex matrix, but
det Dw is real and positive.

• So, we can define M = D†
wDw, and M will be Hpd with

det M = det D2
f .

• Then the pseudofermionic effective action for full QCD with
two flavours of degenerate quarks is

Seff[U] = Sg[U] +
∫

d4x φ†(x)M−1[U]φ(x).

• The pseudofermion fields φ(x) are drawn from a Gaussian
distribution.

Pseudofermions

• The convergence of the Gaussian integral in φ is only
guaranteed for Hermitian positive definite (Hpd) M.

• For Wilson-type fermions, Dw is a complex matrix, but
det Dw is real and positive.

• So, we can define M = D†
wDw, and M will be Hpd with

det M = det D2
f .

• Then the pseudofermionic effective action for full QCD with
two flavours of degenerate quarks is

Seff[U] = Sg[U] +
∫

d4x φ†(x)M−1[U]φ(x).

• The pseudofermion fields φ(x) are drawn from a Gaussian
distribution.

Pseudofermions

• The convergence of the Gaussian integral in φ is only
guaranteed for Hermitian positive definite (Hpd) M.

• For Wilson-type fermions, Dw is a complex matrix, but
det Dw is real and positive.

• So, we can define M = D†
wDw, and M will be Hpd with

det M = det D2
f .

• Then the pseudofermionic effective action for full QCD with
two flavours of degenerate quarks is

Seff[U] = Sg[U] +
∫

d4x φ†(x)M−1[U]φ(x).

• The pseudofermion fields φ(x) are drawn from a Gaussian
distribution.

Pseudofermions

• The convergence of the Gaussian integral in φ is only
guaranteed for Hermitian positive definite (Hpd) M.

• For Wilson-type fermions, Dw is a complex matrix, but
det Dw is real and positive.

• So, we can define M = D†
wDw, and M will be Hpd with

det M = det D2
f .

• Then the pseudofermionic effective action for full QCD with
two flavours of degenerate quarks is

Seff[U] = Sg[U] +
∫

d4x φ†(x)M−1[U]φ(x).

• The pseudofermion fields φ(x) are drawn from a Gaussian
distribution.

Pseudofermions

• The convergence of the Gaussian integral in φ is only
guaranteed for Hermitian positive definite (Hpd) M.

• For Wilson-type fermions, Dw is a complex matrix, but
det Dw is real and positive.

• So, we can define M = D†
wDw, and M will be Hpd with

det M = det D2
f .

• Then the pseudofermionic effective action for full QCD with
two flavours of degenerate quarks is

Seff[U] = Sg[U] +
∫

d4x φ†(x)M−1[U]φ(x).

• The pseudofermion fields φ(x) are drawn from a Gaussian
distribution.

Hybrid Monte Carlo

• The Hybrid Monte Carlo algorithm creates a Markov chain
by alternately performing two steps:

• A Molecular Dynamics (MD) integration to generate a new
configuration (U→ U′, P→ P′).

• A Metropolis accept/reject step on the proposed
configuration (U′, P′).

• The accept/reject step is based upon the change in the
Hamiltonian

ρ(U→ U′, P→ P′) ∝ e−∆H.

• The Molecular Dynamics integration takes place along a
trajectory which for sufficiently small integration step sizes
∆τ approximately conservesH, hence yielding high
acceptance rates.

Hybrid Monte Carlo

• The Hybrid Monte Carlo algorithm creates a Markov chain
by alternately performing two steps:

• A Molecular Dynamics (MD) integration to generate a new
configuration (U→ U′, P→ P′).

• A Metropolis accept/reject step on the proposed
configuration (U′, P′).

• The accept/reject step is based upon the change in the
Hamiltonian

ρ(U→ U′, P→ P′) ∝ e−∆H.

• The Molecular Dynamics integration takes place along a
trajectory which for sufficiently small integration step sizes
∆τ approximately conservesH, hence yielding high
acceptance rates.

Hybrid Monte Carlo

• The Hybrid Monte Carlo algorithm creates a Markov chain
by alternately performing two steps:

• A Molecular Dynamics (MD) integration to generate a new
configuration (U→ U′, P→ P′).

• A Metropolis accept/reject step on the proposed
configuration (U′, P′).

• The accept/reject step is based upon the change in the
Hamiltonian

ρ(U→ U′, P→ P′) ∝ e−∆H.

• The Molecular Dynamics integration takes place along a
trajectory which for sufficiently small integration step sizes
∆τ approximately conservesH, hence yielding high
acceptance rates.

Hybrid Monte Carlo

• The Hybrid Monte Carlo algorithm creates a Markov chain
by alternately performing two steps:

• A Molecular Dynamics (MD) integration to generate a new
configuration (U→ U′, P→ P′).

• A Metropolis accept/reject step on the proposed
configuration (U′, P′).

• The accept/reject step is based upon the change in the
Hamiltonian

ρ(U→ U′, P→ P′) ∝ e−∆H.

• The Molecular Dynamics integration takes place along a
trajectory which for sufficiently small integration step sizes
∆τ approximately conservesH, hence yielding high
acceptance rates.

Hybrid Monte Carlo

• The Hybrid Monte Carlo algorithm creates a Markov chain
by alternately performing two steps:

• A Molecular Dynamics (MD) integration to generate a new
configuration (U→ U′, P→ P′).

• A Metropolis accept/reject step on the proposed
configuration (U′, P′).

• The accept/reject step is based upon the change in the
Hamiltonian

ρ(U→ U′, P→ P′) ∝ e−∆H.

• The Molecular Dynamics integration takes place along a
trajectory which for sufficiently small integration step sizes
∆τ approximately conservesH, hence yielding high
acceptance rates.

Molecular Dynamics

• Start by requiring that the Hamiltonian be conserved along
the trajectory

dH
dτ

= 0.

• Then derive the discretised equations of motion,

Uµ(x, τ + ∆τ) = Uµ(x, τ) exp
(
i∆τPµ(x, τ)

)
,

Pµ(x, τ + ∆τ) = Pµ(x, τ)−Uµ(x, τ)
δS

δUµ(x, τ)
.

• The derivative of the action with respect to the gauge fields
is known as the force term,

Fµ(x) =
δS

δUµ(x)
.

Molecular Dynamics

• Start by requiring that the Hamiltonian be conserved along
the trajectory

dH
dτ

= 0.

