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Introduction

• The dominant expense of Lattice QCD is generating
dynamical gauge field configurations.

• Hybrid Monte Carlo (HMC) is still the most used
algorithm for generating dynamical configurations.

• There have been many improvements to the basic HMC
algorithm developed over the years.

• A partial list of “multi-scale” type algorithmic
improvements:

• Domain Decomposition method (Luscher).
• Mass Preconditioning (Hasenbuch).
• Polynomial Filtering (Peardon & Sexton, Peardon & WK).

• We begin by reviewing the fundamentals of the HMC
algorithm.
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Hybrid Monte Carlo Review

• The lattice is embedded in a Hamiltonian system by the
addition of a fictitious “simulation” time τ, along with an
additional fictitious field P which are the conjugate
momenta to U,

H(P, U) = ∑
x,µ

1
2

Tr Pµ(x)2 + S[U].

• The conjugate momenta Pµ(x) are drawn from a Gaussian
distribution.

• In this way, the HamiltonianH is constructed so that after
path integration the expectation values of observables are
unaltered.

• Where are the fermions?
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Fermion Determinant

• The fermion fields ψ and ψ̄ are Grassmannian, hence to
perform simulations we need to integrate them out. We
have that

det Dw =
∫
Dψ̄Dψ e−

∫
d4xψ̄(x)Dwψ(x).

• Define the effective action as

Seff[U] = Sg[U]− ln det Dw[U].

• We can write the action for full QCD in terms of bosonic
fields φ using the identity

det M =
1

det M−1 =
∫
Dφ†Dφ e−

∫
d4x φ†(x)M−1φ(x).
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Pseudofermions

• The convergence of the Gaussian integral in φ is only
guaranteed for Hermitian positive definite (Hpd) M.

• For Wilson-type fermions, Dw is a complex matrix, but
det Dw is real and positive.

• So, we can define M = D†
wDw, and M will be Hpd with

det M = det D2
f .

• Then the pseudofermionic effective action for full QCD with
two flavours of degenerate quarks is

Seff[U] = Sg[U] +
∫

d4x φ†(x)M−1[U]φ(x).

• The pseudofermion fields φ(x) are drawn from a Gaussian
distribution.



Pseudofermions

• The convergence of the Gaussian integral in φ is only
guaranteed for Hermitian positive definite (Hpd) M.

• For Wilson-type fermions, Dw is a complex matrix, but
det Dw is real and positive.

• So, we can define M = D†
wDw, and M will be Hpd with

det M = det D2
f .

• Then the pseudofermionic effective action for full QCD with
two flavours of degenerate quarks is

Seff[U] = Sg[U] +
∫

d4x φ†(x)M−1[U]φ(x).

• The pseudofermion fields φ(x) are drawn from a Gaussian
distribution.



Pseudofermions

• The convergence of the Gaussian integral in φ is only
guaranteed for Hermitian positive definite (Hpd) M.

• For Wilson-type fermions, Dw is a complex matrix, but
det Dw is real and positive.

• So, we can define M = D†
wDw, and M will be Hpd with

det M = det D2
f .

• Then the pseudofermionic effective action for full QCD with
two flavours of degenerate quarks is

Seff[U] = Sg[U] +
∫

d4x φ†(x)M−1[U]φ(x).

• The pseudofermion fields φ(x) are drawn from a Gaussian
distribution.



Pseudofermions

• The convergence of the Gaussian integral in φ is only
guaranteed for Hermitian positive definite (Hpd) M.

• For Wilson-type fermions, Dw is a complex matrix, but
det Dw is real and positive.

• So, we can define M = D†
wDw, and M will be Hpd with

det M = det D2
f .

• Then the pseudofermionic effective action for full QCD with
two flavours of degenerate quarks is

Seff[U] = Sg[U] +
∫

d4x φ†(x)M−1[U]φ(x).

• The pseudofermion fields φ(x) are drawn from a Gaussian
distribution.



Pseudofermions

• The convergence of the Gaussian integral in φ is only
guaranteed for Hermitian positive definite (Hpd) M.

• For Wilson-type fermions, Dw is a complex matrix, but
det Dw is real and positive.

• So, we can define M = D†
wDw, and M will be Hpd with

det M = det D2
f .

• Then the pseudofermionic effective action for full QCD with
two flavours of degenerate quarks is

Seff[U] = Sg[U] +
∫

d4x φ†(x)M−1[U]φ(x).

• The pseudofermion fields φ(x) are drawn from a Gaussian
distribution.



Hybrid Monte Carlo

• The Hybrid Monte Carlo algorithm creates a Markov chain
by alternately performing two steps:

• A Molecular Dynamics (MD) integration to generate a new
configuration (U→ U′, P→ P′).

• A Metropolis accept/reject step on the proposed
configuration (U′, P′).

• The accept/reject step is based upon the change in the
Hamiltonian

ρ(U→ U′, P→ P′) ∝ e−∆H.

