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Superior Técnico, Av. Rovisco Pais, P-1049-001

Lisboa, Portugal

QCD Relics of Astrophysical Relevance – p. 1/31



Acknowledgments

This set of results is due to the effort of many authors among whom I cite:

Dmitry Antonov

Alexey Nefediev

S. Cotanch, A. Szczepaniak, P. Maris

L. Ya. Glozman

Pedro Bicudo, Gonçalo Marques, Ricardo

F. Llanes Estrada

G. Krein

Yu Kalashnikova

A. Vairo and N. Brambilla

V. Beveren, G. Rupp and many others

QCD Relics of Astrophysical Relevance – p. 2/31



Acknowledgments

This set of results is due to the effort of many authors among whom I cite:

Dmitry Antonov

Alexey Nefediev

S. Cotanch, A. Szczepaniak, P. Maris

L. Ya. Glozman

Pedro Bicudo, Gonçalo Marques, Ricardo

F. Llanes Estrada

G. Krein

Yu Kalashnikova

A. Vairo and N. Brambilla

V. Beveren, G. Rupp and many others

Details in arXiv:1008.3638v1
and in Phys. Rev. D 81, 054027
(2010).

QCD Relics of Astrophysical Relevance – p. 2/31



Plan of the Talk

We start with a digression about Effective-Actions and Generalized Nambu Jona-Lasinio
formalisms. In the Heavy Quark limit, they are shown to coincide. We obtain an NJL
derivation of the known result of QCD sum rules.
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Plan of the Talk

We start with a digression about Effective-Actions and Generalized Nambu Jona-Lasinio
formalisms. In the Heavy Quark limit, they are shown to coincide. We obtain an NJL
derivation of the known result of QCD sum rules.

Next, we summarize the highlights of the GNJL formalism, namely how to use
Valatin-Bogoliubov pseudo-unitary transformations to obtain exact solution for fermion
condensates. A concrete example of a Mass-Gap equation is given. Multiple
solutions-one for each Landau level-are given.

We briefly discuss the phenomenological implication of the Mass-Gap equation in the
low energy domain of hadronic physics and show how it unifies, in the same vision, so
diverse phenomena like N-N repulsive cores, pion masses, hadronic scattering, notably
π − π scattering lengths.

Finally we discuss the possibility of a gravity stabilized domains–extra solutions of mass
gap equation. A Tolman-Oppenheimer-Volkoff calculation of gravitationally stable such
domains will be presented. They are shown to be dark
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Effective Action-A simple example: Small loops

An NJL-type model (P. Bicudo, N. Brambilla, J.E.F.T.R., A. Vairo, ’98):

S =

Z

x
ψ̄(γµ∂µ +m)ψ +

1

2

Z

x,y
jaµ(x)

˙
g2Aaµ(x)Abν(y)

¸
jbν(y),

where jaµ ≡ ψ̄γµTaψ and
˙
g2Aaµ(x)Abν(y)

¸
≃ 1

4
xλyρ

˙
g2FaµλF

b
νρ

¸
.

QCD Relics of Astrophysical Relevance – p. 4/31



Effective Action-A simple example: Small loops

An NJL-type model (P. Bicudo, N. Brambilla, J.E.F.T.R., A. Vairo, ’98):

S =

Z

x
ψ̄(γµ∂µ +m)ψ +

1
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Z

x,y
jaµ(x)

˙
g2Aaµ(x)Abν(y)

¸
jbν(y),

where jaµ ≡ ψ̄γµTaψ and
˙
g2Aaµ(x)Abν(y)

¸
≃ 1

4
xλyρ

˙
g2FaµλF

b
νρ

¸
.

Bosonization of the four-quark interaction

˙
g2Aaµ(x)Abν(y)

¸
= xλyρ ·

˙
G2

¸

48(N2
c − 1)

· δab(δµνδλρ − δµρδλν)

goes via an auxiliary Abelian-like field Aaµ(x) = 1
2
xνnaFνµ, where Fνµ and na are

constant, and nanb = δab.
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An NJL-type model (P. Bicudo, N. Brambilla, J.E.F.T.R., A. Vairo, ’98):

S =

Z

x
ψ̄(γµ∂µ +m)ψ +

1

2

Z

x,y
jaµ(x)

˙
g2Aaµ(x)Abν(y)

¸
jbν(y),

where jaµ ≡ ψ̄γµTaψ and
˙
g2Aaµ(x)Abν(y)

¸
≃ 1

4
xλyρ

˙
g2FaµλF

b
νρ

¸
.