• Then derive the discretised equations of motion,

Uµ(x, τ + ∆τ) = Uµ(x, τ) exp
(
i∆τPµ(x, τ)

)
,

Pµ(x, τ + ∆τ) = Pµ(x, τ)−Uµ(x, τ)
δS

δUµ(x, τ)
.

• The derivative of the action with respect to the gauge fields
is known as the force term,

Fµ(x) =
δS

δUµ(x)
.

Molecular Dynamics

• Start by requiring that the Hamiltonian be conserved along
the trajectory

dH
dτ

= 0.

• Then derive the discretised equations of motion,

Uµ(x, τ + ∆τ) = Uµ(x, τ) exp
(
i∆τPµ(x, τ)

)
,

Pµ(x, τ + ∆τ) = Pµ(x, τ)−Uµ(x, τ)
δS

δUµ(x, τ)
.

• The derivative of the action with respect to the gauge fields
is known as the force term,

Fµ(x) =
δS

δUµ(x)
.

Splitting The Action

• Lets split our action into its gauge field and
pseudofermion field components, S = Sg + Spf, where

Sg = β ∑
x,µ<ν

1
3

Re Tr(1−Uµν(x)),

Spf = ∑
x

φ†(x)(D†
wDw)

−1φ(x),

and Dw is the Wilson fermion matrix.
• Each of the terms in the action induces a force term.
• The size of the force term is the dominant factor in

determining what step size ∆τ is need for a given
acceptance probability ρacc.

• As the quark mass becomes lighter, the size of the
pseudofermion force term increases.

Splitting The Action

• Lets split our action into its gauge field and
pseudofermion field components, S = Sg + Spf, where

Sg = β ∑
x,µ<ν

1
3

Re Tr(1−Uµν(x)),

Spf = ∑
x

φ†(x)(D†
wDw)

−1φ(x),

and Dw is the Wilson fermion matrix.
• Each of the terms in the action induces a force term.
• The size of the force term is the dominant factor in

determining what step size ∆τ is need for a given
acceptance probability ρacc.

• As the quark mass becomes lighter, the size of the
pseudofermion force term increases.

Splitting The Action

• Lets split our action into its gauge field and
pseudofermion field components, S = Sg + Spf, where

Sg = β ∑
x,µ<ν

1
3

Re Tr(1−Uµν(x)),

Spf = ∑
x

φ†(x)(D†
wDw)

−1φ(x),

and Dw is the Wilson fermion matrix.
• Each of the terms in the action induces a force term.
• The size of the force term is the dominant factor in

determining what step size ∆τ is need for a given
acceptance probability ρacc.

• As the quark mass becomes lighter, the size of the
pseudofermion force term increases.

Splitting The Action

• Lets split our action into its gauge field and
pseudofermion field components, S = Sg + Spf, where

Sg = β ∑
x,µ<ν

1
3

Re Tr(1−Uµν(x)),

Spf = ∑
x

φ†(x)(D†
wDw)

−1φ(x),

and Dw is the Wilson fermion matrix.
• Each of the terms in the action induces a force term.
• The size of the force term is the dominant factor in

determining what step size ∆τ is need for a given
acceptance probability ρacc.

• As the quark mass becomes lighter, the size of the
pseudofermion force term increases.

Leapfrog Integration

• The MD equations of motion induce corresponding time
evolution operators,

VT(∆τ) : {U(τ), P(τ)} → {U(τ + ∆τ), P(τ)},

VS(∆τ) : {U(τ), P(τ)} → {U(τ), P(τ + ∆τ)}.

• The simplest MD integration scheme is the leapfrog

V(∆τ) = VS(
∆τ

2
)VT(∆τ)VS(

∆τ

2
).

• MD Integration trajectories typically have unit length, and
hence as the step size ∆τ decreases, the number of
integration steps increases.

Leapfrog Integration

• The MD equations of motion induce corresponding time
evolution operators,

VT(∆τ) : {U(τ), P(τ)} → {U(τ + ∆τ), P(τ)},

VS(∆τ) : {U(τ), P(τ)} → {U(τ), P(τ + ∆τ)}.

• The simplest MD integration scheme is the leapfrog

V(∆τ) = VS(
∆τ

2
)VT(∆τ)VS(

∆τ

2
).

• MD Integration trajectories typically have unit length, and
hence as the step size ∆τ decreases, the number of
integration steps increases.

Leapfrog Integration

• The MD equations of motion induce corresponding time
evolution operators,

VT(∆τ) : {U(τ), P(τ)} → {U(τ + ∆τ), P(τ)},

VS(∆τ) : {U(τ), P(τ)} → {U(τ), P(τ + ∆τ)}.

• The simplest MD integration scheme is the leapfrog

V(∆τ) = VS(
∆τ

2
)VT(∆τ)VS(

∆τ

2
).

• MD Integration trajectories typically have unit length, and
hence as the step size ∆τ decreases, the number of
integration steps increases.

Pseudofermion Force

• Each time we act with VS(∆τ) we need to evaluate the
pseudofermion force term,

Fpf =
δSpf

δU
.

• This involves inverting the fermion matrix, and hence is
expensive!

• However, for split actions S = S1 + S2 we can use a
multiple time scale integration scheme (nested leapfrog),

V(∆τ) = V2(
∆τ

2
)

[
V1(

∆τ

m
)

]m

V2(
∆τ

2
),

V1(∆τ) = VS1(
∆τ

2
)VT(∆τ)VS1(

∆τ

2
), V2 = VS2(∆τ).

Pseudofermion Force

• Each time we act with VS(∆τ) we need to evaluate the
pseudofermion force term,

Fpf =
δSpf

δU
.

• This involves inverting the fermion matrix, and hence is
expensive!

• However, for split actions S = S1 + S2 we can use a
multiple time scale integration scheme (nested leapfrog),

V(∆τ) = V2(
∆τ

2
)

[
V1(

∆τ

m
)

]m

V2(
∆τ

2
),

V1(∆τ) = VS1(
∆τ

2
)VT(∆τ)VS1(

∆τ

2
), V2 = VS2(∆τ).

Pseudofermion Force

• Each time we act with VS(∆τ) we need to evaluate the
pseudofermion force term,

Fpf =
δSpf

δU
.

• This involves inverting the fermion matrix, and hence is
expensive!

• However, for split actions S = S1 + S2 we can use a
multiple time scale integration scheme (nested leapfrog),

V(∆τ) = V2(
∆τ

2
)

[
V1(

∆τ

m
)

]m

V2(
∆τ

2
),

V1(∆τ) = VS1(
∆τ

2
)VT(∆τ)VS1(

∆τ

2
), V2 = VS2(∆τ).