• The Molecular Dynamics integration takes place along a
trajectory which for sufficiently small integration step sizes
∆τ approximately conservesH, hence yielding high
acceptance rates.
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Molecular Dynamics

• Start by requiring that the Hamiltonian be conserved along
the trajectory

dH
dτ

= 0.

• Then derive the discretised equations of motion,

Uµ(x, τ + ∆τ) = Uµ(x, τ) exp
(
i∆τPµ(x, τ)

)
,

Pµ(x, τ + ∆τ) = Pµ(x, τ)−Uµ(x, τ)
δS

δUµ(x, τ)
.

• The derivative of the action with respect to the gauge fields
is known as the force term,

Fµ(x) =
δS

δUµ(x)
.
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Splitting The Action

• Lets split our action into its gauge field and
pseudofermion field components, S = Sg + Spf, where

Sg = β ∑
x,µ<ν

1
3

Re Tr(1−Uµν(x)),

Spf = ∑
x

φ†(x)(D†
wDw)

−1φ(x),

and Dw is the Wilson fermion matrix.
• Each of the terms in the action induces a force term.
• The size of the force term is the dominant factor in

determining what step size ∆τ is need for a given
acceptance probability ρacc.

• As the quark mass becomes lighter, the size of the
pseudofermion force term increases.
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Leapfrog Integration

• The MD equations of motion induce corresponding time
evolution operators,

VT(∆τ) : {U(τ), P(τ)} → {U(τ + ∆τ), P(τ)},

VS(∆τ) : {U(τ), P(τ)} → {U(τ), P(τ + ∆τ)}.

• The simplest MD integration scheme is the leapfrog

V(∆τ) = VS(
∆τ

2
)VT(∆τ)VS(

∆τ

2
).

• MD Integration trajectories typically have unit length, and
hence as the step size ∆τ decreases, the number of
integration steps increases.
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Pseudofermion Force

• Each time we act with VS(∆τ) we need to evaluate the
pseudofermion force term,

Fpf =
δSpf

δU
.

• This involves inverting the fermion matrix, and hence is
expensive!

• However, for split actions S = S1 + S2 we can use a
multiple time scale integration scheme (nested leapfrog),

V(∆τ) = V2(
∆τ

2
)

[
V1(

∆τ

m
)

]m

V2(
∆τ

2
),

V1(∆τ) = VS1(
∆τ

2
)VT(∆τ)VS1(

∆τ

2
), V2 = VS2(∆τ).
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Multiple Time Scales

• Multiple time scale integration is effective when the force
term F1 due to S1 is cheap to evaluate compared to F2 (that
of S2).

• However, as the step-size for S2 is larger, we also require
that the size of the force term for S2 is relatively small
compared to that of S1.

• The gauge force Fg is cheap compared to the
pseudofermion force Fpf, and at heavy quark masses
Fg > Fpf, but at light quark masses the UV fluctuations in
the pseudo fermion force become too large for multiple
time scales to be effective.

• This is where polynomial filtering steps in.
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Polynomial Filtering

• We can use a polynomial filter P = P(M) to separate the
ultraviolet and infrared physics in the pseudofermion
force,

Spoly = χ†Pχ,

Spf = φ†(MP)−1φ.

• Recall M = D†
wDw is Hermitian positive definite.

• As Spoly is fast to evaluate compared to Spf we split the
action in the following way,

S1 = Sg + Spoly, S2 = Spf.

• If P ≈ 1/z then it will capture the short-distance physics
in Spoly and act as a UV filter in Spf.
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Fermionic Determinant

• Note that the fermionic determinant is unchanged by the
introduction of the polynomial filter.

• To see this we note that∫
Dφ†DφDχ†Dχ e−

∫
d4x χ†Pχ+φ†(x)(MP)−1φ(x)

=
detP

det(MP) =
1

det M−1 = det M

• In the limit as the order of the polynomial n→ ∞ we have
MP → 1 and P(M)→ M−1.

• In this way the polynomial term can reproduce as much or
as little of the pseudofermion term as we want.
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Dφ†DφDχ†Dχ e−

∫
d4x χ†Pχ+φ†(x)(MP)−1φ(x)

=
detP
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det M−1 = det M
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Chebyshev Filter

• An effective UV filter is the nth order Hermitian Chebyshev
polynomial approximation to 1/z,

Pn(z) = an

n

∏
k=1

(z− zk) ≈
1
z

,

where we set θk =
2πk
n+1 to obtain the roots

zk = λ[
1
2
(1 + ε)(1− cos θk)− i

√
ε sin θk].

• The normalisation is defined by z0 = 1
2 (1 + ε), with

an =
1

z0 ∏n
k=1(z0 − zk)

.

• The approximation is good between [ε, 1], so we rescale
with

λ = 1 + 8κ.
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Intermediate Filter

• Using this property of the Chebyshev polynomials, we can
add an intermediate filter to our action as a bridge
between the high and low energy scales, e.g.

S1 = Sg S2 = χ†Pmχ,
S3 = χ†Pm|nχ, S4 = φ†(MPn)−1φ.