Bosonization of the four-quark interaction

˙
g2Aaµ(x)Abν(y)

¸
= xλyρ ·

˙
G2

¸

48(N2
c − 1)

· δab(δµνδλρ − δµρδλν)

goes via an auxiliary Abelian-like field Aaµ(x) = 1
2
xνnaFνµ, where Fνµ and na are

constant, and nanb = δab.

The resulting one-loop Euler–Heisenberg–Schwinger Lagrangian in the Aaµ-field,

tr ln
γµDµ[A] +M

γµ∂µ +M
= −2Nf · tr (TaTa) ·

Z ∞

0
ds

e−M
2s

(4πs)2

ˆ
abs2 cot(as) coth(bs) − 1

˜
,

where a2 − b2 = E2 − H2, ab = |EH|, can be expanded at large M in the number of

external Aaµ-lines ⇒ an NJL-based derivation of
˙
ψ̄ψ

¸
heavy; Nc=3

= −Nf ·
αs

˙
(Fa

µν)2
¸

12πM
.
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Going beyond the Gaussian approximation

In the infinite current quark mass limit both approaches: the Generalized
Nambu,Jona-Lasinio (GNJL) and Effective Action coincide.
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NJL- Linking SCSB with confinement: A general strategy.

The two most fundamental nonperturbative phenomena in QCD are SCSB and
confinement. Are they interrelated?
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The two most fundamental nonperturbative phenomena in QCD are SCSB and
confinement. Are they interrelated?

In Nambu–Jona-Lasinio–type models with confinement:

˙
ψ̄ψ

¸
∝ −

˙
g2(Faµν)

2
¸
× (vacuum correlation length)

(P. Bicudo, N. Brambilla, J. E. F. T. Ribeiro, and A. Vairo, ’98).
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NJL- Linking SCSB with confinement: A general strategy.

The two most fundamental nonperturbative phenomena in QCD are SCSB and
confinement. Are they interrelated?

In Nambu–Jona-Lasinio–type models with confinement:

˙
ψ̄ψ

¸
∝ −

˙
g2(Faµν)

2
¸
× (vacuum correlation length)

(P. Bicudo, N. Brambilla, J. E. F. T. Ribeiro, and A. Vairo, ’98).

The starting idea is to get
˙
ψ̄ψ

¸
from the one-loop quark effective action:

˙
ψ̄ψ

¸
= − ∂

∂m

˙
Γ[Aaµ]

¸
,

assuming for the Wilson loop entering
˙
Γ[Aaµ]

¸
an area law.
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NJL- Linking SCSB with confinement: A general strategy.

˙
Γ[Aaµ]

¸
= −(2S + 1)Nf

Z ∞

0

ds

s
e−m

2s

Z

P
Dzµ

Z

A
Dψµe

−
R s
0
dτ

“

1

4
ż2µ+ 1

2
ψµψ̇µ

”

×

×
fi

trP exp

»
ig

Z s

0
dτTa

`
Aaµżµ − ψµψνF

a
µν

´–fl
−Nc

ff
.
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˙
Γ[Aaµ]

¸
= −(2S + 1)Nf

Z ∞

0

ds

s
e−m

2s

Z

P
Dzµ

Z

A
Dψµe

−
R s
0
dτ

“

1

4
ż2µ+ 1

2
ψµψ̇µ

”

×

×
fi

trP exp

»
ig

Z s

0
dτTa

`
Aaµżµ − ψµψνF

a
µν

´–fl
−Nc

ff
.

Only when
R
P Dzµ

R
ADψµ[· · · ] → const√

s
at s→ ∞, we have a finite quark condensate

in the chiral limit:

˙
ψ̄ψ

¸
∝ ∂

∂m

Z ∞

0

ds

s
e−m

2s · const√
s

= −2
√
π · const

(T. Banks and A. Casher, ’80).
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Only when
R
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R
ADψµ[· · · ] → const√

s
at s→ ∞, we have a finite quark condensate

in the chiral limit:

˙
ψ̄ψ

¸
∝ ∂

∂m

Z ∞

0

ds

s
e−m

2s · const√
s

= −2
√
π · const

(T. Banks and A. Casher, ’80).