Multiple Time Scales

• Multiple time scale integration is effective when the force
term F1 due to S1 is cheap to evaluate compared to F2 (that
of S2).

• However, as the step-size for S2 is larger, we also require
that the size of the force term for S2 is relatively small
compared to that of S1.

• The gauge force Fg is cheap compared to the
pseudofermion force Fpf, and at heavy quark masses
Fg > Fpf, but at light quark masses the UV fluctuations in
the pseudo fermion force become too large for multiple
time scales to be effective.

• This is where polynomial filtering steps in.

Multiple Time Scales

• Multiple time scale integration is effective when the force
term F1 due to S1 is cheap to evaluate compared to F2 (that
of S2).

• However, as the step-size for S2 is larger, we also require
that the size of the force term for S2 is relatively small
compared to that of S1.

• The gauge force Fg is cheap compared to the
pseudofermion force Fpf, and at heavy quark masses
Fg > Fpf, but at light quark masses the UV fluctuations in
the pseudo fermion force become too large for multiple
time scales to be effective.

• This is where polynomial filtering steps in.

Multiple Time Scales

• Multiple time scale integration is effective when the force
term F1 due to S1 is cheap to evaluate compared to F2 (that
of S2).

• However, as the step-size for S2 is larger, we also require
that the size of the force term for S2 is relatively small
compared to that of S1.

• The gauge force Fg is cheap compared to the
pseudofermion force Fpf, and at heavy quark masses
Fg > Fpf, but at light quark masses the UV fluctuations in
the pseudo fermion force become too large for multiple
time scales to be effective.

• This is where polynomial filtering steps in.

Multiple Time Scales

• Multiple time scale integration is effective when the force
term F1 due to S1 is cheap to evaluate compared to F2 (that
of S2).

• However, as the step-size for S2 is larger, we also require
that the size of the force term for S2 is relatively small
compared to that of S1.

• The gauge force Fg is cheap compared to the
pseudofermion force Fpf, and at heavy quark masses
Fg > Fpf, but at light quark masses the UV fluctuations in
the pseudo fermion force become too large for multiple
time scales to be effective.

• This is where polynomial filtering steps in.

Polynomial Filtering

• We can use a polynomial filter P = P(M) to separate the
ultraviolet and infrared physics in the pseudofermion
force,

Spoly = χ†Pχ,

Spf = φ†(MP)−1φ.

• Recall M = D†
wDw is Hermitian positive definite.

• As Spoly is fast to evaluate compared to Spf we split the
action in the following way,

S1 = Sg + Spoly, S2 = Spf.

• If P ≈ 1/z then it will capture the short-distance physics
in Spoly and act as a UV filter in Spf.

Polynomial Filtering

• We can use a polynomial filter P = P(M) to separate the
ultraviolet and infrared physics in the pseudofermion
force,

Spoly = χ†Pχ,

Spf = φ†(MP)−1φ.

• Recall M = D†
wDw is Hermitian positive definite.

• As Spoly is fast to evaluate compared to Spf we split the
action in the following way,

S1 = Sg + Spoly, S2 = Spf.

• If P ≈ 1/z then it will capture the short-distance physics
in Spoly and act as a UV filter in Spf.

Polynomial Filtering

• We can use a polynomial filter P = P(M) to separate the
ultraviolet and infrared physics in the pseudofermion
force,

Spoly = χ†Pχ,

Spf = φ†(MP)−1φ.

• Recall M = D†
wDw is Hermitian positive definite.

• As Spoly is fast to evaluate compared to Spf we split the
action in the following way,

S1 = Sg + Spoly, S2 = Spf.

• If P ≈ 1/z then it will capture the short-distance physics
in Spoly and act as a UV filter in Spf.

Polynomial Filtering

• We can use a polynomial filter P = P(M) to separate the
ultraviolet and infrared physics in the pseudofermion
force,

Spoly = χ†Pχ,

Spf = φ†(MP)−1φ.

• Recall M = D†
wDw is Hermitian positive definite.

• As Spoly is fast to evaluate compared to Spf we split the
action in the following way,

S1 = Sg + Spoly, S2 = Spf.

• If P ≈ 1/z then it will capture the short-distance physics
in Spoly and act as a UV filter in Spf.

Fermionic Determinant

• Note that the fermionic determinant is unchanged by the
introduction of the polynomial filter.

• To see this we note that∫
Dφ†DφDχ†Dχ e−

∫
d4x χ†Pχ+φ†(x)(MP)−1φ(x)

=
detP

det(MP) =
1

det M−1 = det M

• In the limit as the order of the polynomial n→ ∞ we have
MP → 1 and P(M)→ M−1.

• In this way the polynomial term can reproduce as much or
as little of the pseudofermion term as we want.

Fermionic Determinant

• Note that the fermionic determinant is unchanged by the
introduction of the polynomial filter.

• To see this we note that∫
Dφ†DφDχ†Dχ e−

∫
d4x χ†Pχ+φ†(x)(MP)−1φ(x)

=
detP

det(MP) =
1

det M−1 = det M

• In the limit as the order of the polynomial n→ ∞ we have
MP → 1 and P(M)→ M−1.

• In this way the polynomial term can reproduce as much or
as little of the pseudofermion term as we want.

Fermionic Determinant

• Note that the fermionic determinant is unchanged by the
introduction of the polynomial filter.

• To see this we note that∫
Dφ†DφDχ†Dχ e−

∫
d4x χ†Pχ+φ†(x)(MP)−1φ(x)

=
detP

det(MP) =
1

det M−1 = det M

• In the limit as the order of the polynomial n→ ∞ we have
MP → 1 and P(M)→ M−1.

• In this way the polynomial term can reproduce as much or
as little of the pseudofermion term as we want.

Fermionic Determinant

• Note that the fermionic determinant is unchanged by the
introduction of the polynomial filter.

• To see this we note that∫
Dφ†DφDχ†Dχ e−

∫
d4x χ†Pχ+φ†(x)(MP)−1φ(x)

=
detP

det(MP) =
1

det M−1 = det M

• In the limit as the order of the polynomial n→ ∞ we have
MP → 1 and P(M)→ M−1.

• In this way the polynomial term can reproduce as much or
as little of the pseudofermion term as we want.