• Pn denotes the Chebyshev polynomial of order n.
• Pm|n is defined so that Pn = PmPm|n.
• This allows us to perform fermion matrix inversions even

less frequently.
• This may(?) be more efficient than a single filter algorithm.
• Note: filter implementation makes use of multi-shift linear

solvers for efficiency.
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Integration Scheme

• With a second filter, we have four different scales, five (or
more) if we are doing a 2+1 flavour simulation.

• Nested leapfrog is too cumbersome for fine tuning these
scales.

• We make use of the fact that Vi = VSi all commute to
introduce a generalised integration scheme.

• If Ni is the number of integration steps per trajectory, then
nested leapfrog requires

Ni|Ni−1∀i

• The new integration scheme requires only that

Ni|N1∀i
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Generalised Leapfrog

• Set N = N1 and set ni = N1/Ni

• The generalised leapfrog algorithm is then:
1 Perform an initial half-step Vi(

1
2 ∆τi) updating P for all i.

2 Loop over j = 1 to N− 1
• Apply VT(∆τ) to update U.
• If {0 ≡ j mod Ni} apply Vi(∆τi) to update P

3 Apply VT(∆τ) to update U.
4 Perform a final half-step Vi(

1
2 ∆τi) updating P for all i.

• Can show using BCH that it has errors of O[(∆τ)3].
• Reduces to nested leapfrog for Ni|Ni−1.
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Results κ = 0.15825, mπ ≈ 400MeV



Single Flavour QCD

• Single fermion flavours can be simulated using a rational
polynomial,

R(M) = ∑
ai

M + bi
≈ 1√

M

(or some other method e.g. polynomial approx. to 1/
√

M).
• Recall M = D†

wDw is Hermitian positive definite.
• Can we extend our polynomial filtering technique to single

flavour simulations?
• Suppose we have a polynomial Q such that

Q(M) ≈ 1√
M

• E.g. numerically calculate coefficients for Chebyshev
approximation to 1/

√
z, then calculate the roots. . .
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Single Flavour Polynomial Filter

• Then we can write

Spoly1f = χ†
1fQχ1f,

S1pf = φ†
1fRQ−1φ1f.

• As before, the determinant is unaffected by the addition of
the polynomial filter.

• Could add an intermediate filter for the single flavour as
before but at the strange quark mass probably not worth it.

• Knowing roots of Q is needed to rewriteRQ−1 as a sum
over poles.

• This allows the use of efficient linear multi-shift system
solvers.
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Alternative Approximation

• Note thatRQ−1 ≈ 1.
• May be advantageous to simply use the Remes algorithm

to get a rational approximation to

R̃(z) ≈ f (z) =
1√

zQ(z)

and use that instead of the productRQ−1.
• What are the possible advantages?
• The rational approximation to f might have improved

precision for a given order.
• Smallest shift for R̃ expressed as a sum over poles might

be bigger.
=⇒ Less iterations to solve.
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Another Variant

• Recall that we used the Hermitian Chebyshev
approximation to 1/z in our two flavour polynomial filter.

• The non-Hermitian Chebyshev approximation K(z) to 1/z
has the same normalisation, but slightly different roots,

yk = d(1− cos θk) + i
√

d2 − c2 sin θk.

• Valid for an elliptical region in the complex plane.
• So long as the spectrum of the non-Hermitian matrix Dw is

within this ellipse, we can write

K(Dw) = an

n/2

∏
k=1

(Dw − yk)(Dw − y∗k ) ≈
1

Dw
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Factoring the Polynomial

• Now construct a polynomial using only half the roots (say
those with positive imaginary parts),

K+(Dw) =
√

an

n/2

∏
k=1

(Dw − yk)

• We need the following two properties of determinants,

det(AB) = det A det B
det A† = (det A)∗

• Using these we can deduce that

detK†
+(Dw)K+(Dw) = detK(Dw) ≈ (det Dw)

−1

• So long as det Dw is real and positive, this is the correct
weighting for a single fermion flavour.
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The Action

• So we can the construct a polynomial filtered one-flavour
action using K+,

Spoly1f = χ†
1fK†

+K+χ1f,

S1pf = φ†
1fW†(Dw)W(Dw)φ1f.

• Here,W needs to be a rational polynomial approximation
to {zK∗+(z)K+(z)}−1.

• Should be able to obtain this by factoringR(z) the
Zolotarev approximation to 1/z and setting

W(z) = R+(z)K−1
+ .

• At this point, it might be more efficient to take large n
polynomial limit for K+, split it into two and do filtered
polynomial HMC for the single flavour. . .
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Conclusions

• The use of a polynomial approximation to the inverse as a
filter successfully separates the UV and IR pseudofermion
dynamics.

• In combination with a generalise leapfrog algorithm we
successfully reduce the cost of dynamical simulations.

• The generalised leapfrog algorithm is applicable to any
multiple time scale integration scheme, far more flexible
than nested leapfrog.

• Technique is not necessarily orthogonal to other
improvements (e.g. DD, Hasenbuch trick).

• Polynomial filtering can also be extended to single flavour
simulations.

• More results to come...
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