The second idea: Parametrize via zµ(τ) the minimal area Smin, entering the area law:

˙
W [zµ]

¸
=

fi
trP exp

„
ig

Z s

0
dτTaAaµżµ

«fl
→ Nc · e−σ(s)·Smin .
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Linking SCSB with confinement: A general strategy.

Find an ansatz for Smin[zµ] so to enable the analytic calculation of
˙
Γ[Aaµ]

¸
, and impose

the
R
P Dzµ

R
ADψµ[· · · ] → 1/

√
s asymptotic behavior ⇒ σ(s).
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Linking SCSB with confinement: A general strategy.

Find an ansatz for Smin[zµ] so to enable the analytic calculation of
˙
Γ[Aaµ]

¸
, and impose

the
R
P Dzµ

R
ADψµ[· · · ] → 1/

√
s asymptotic behavior ⇒ σ(s).

A cone-shaped surface in 3D can be generalized to 4D as

S3d =
1

2

Z s

0
dτ |z × ż|→S4d =

1

2
√

2

Z s

0
dτ |εµνλρzλżρ| ≥

1

4
√

3
|Σµν | := Smin[zµ],

where Σµν(s) = εµνλρ
R s
0 dτzλżρ.
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S3d =
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2

Z s

0
dτ |z × ż|→S4d =

1

2
√

2

Z s

0
dτ |εµνλρzλżρ| ≥

1

4
√

3
|Σµν | := Smin[zµ],

where Σµν(s) = εµνλρ
R s
0 dτzλżρ.

The simple exponential ansatz for the Wilson loop at all distances,

˙
W [zµ]

¸
=Nc · e−σ̃|Σµν |, where σ̃(s) =

σ(s)

4
√

3
,
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√
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|Σµν | := Smin[zµ],

where Σµν(s) = εµνλρ
R s
0 dτzλżρ.

The simple exponential ansatz for the Wilson loop at all distances,

˙
W [zµ]

¸
=Nc · e−σ̃|Σµν |, where σ̃(s) =

σ(s)

4
√

3
,

yields for
˙
Γ[Aaµ]

¸
the Euler–Heisenberg–Schwinger Lagrangian in an auxiliary constant

Abelian field Bµν , to be averaged with the weight 1/

„
1 +

B2

µν

4σ̃2

«7/2

.
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Linking SCSB with confinement: A general strategy.

The quark condensate becomes:

˙
ψ̄ψ

¸
= −3Nf

4π2
·m

Z ∞

0
ds e−m

2s · σ̃2 · f [A(s)],

where

A(s) ≡ 1

2σ̃2s2
and f [A] =

`√
1 + A− 1

´4 ·
`
5A+ 4

√
1 +A+ 6

´

(1 +A)5/2
.
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¸
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´4 ·
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We obtain σ̃(s) from the condition

σ̃2 · f [A] →σ
3/2
0√
s

at s → ∞, where σ0 = const.
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Linking SCSB with confinement: A general strategy.

The quark condensate becomes:

˙
ψ̄ψ

¸
= −3Nf

4π2
·m

Z ∞

0
ds e−m

2s · σ̃2 · f [A(s)],

where

A(s) ≡ 1

2σ̃2s2
and f [A] =

`√
1 + A− 1

´4 ·
`
5A+ 4

√
1 +A+ 6

´

(1 +A)5/2
.

We obtain σ̃(s) from the condition

σ̃2 · f [A] →σ
3/2
0√
s

at s → ∞, where σ0 = const.

Then, we obtain the chiral condensate:

˙
ψ̄ψ

¸
≃ − 3Nf

4π3/2
· σ3/2

0 = −N , N = (250MeV)3⇒ m & 2
√
π

„ N
3NfGmax

«1/3

,
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Then, we obtain the chiral condensate:
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ψ̄ψ

¸
≃ − 3Nf

4π3/2
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π

„ N
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«1/3

,

It is possible to obtain reasonable values for the constituent quark mass m = 460 MeV

while reproducing, at the same time, the heavy-quark limit of the squared area law.
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NJL-A simple example: Vacuum Structure in Strong Magnetic fields

The Hamiltonian of a relativistic fermion in an external field Aµ has the following form in 2+1
dimensions:

H =

Z
d2x ψ̄(x)