Chebyshev Filter

• An effective UV filter is the nth order Hermitian Chebyshev
polynomial approximation to 1/z,

Pn(z) = an

n

∏
k=1

(z− zk) ≈
1
z

,

where we set θk =
2πk
n+1 to obtain the roots

zk = λ[
1
2
(1 + ε)(1− cos θk)− i

√
ε sin θk].

• The normalisation is defined by z0 = 1
2 (1 + ε), with

an =
1

z0 ∏n
k=1(z0 − zk)

.

• The approximation is good between [ε, 1], so we rescale
with

λ = 1 + 8κ.

Chebyshev Filter

• An effective UV filter is the nth order Hermitian Chebyshev
polynomial approximation to 1/z,

Pn(z) = an

n

∏
k=1

(z− zk) ≈
1
z

,

where we set θk =
2πk
n+1 to obtain the roots

zk = λ[
1
2
(1 + ε)(1− cos θk)− i

√
ε sin θk].

• The normalisation is defined by z0 = 1
2 (1 + ε), with

an =
1

z0 ∏n
k=1(z0 − zk)

.

• The approximation is good between [ε, 1], so we rescale
with

λ = 1 + 8κ.

Chebyshev Filter

• An effective UV filter is the nth order Hermitian Chebyshev
polynomial approximation to 1/z,

Pn(z) = an

n

∏
k=1

(z− zk) ≈
1
z

,

where we set θk =
2πk
n+1 to obtain the roots

zk = λ[
1
2
(1 + ε)(1− cos θk)− i

√
ε sin θk].

• The normalisation is defined by z0 = 1
2 (1 + ε), with

an =
1

z0 ∏n
k=1(z0 − zk)

.

• The approximation is good between [ε, 1], so we rescale
with

λ = 1 + 8κ.

Chebyshev Roots

n = 4

-

6 s
s

s
s

Chebyshev Roots

n = 24

-

6 s
s

s
s

s s s s s s s s
ssss

ssssssss

Intermediate Filter

• Using this property of the Chebyshev polynomials, we can
add an intermediate filter to our action as a bridge
between the high and low energy scales, e.g.

S1 = Sg S2 = χ†Pmχ,
S3 = χ†Pm|nχ, S4 = φ†(MPn)−1φ.

• Pn denotes the Chebyshev polynomial of order n.
• Pm|n is defined so that Pn = PmPm|n.
• This allows us to perform fermion matrix inversions even

less frequently.
• This may(?) be more efficient than a single filter algorithm.
• Note: filter implementation makes use of multi-shift linear

solvers for efficiency.

Intermediate Filter

• Using this property of the Chebyshev polynomials, we can
add an intermediate filter to our action as a bridge
between the high and low energy scales, e.g.

S1 = Sg S2 = χ†Pmχ,
S3 = χ†Pm|nχ, S4 = φ†(MPn)−1φ.

• Pn denotes the Chebyshev polynomial of order n.
• Pm|n is defined so that Pn = PmPm|n.
• This allows us to perform fermion matrix inversions even

less frequently.
• This may(?) be more efficient than a single filter algorithm.
• Note: filter implementation makes use of multi-shift linear

solvers for efficiency.

Intermediate Filter

• Using this property of the Chebyshev polynomials, we can
add an intermediate filter to our action as a bridge
between the high and low energy scales, e.g.

S1 = Sg S2 = χ†Pmχ,
S3 = χ†Pm|nχ, S4 = φ†(MPn)−1φ.

• Pn denotes the Chebyshev polynomial of order n.
• Pm|n is defined so that Pn = PmPm|n.
• This allows us to perform fermion matrix inversions even

less frequently.
• This may(?) be more efficient than a single filter algorithm.
• Note: filter implementation makes use of multi-shift linear

solvers for efficiency.

Intermediate Filter

• Using this property of the Chebyshev polynomials, we can
add an intermediate filter to our action as a bridge
between the high and low energy scales, e.g.

S1 = Sg S2 = χ†Pmχ,
S3 = χ†Pm|nχ, S4 = φ†(MPn)−1φ.

• Pn denotes the Chebyshev polynomial of order n.
• Pm|n is defined so that Pn = PmPm|n.
• This allows us to perform fermion matrix inversions even

less frequently.
• This may(?) be more efficient than a single filter algorithm.
• Note: filter implementation makes use of multi-shift linear

solvers for efficiency.

Intermediate Filter

• Using this property of the Chebyshev polynomials, we can
add an intermediate filter to our action as a bridge
between the high and low energy scales, e.g.

S1 = Sg S2 = χ†Pmχ,
S3 = χ†Pm|nχ, S4 = φ†(MPn)−1φ.

• Pn denotes the Chebyshev polynomial of order n.
• Pm|n is defined so that Pn = PmPm|n.
• This allows us to perform fermion matrix inversions even

less frequently.
• This may(?) be more efficient than a single filter algorithm.
• Note: filter implementation makes use of multi-shift linear

solvers for efficiency.

Intermediate Filter

• Using this property of the Chebyshev polynomials, we can
add an intermediate filter to our action as a bridge
between the high and low energy scales, e.g.

S1 = Sg S2 = χ†Pmχ,
S3 = χ†Pm|nχ, S4 = φ†(MPn)−1φ.

• Pn denotes the Chebyshev polynomial of order n.
• Pm|n is defined so that Pn = PmPm|n.
• This allows us to perform fermion matrix inversions even

less frequently.
• This may(?) be more efficient than a single filter algorithm.
• Note: filter implementation makes use of multi-shift linear

solvers for efficiency.

Integration Scheme

• With a second filter, we have four different scales, five (or
more) if we are doing a 2+1 flavour simulation.

• Nested leapfrog is too cumbersome for fine tuning these
scales.

• We make use of the fact that Vi = VSi all commute to
introduce a generalised integration scheme.

• If Ni is the number of integration steps per trajectory, then
nested leapfrog requires

Ni|Ni−1∀i

• The new integration scheme requires only that

Ni|N1∀i

Integration Scheme

• With a second filter, we have four different scales, five (or
more) if we are doing a 2+1 flavour simulation.

• Nested leapfrog is too cumbersome for fine tuning these
scales.

• We make use of the fact that Vi = VSi all commute to
introduce a generalised integration scheme.

• If Ni is the number of integration steps per trajectory, then
nested leapfrog requires

Ni|Ni−1∀i

• The new integration scheme requires only that

Ni|N1∀i

Integration Scheme

• With a second filter, we have four different scales, five (or
more) if we are doing a 2+1 flavour simulation.

• Nested leapfrog is too cumbersome for fine tuning these
scales.

• We make use of the fact that Vi = VSi all commute to
introduce a generalised integration scheme.

• If Ni is the number of integration steps per trajectory, then
nested leapfrog requires

Ni|Ni−1∀i

• The new integration scheme requires only that

Ni|N1∀i

Integration Scheme

• With a second filter, we have four different scales, five (or
more) if we are doing a 2+1 flavour simulation.

• Nested leapfrog is too cumbersome for fine tuning these
scales.

• We make use of the fact that Vi = VSi all commute to
introduce a generalised integration scheme.

• If Ni is the number of integration steps per trajectory, then
nested leapfrog requires

Ni|Ni−1∀i

• The new integration scheme requires only that

Ni|N1∀i

Integration Scheme

• With a second filter, we have four different scales, five (or
more) if we are doing a 2+1 flavour simulation.

• Nested leapfrog is too cumbersome for fine tuning these
scales.

• We make use of the fact that Vi = VSi all commute to
introduce a generalised integration scheme.

• If Ni is the number of integration steps per trajectory, then
nested leapfrog requires

Ni|Ni−1∀i

• The new integration scheme requires only that

Ni|N1∀i

Generalised Leapfrog

• Set N = N1 and set ni = N1/Ni

• The generalised leapfrog algorithm is then:
1 Perform an initial half-step Vi(

1
2 ∆τi) updating P for all i.

2 Loop over j = 1 to N− 1
• Apply VT(∆τ) to update U.
• If {0 ≡ j mod Ni} apply Vi(∆τi) to update P

3 Apply VT(∆τ) to update U.
4 Perform a final half-step Vi(

1
2 ∆τi) updating P for all i.

• Can show using BCH that it has errors of O[(∆τ)3].
• Reduces to nested leapfrog for Ni|Ni−1.

Generalised Leapfrog

• Set N = N1 and set ni = N1/Ni

• The generalised leapfrog algorithm is then:
1 Perform an initial half-step Vi(

1
2 ∆τi) updating P for all i.

2 Loop over j = 1 to N− 1
• Apply VT(∆τ) to update U.
• If {0 ≡ j mod Ni} apply Vi(∆τi) to update P

3 Apply VT(∆τ) to update U.
4 Perform a final half-step Vi(

1
2 ∆τi) updating P for all i.

• Can show using BCH that it has errors of O[(∆τ)3].
• Reduces to nested leapfrog for Ni|Ni−1.

Generalised Leapfrog

• Set N = N1 and set ni = N1/Ni

• The generalised leapfrog algorithm is then:
1 Perform an initial half-step Vi(

1
2 ∆τi) updating P for all i.

2 Loop over j = 1 to N− 1
• Apply VT(∆τ) to update U.
• If {0 ≡ j mod Ni} apply Vi(∆τi) to update P

3 Apply VT(∆τ) to update U.
4 Perform a final half-step Vi(

1
2 ∆τi) updating P for all i.

• Can show using BCH that it has errors of O[(∆τ)3].
• Reduces to nested leapfrog for Ni|Ni−1.

Generalised Leapfrog

• Set N = N1 and set ni = N1/Ni

• The generalised leapfrog algorithm is then:
1 Perform an initial half-step Vi(

1
2 ∆τi) updating P for all i.

2 Loop over j = 1 to N− 1
• Apply VT(∆τ) to update U.
• If {0 ≡ j mod Ni} apply Vi(∆τi) to update P

3 Apply VT(∆τ) to update U.
4 Perform a final half-step Vi(

1
2 ∆τi) updating P for all i.

• Can show using BCH that it has errors of O[(∆τ)3].
• Reduces to nested leapfrog for Ni|Ni−1.

Generalised Leapfrog

• Set N = N1 and set ni = N1/Ni

• The generalised leapfrog algorithm is then:
1 Perform an initial half-step Vi(

1
2 ∆τi) updating P for all i.

2 Loop over j = 1 to N− 1
• Apply VT(∆τ) to update U.
• If {0 ≡ j mod Ni} apply Vi(∆τi) to update P

3 Apply VT(∆τ) to update U.
4 Perform a final half-step Vi(

1
2 ∆τi) updating P for all i.

• Can show using BCH that it has errors of O[(∆τ)3].
• Reduces to nested leapfrog for Ni|Ni−1.

Generalised Leapfrog

• Set N = N1 and set ni = N1/Ni

• The generalised leapfrog algorithm is then:
1 Perform an initial half-step Vi(

1
2 ∆τi) updating P for all i.

2 Loop over j = 1 to N− 1
• Apply VT(∆τ) to update U.
• If {0 ≡ j mod Ni} apply Vi(∆τi) to update P

3 Apply VT(∆τ) to update U.
4 Perform a final half-step Vi(

1
2 ∆τi) updating P for all i.

• Can show using BCH that it has errors of O[(∆τ)3].
• Reduces to nested leapfrog for Ni|Ni−1.

Generalised Leapfrog

• Set N = N1 and set ni = N1/Ni

• The generalised leapfrog algorithm is then:
1 Perform an initial half-step Vi(

1
2 ∆τi) updating P for all i.

2 Loop over j = 1 to N− 1
• Apply VT(∆τ) to update U.
• If {0 ≡ j mod Ni} apply Vi(∆τi) to update P

3 Apply VT(∆τ) to update U.
4 Perform a final half-step Vi(

1
2 ∆τi) updating P for all i.

• Can show using BCH that it has errors of O[(∆τ)3].
• Reduces to nested leapfrog for Ni|Ni−1.

Generalised Leapfrog

• Set N = N1 and set ni = N1/Ni

• The generalised leapfrog algorithm is then:
1 Perform an initial half-step Vi(

1
2 ∆τi) updating P for all i.

2 Loop over j = 1 to N− 1
• Apply VT(∆τ) to update U.
• If {0 ≡ j mod Ni} apply Vi(∆τi) to update P

3 Apply VT(∆τ) to update U.
4 Perform a final half-step Vi(

1
2 ∆τi) updating P for all i.

• Can show using BCH that it has errors of O[(∆τ)3].
• Reduces to nested leapfrog for Ni|Ni−1.

Generalised Leapfrog

• Set N = N1 and set ni = N1/Ni

• The generalised leapfrog algorithm is then:
1 Perform an initial half-step Vi(

1
2 ∆τi) updating P for all i.