ˆ
−iγjDj +m

˜
ψ(x) ,
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Choose Aµ = −By δµ1, where B > 0 is the magnetic field strength
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NJL-A simple example: Vacuum Structure in Strong Magnetic fields

The Hamiltonian of a relativistic fermion in an external field Aµ has the following form in 2+1
dimensions:

H =

Z
d2x ψ̄(x)

ˆ
−iγjDj +m

˜
ψ(x) ,

Choose Aµ = −By δµ1, where B > 0 is the magnetic field strength

This constitutes a demonstration model for the more complicated 3+1 dimensions

Let us use a Bogoliubov-Valatin transformation to obtain the known results

B〈0|ψ†(xxx)ψ(xxx)|0〉B = −|eB|
2π

,

En =
q
m2 + 2n|eB|

with n standing for the Landau levels
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A simple case for Valatin-Bogoliubov Transformations

We need just three steps to construct the wave-function of a particle in a magnetic field.
From,

ψ(x) =
X

p

1p
LxLy

n
u(p) ap + v(p) b

†
−p

o
eip·x
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A simple case for Valatin-Bogoliubov Transformations

We need just three steps to construct the wave-function of a particle in a magnetic field.
From,

ψ(x) =
X

p

1p
LxLy

n
u(p) ap + v(p) b

†
−p

o
eip·x

u(p) =

r
Ep+m

2Ep

2
64

1
py − ipx

Ep +m

3
75 ;v(p) =

r
Ep+m

2Ep

2
64

−py + ipx

Ep +m

1

3
75

n
a†p, ap′

o
=

n
b†p, bp′

o
= δpxp′x

δpyp′y
, Ep =

p
m2 + |p|2.

The u and v spinors are the solutions of the Dirac equation for positive and negative energy

respectively. (with cosφ =

r
Ep+m

2Ep

, sinφ =

r
Ep−m
2Ep

.)
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1
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r
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2Ep

2
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−py + ipx

Ep +m

1

3
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a†p, ap′

o
=

n
b†p, bp′

o
= δpxp′x

δpyp′y
, Ep =

p
m2 + |p|2.

The u and v spinors are the solutions of the Dirac equation for positive and negative energy

respectively. (with cosφ =

r
Ep+m

2Ep

, sinφ =

r
Ep−m
2Ep

.)

Step 1: perform the following canonical transformation,2
4 ãp

b̃†−p

3
5 = Rφ(p)

2
4 ap

b†−p

3
5

2
4 ũ

ṽ

3
5 = R∗

φ(p)

2
4 u(p)

v(p)

3
5

Rφ(p) =

2
4 cosφ − sinφ (p̂y + ip̂x)

sinφ (p̂y − ip̂x) cosφ

3
5 , p̂ = p

|p|
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A simple example of a non-trivial vacuum

The vacuum associated to the new operators ã and b̃ is given by
|0̃〉 = S|0〉 =

Q
ppp(cosφ+ sinφ a†pppb

†
−ppp)|0〉

ãppp|0̃〉 = 0 , b̃ppp|0̃〉 = 0
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A simple example of a non-trivial vacuum

The vacuum associated to the new operators ã and b̃ is given by
|0̃〉 = S|0〉 =

Q
ppp(cosφ+ sinφ a†pppb

†
−ppp)|0〉

ãppp|0̃〉 = 0 , b̃ppp|0̃〉 = 0

We should think of ψ(x) =
P
p

1√
LxLy

n
u(p) ap + v(p) b

†
−p

o
eip·x as an inner

product between the Hilbert space spanned by the spinors {u, v} and the Fock space
generated by {a, b}

It is invariant under V-B transformations: any rotation in the Fock space must engender a
counter-rotation in the Hilbert space.
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A simple example of a non-trivial vacuum

The vacuum associated to the new operators ã and b̃ is given by
|0̃〉 = S|0〉 =

Q
ppp(cosφ+ sinφ a†pppb

†
−ppp)|0〉

ãppp|0̃〉 = 0 , b̃ppp|0̃〉 = 0

We should think of ψ(x) =
P
p

1√
LxLy

n
u(p) ap + v(p) b

†
−p

o
eip·x as an inner

product between the Hilbert space spanned by the spinors {u, v} and the Fock space
generated by {a, b}

It is invariant under V-B transformations: any rotation in the Fock space must engender a
counter-rotation in the Hilbert space.