2 Loop over j = 1 to N− 1
• Apply VT(∆τ) to update U.
• If {0 ≡ j mod Ni} apply Vi(∆τi) to update P

3 Apply VT(∆τ) to update U.
4 Perform a final half-step Vi(

1
2 ∆τi) updating P for all i.

• Can show using BCH that it has errors of O[(∆τ)3].
• Reduces to nested leapfrog for Ni|Ni−1.

Generalised Leapfrog

• Set N = N1 and set ni = N1/Ni

• The generalised leapfrog algorithm is then:
1 Perform an initial half-step Vi(

1
2 ∆τi) updating P for all i.

2 Loop over j = 1 to N− 1
• Apply VT(∆τ) to update U.
• If {0 ≡ j mod Ni} apply Vi(∆τi) to update P

3 Apply VT(∆τ) to update U.
4 Perform a final half-step Vi(

1
2 ∆τi) updating P for all i.

• Can show using BCH that it has errors of O[(∆τ)3].
• Reduces to nested leapfrog for Ni|Ni−1.

Results κ = 0.1575, mπ = 665MeV

Results κ = 0.15825, mπ ≈ 400MeV

Single Flavour QCD

• Single fermion flavours can be simulated using a rational
polynomial,

R(M) = ∑
ai

M + bi
≈ 1√

M

(or some other method e.g. polynomial approx. to 1/
√

M).
• Recall M = D†

wDw is Hermitian positive definite.
• Can we extend our polynomial filtering technique to single

flavour simulations?
• Suppose we have a polynomial Q such that

Q(M) ≈ 1√
M

• E.g. numerically calculate coefficients for Chebyshev
approximation to 1/

√
z, then calculate the roots. . .

Single Flavour QCD

• Single fermion flavours can be simulated using a rational
polynomial,

R(M) = ∑
ai

M + bi
≈ 1√

M

(or some other method e.g. polynomial approx. to 1/
√

M).
• Recall M = D†

wDw is Hermitian positive definite.
• Can we extend our polynomial filtering technique to single

flavour simulations?
• Suppose we have a polynomial Q such that

Q(M) ≈ 1√
M

• E.g. numerically calculate coefficients for Chebyshev
approximation to 1/

√
z, then calculate the roots. . .

Single Flavour QCD

• Single fermion flavours can be simulated using a rational
polynomial,

R(M) = ∑
ai

M + bi
≈ 1√

M

(or some other method e.g. polynomial approx. to 1/
√

M).
• Recall M = D†

wDw is Hermitian positive definite.
• Can we extend our polynomial filtering technique to single

flavour simulations?
• Suppose we have a polynomial Q such that

Q(M) ≈ 1√
M

• E.g. numerically calculate coefficients for Chebyshev
approximation to 1/

√
z, then calculate the roots. . .

Single Flavour QCD

• Single fermion flavours can be simulated using a rational
polynomial,

R(M) = ∑
ai

M + bi
≈ 1√

M

(or some other method e.g. polynomial approx. to 1/
√

M).
• Recall M = D†

wDw is Hermitian positive definite.
• Can we extend our polynomial filtering technique to single

flavour simulations?
• Suppose we have a polynomial Q such that

Q(M) ≈ 1√
M

• E.g. numerically calculate coefficients for Chebyshev
approximation to 1/

√
z, then calculate the roots. . .

Single Flavour QCD

• Single fermion flavours can be simulated using a rational
polynomial,

R(M) = ∑
ai

M + bi
≈ 1√

M

(or some other method e.g. polynomial approx. to 1/
√

M).
• Recall M = D†

wDw is Hermitian positive definite.
• Can we extend our polynomial filtering technique to single

flavour simulations?
• Suppose we have a polynomial Q such that

Q(M) ≈ 1√
M

• E.g. numerically calculate coefficients for Chebyshev
approximation to 1/

√
z, then calculate the roots. . .

Single Flavour Polynomial Filter

• Then we can write

Spoly1f = χ†
1fQχ1f,

S1pf = φ†
1fRQ−1φ1f.

• As before, the determinant is unaffected by the addition of
the polynomial filter.

• Could add an intermediate filter for the single flavour as
before but at the strange quark mass probably not worth it.

• Knowing roots of Q is needed to rewriteRQ−1 as a sum
over poles.

• This allows the use of efficient linear multi-shift system
solvers.

Single Flavour Polynomial Filter

• Then we can write

Spoly1f = χ†
1fQχ1f,

S1pf = φ†
1fRQ−1φ1f.

• As before, the determinant is unaffected by the addition of
the polynomial filter.

• Could add an intermediate filter for the single flavour as
before but at the strange quark mass probably not worth it.

• Knowing roots of Q is needed to rewriteRQ−1 as a sum
over poles.

• This allows the use of efficient linear multi-shift system
solvers.

Single Flavour Polynomial Filter

• Then we can write

Spoly1f = χ†
1fQχ1f,

S1pf = φ†
1fRQ−1φ1f.

• As before, the determinant is unaffected by the addition of
the polynomial filter.

• Could add an intermediate filter for the single flavour as
before but at the strange quark mass probably not worth it.

• Knowing roots of Q is needed to rewriteRQ−1 as a sum
over poles.

• This allows the use of efficient linear multi-shift system
solvers.

Single Flavour Polynomial Filter

• Then we can write

Spoly1f = χ†
1fQχ1f,

S1pf = φ†
1fRQ−1φ1f.

• As before, the determinant is unaffected by the addition of
the polynomial filter.

• Could add an intermediate filter for the single flavour as
before but at the strange quark mass probably not worth it.

• Knowing roots of Q is needed to rewriteRQ−1 as a sum
over poles.

• This allows the use of efficient linear multi-shift system
solvers.

Single Flavour Polynomial Filter

• Then we can write

Spoly1f = χ†
1fQχ1f,

S1pf = φ†
1fRQ−1φ1f.

• As before, the determinant is unaffected by the addition of
the polynomial filter.

• Could add an intermediate filter for the single flavour as
before but at the strange quark mass probably not worth it.

• Knowing roots of Q is needed to rewriteRQ−1 as a sum
over poles.

• This allows the use of efficient linear multi-shift system
solvers.

Alternative Approximation

• Note thatRQ−1 ≈ 1.
• May be advantageous to simply use the Remes algorithm

to get a rational approximation to

R̃(z) ≈ f (z) =
1√

zQ(z)

and use that instead of the productRQ−1.
• What are the possible advantages?
• The rational approximation to f might have improved

precision for a given order.
• Smallest shift for R̃ expressed as a sum over poles might

be bigger.
=⇒ Less iterations to solve.

Alternative Approximation

• Note thatRQ−1 ≈ 1.
• May be advantageous to simply use the Remes algorithm

to get a rational approximation to

R̃(z) ≈ f (z) =
1√

zQ(z)

and use that instead of the productRQ−1.
• What are the possible advantages?
• The rational approximation to f might have improved

precision for a given order.
• Smallest shift for R̃ expressed as a sum over poles might

be bigger.
=⇒ Less iterations to solve.

Alternative Approximation

• Note thatRQ−1 ≈ 1.
• May be advantageous to simply use the Remes algorithm

to get a rational approximation to

R̃(z) ≈ f (z) =
1√

zQ(z)

and use that instead of the productRQ−1.
• What are the possible advantages?
• The rational approximation to f might have improved

precision for a given order.
• Smallest shift for R̃ expressed as a sum over poles might

be bigger.
=⇒ Less iterations to solve.

Alternative Approximation

• Note thatRQ−1 ≈ 1.
• May be advantageous to simply use the Remes algorithm

to get a rational approximation to

R̃(z) ≈ f (z) =
1√

zQ(z)

and use that instead of the productRQ−1.
• What are the possible advantages?
• The rational approximation to f might have improved

precision for a given order.
• Smallest shift for R̃ expressed as a sum over poles might

be bigger.
=⇒ Less iterations to solve.

Alternative Approximation

• Note thatRQ−1 ≈ 1.
• May be advantageous to simply use the Remes algorithm

to get a rational approximation to

R̃(z) ≈ f (z) =
1√

zQ(z)

and use that instead of the productRQ−1.
• What are the possible advantages?
• The rational approximation to f might have improved

precision for a given order.
• Smallest shift for R̃ expressed as a sum over poles might

be bigger.
=⇒ Less iterations to solve.

Alternative Approximation

• Note thatRQ−1 ≈ 1.
• May be advantageous to simply use the Remes algorithm

to get a rational approximation to

R̃(z) ≈ f (z) =
1√

zQ(z)

and use that instead of the productRQ−1.
• What are the possible advantages?
• The rational approximation to f might have improved

precision for a given order.
• Smallest shift for R̃ expressed as a sum over poles might

be bigger.
=⇒ Less iterations to solve.

Another Variant

• Recall that we used the Hermitian Chebyshev
approximation to 1/z in our two flavour polynomial filter.

• The non-Hermitian Chebyshev approximation K(z) to 1/z
has the same normalisation, but slightly different roots,

yk = d(1− cos θk) + i
√

d2 − c2 sin θk.

• Valid for an elliptical region in the complex plane.
• So long as the spectrum of the non-Hermitian matrix Dw is

within this ellipse, we can write

K(Dw) = an

n/2

∏
k=1

(Dw − yk)(Dw − y∗k) ≈
1

Dw

Another Variant

• Recall that we used the Hermitian Chebyshev
approximation to 1/z in our two flavour polynomial filter.

• The non-Hermitian Chebyshev approximation K(z) to 1/z
has the same normalisation, but slightly different roots,

yk = d(1− cos θk) + i
√

d2 − c2 sin θk.

• Valid for an elliptical region in the complex plane.
• So long as the spectrum of the non-Hermitian matrix Dw is

within this ellipse, we can write

K(Dw) = an

n/2

∏
k=1

(Dw − yk)(Dw − y∗k) ≈
1

Dw

Another Variant

• Recall that we used the Hermitian Chebyshev
approximation to 1/z in our two flavour polynomial filter.

• The non-Hermitian Chebyshev approximation K(z) to 1/z
has the same normalisation, but slightly different roots,

yk = d(1− cos θk) + i
√

d2 − c2 sin θk.

• Valid for an elliptical region in the complex plane.
• So long as the spectrum of the non-Hermitian matrix Dw is

within this ellipse, we can write

K(Dw) = an

n/2

∏
k=1

(Dw − yk)(Dw − y∗k) ≈
1

Dw

Another Variant

• Recall that we used the Hermitian Chebyshev
approximation to 1/z in our two flavour polynomial filter.

• The non-Hermitian Chebyshev approximation K(z) to 1/z
has the same normalisation, but slightly different roots,

yk = d(1− cos θk) + i
√

d2 − c2 sin θk.

• Valid for an elliptical region in the complex plane.
• So long as the spectrum of the non-Hermitian matrix Dw is

within this ellipse, we can write

K(Dw) = an

n/2

∏
k=1

(Dw − yk)(Dw − y∗k) ≈
1

Dw

Factoring the Polynomial

• Now construct a polynomial using only half the roots (say
those with positive imaginary parts),

K+(Dw) =
√

an

n/2

∏
k=1

(Dw − yk)

• We need the following two properties of determinants,

det(AB) = det A det B
det A† = (det A)∗

• Using these we can deduce that

detK†
+(Dw)K+(Dw) = detK(Dw) ≈ (det Dw)

−1

• So long as det Dw is real and positive, this is the correct
weighting for a single fermion flavour.

Factoring the Polynomial

• Now construct a polynomial using only half the roots (say
those with positive imaginary parts),

K+(Dw) =
√

an

n/2

∏
k=1

(Dw − yk)

• We need the following two properties of determinants,

det(AB) = det A det B
det A† = (det A)∗

• Using these we can deduce that

detK†
+(Dw)K+(Dw) = detK(Dw) ≈ (det Dw)

−1

• So long as det Dw is real and positive, this is the correct
weighting for a single fermion flavour.

Factoring the Polynomial

• Now construct a polynomial using only half the roots (say
those with positive imaginary parts),

K+(Dw) =
√

an

n/2

∏
k=1

(Dw − yk)

• We need the following two properties of determinants,

det(AB) = det A det B
det A† = (det A)∗

• Using these we can deduce that

detK†
+(Dw)K+(Dw) = detK(Dw) ≈ (det Dw)

−1

• So long as det Dw is real and positive, this is the correct
weighting for a single fermion flavour.

Factoring the Polynomial

• Now construct a polynomial using only half the roots (say
those with positive imaginary parts),

K+(Dw) =
√

an

n/2

∏
k=1

(Dw − yk)

• We need the following two properties of determinants,

det(AB) = det A det B
det A† = (det A)∗

• Using these we can deduce that

detK†
+(Dw)K+(Dw) = detK(Dw) ≈ (det Dw)

−1

• So long as det Dw is real and positive, this is the correct
weighting for a single fermion flavour.

The Action

• So we can the construct a polynomial filtered one-flavour
action using K+,

Spoly1f = χ†
1fK†

+K+χ1f,

S1pf = φ†
1fW†(Dw)W(Dw)φ1f.

• Here,W needs to be a rational polynomial approximation
to {zK∗+(z)K+(z)}−1.

• Should be able to obtain this by factoringR(z) the
Zolotarev approximation to 1/z and setting

W(z) = R+(z)K−1
+ .

• At this point, it might be more efficient to take large n
polynomial limit for K+, split it into two and do filtered
polynomial HMC for the single flavour. . .

The Action

• So we can the construct a polynomial filtered one-flavour
action using K+,

Spoly1f = χ†
1fK†

+K+χ1f,

S1pf = φ†
1fW†(Dw)W(Dw)φ1f.

• Here,W needs to be a rational polynomial approximation
to {zK∗+(z)K+(z)}−1.

• Should be able to obtain this by factoringR(z) the
Zolotarev approximation to 1/z and setting

W(z) = R+(z)K−1
+ .

• At this point, it might be more efficient to take large n
polynomial limit for K+, split it into two and do filtered
polynomial HMC for the single flavour. . .

The Action

• So we can the construct a polynomial filtered one-flavour
action using K+,

Spoly1f = χ†
1fK†

+K+χ1f,

S1pf = φ†
1fW†(Dw)W(Dw)φ1f.

• Here,W needs to be a rational polynomial approximation
to {zK∗+(z)K+(z)}−1.

• Should be able to obtain this by factoringR(z) the
Zolotarev approximation to 1/z and setting

W(z) = R+(z)K−1
+ .

• At this point, it might be more efficient to take large n
polynomial limit for K+, split it into two and do filtered
polynomial HMC for the single flavour. . .

The Action

• So we can the construct a polynomial filtered one-flavour
action using K+,

Spoly1f = χ†
1fK†

+K+χ1f,

S1pf = φ†
1fW†(Dw)W(Dw)φ1f.

• Here,W needs to be a rational polynomial approximation
to {zK∗+(z)K+(z)}−1.

• Should be able to obtain this by factoringR(z) the
Zolotarev approximation to 1/z and setting

W(z) = R+(z)K−1
+ .

• At this point, it might be more efficient to take large n
polynomial limit for K+, split it into two and do filtered
polynomial HMC for the single flavour. . .

Conclusions

• The use of a polynomial approximation to the inverse as a
filter successfully separates the UV and IR pseudofermion
dynamics.

• In combination with a generalise leapfrog algorithm we
successfully reduce the cost of dynamical simulations.

• The generalised leapfrog algorithm is applicable to any
multiple time scale integration scheme, far more flexible
than nested leapfrog.

• Technique is not necessarily orthogonal to other
improvements (e.g. DD, Hasenbuch trick).

• Polynomial filtering can also be extended to single flavour
simulations.

• More results to come...

Conclusions

• The use of a polynomial approximation to the inverse as a
filter successfully separates the UV and IR pseudofermion
dynamics.

• In combination with a generalise leapfrog algorithm we
successfully reduce the cost of dynamical simulations.

• The generalised leapfrog algorithm is applicable to any
multiple time scale integration scheme, far more flexible
than nested leapfrog.

• Technique is not necessarily orthogonal to other
improvements (e.g. DD, Hasenbuch trick).

• Polynomial filtering can also be extended to single flavour
simulations.

• More results to come...

Conclusions

• The use of a polynomial approximation to the inverse as a
filter successfully separates the UV and IR pseudofermion
dynamics.

• In combination with a generalise leapfrog algorithm we
successfully reduce the cost of dynamical simulations.

• The generalised leapfrog algorithm is applicable to any
multiple time scale integration scheme, far more flexible
than nested leapfrog.

• Technique is not necessarily orthogonal to other
improvements (e.g. DD, Hasenbuch trick).

• Polynomial filtering can also be extended to single flavour
simulations.

• More results to come...

Conclusions

• The use of a polynomial approximation to the inverse as a
filter successfully separates the UV and IR pseudofermion
dynamics.

• In combination with a generalise leapfrog algorithm we
successfully reduce the cost of dynamical simulations.

• The generalised leapfrog algorithm is applicable to any
multiple time scale integration scheme, far more flexible
than nested leapfrog.

• Technique is not necessarily orthogonal to other
improvements (e.g. DD, Hasenbuch trick).

• Polynomial filtering can also be extended to single flavour
simulations.

• More results to come...

Conclusions

• The use of a polynomial approximation to the inverse as a
filter successfully separates the UV and IR pseudofermion
dynamics.

• In combination with a generalise leapfrog algorithm we
successfully reduce the cost of dynamical simulations.

• The generalised leapfrog algorithm is applicable to any
multiple time scale integration scheme, far more flexible
than nested leapfrog.

• Technique is not necessarily orthogonal to other
improvements (e.g. DD, Hasenbuch trick).

• Polynomial filtering can also be extended to single flavour
simulations.

• More results to come...

Conclusions

• The use of a polynomial approximation to the inverse as a
filter successfully separates the UV and IR pseudofermion
dynamics.

• In combination with a generalise leapfrog algorithm we
successfully reduce the cost of dynamical simulations.

• The generalised leapfrog algorithm is applicable to any
multiple time scale integration scheme, far more flexible
than nested leapfrog.

• Technique is not necessarily orthogonal to other
improvements (e.g. DD, Hasenbuch trick).

• Polynomial filtering can also be extended to single flavour
simulations.

• More results to come...

	Introduction
	Introduction

	HMC Review
	Hybrid Monte Carlo Review
	Fermion Determinant
	Pseudofermions
	Hybrid Monte Carlo
	Molecular Dynamics
	Splitting The Action
	Leapfrog Integration
	Pseudofermion Force
	Multiple Time Scales

	Polynomial Filtering
	Polynomial Filtering
	Fermionic Determinant
	Chebyshev Filter
	Chebyshev Roots
	Intermediate Filter
	Integration Scheme

	Generalised Leapfrog
	Generalised Leapfrog
	
	
	Results = 0.1575, m= 665 MeV
	Results = 0.15825, m400 MeV

	Single Flavour QCD
	Single Flavour QCD
	Single Flavour Polynomial Filter
	Alternative Approximation
	Another Variant
	Factoring the Polynomial
	The Action

	Conclusions
	Conclusions
	