Choose φ as to ensure that the new spinors ũ and ṽ are momentum independent:

ũ =

2
4 0

1

3
5 , ṽ =

2
4 1

0

3
5 so that all the momentum dependence of ψ is stored in

{ãp, b̃p} = S{â, b̂}S
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Landau Levels

Use the Landau level representation

Use eipyy = e−iℓ
2pxpy

√
2π

P∞
n=0 i

nωn(ξ)ωn(ℓpy)

ωn(x) = (2nn!
√
π)−1/2e−x

2/2Hn(x)

l =
p

|eB|, ξ = y
l

+ lpx
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Landau Levels

Use the Landau level representation

Use eipyy = e−iℓ
2pxpy

√
2π

P∞
n=0 i

nωn(ξ)ωn(ℓpy)

ωn(x) = (2nn!
√
π)−1/2e−x

2/2Hn(x)

l =
p

|eB|, ξ = y
l

+ lpx

The wave function can now be written in the following way:

ψ(xxx) =
P
n px

1√
ℓLx

n
ûnpx(y) ânpx + v̂npx (y) b̂†n−px

o
eipxx

2
4 ânpx

b̂†n−px

3
5 =

P
py

in
√

2πℓ√
Ly

2
4 ωn(ℓpy) 0

0 −ωn−1(ℓpy)

3
5

2
4 ãppp

b̃†−ppp

3
5

2
4 ûnpx(y)

v̂npx(y)

3
5 =

2
4 ωn(ξ) 0

0 iωn−1(ξ)

3
5

2
4 ũ

ṽ

3
5
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Landau Levels

Use the Landau level representation

Use eipyy = e−iℓ
2pxpy

√
2π

P∞
n=0 i

nωn(ξ)ωn(ℓpy)

ωn(x) = (2nn!
√
π)−1/2e−x

2/2Hn(x)

l =
p

|eB|, ξ = y
l

+ lpx

The wave function can now be written in the following way:

ψ(xxx) =
P
n px

1√
ℓLx

n
ûnpx(y) ânpx + v̂npx (y) b̂†n−px

o
eipxx

2
4 ânpx

b̂†n−px

3
5 =

P
py

in
√

2πℓ√
Ly

2
4 ωn(ℓpy) 0

0 −ωn−1(ℓpy)

3
5

2
4 ãppp

b̃†−ppp

3
5

2
4 ûnpx(y)

v̂npx(y)

3
5 =

2
4 ωn(ξ) 0

0 iωn−1(ξ)

3
5

2
4 ũ

ṽ

3
5

The new operators satisfy the anticommutation relations:n
a†npx , an′p′x

o
=

n
b†npx , bn′p′x

o
= δnn′ δpxp′x

The vacuum is invariant under this change of basis, i.e., ânpx |0̃〉 = 0 , b̂npx |0̃〉 = 0
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An example of Mass Gap Equation

There are several approaches one can use:

1-consider the Ward identity or;

2-get rid of anomalous Bogoliubov terms or;

3-Derive it as the condition for the vacuum energy to be a minimum or;

4-use a Dyson equation for the fermion propagator,

Here we use 2. We have with cos θn =
q
En+m
2En

, sin θn =
q
En−m
2En

QCD Relics of Astrophysical Relevance – p. 14/31



An example of Mass Gap Equation

There are several approaches one can use:

1-consider the Ward identity or;

2-get rid of anomalous Bogoliubov terms or;

3-Derive it as the condition for the vacuum energy to be a minimum or;

4-use a Dyson equation for the fermion propagator,

Here we use 2. We have with cos θn =
q
En+m
2En

, sin θn =
q
En−m
2En

Third step Rθn
=

2
4 cos θn − sin θn

sin θn cos θn

3
5
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An example of Mass Gap Equation

There are several approaches one can use:

1-consider the Ward identity or;

2-get rid of anomalous Bogoliubov terms or;

3-Derive it as the condition for the vacuum energy to be a minimum or;

4-use a Dyson equation for the fermion propagator,

Here we use 2. We have with cos θn =
q
En+m
2En

, sin θn =
q
En−m
2En

Third step Rθn
=

2
4 cos θn − sin θn

sin θn cos θn

3
5

Setting the the anomalous terms in the Hamiltonian to zero finds θn. We can obtain the

following mass gap equations,

8
<
:

(ℓm cos θ0 + sin θ2/
√

2) sin θ0 = 0 , n = 0 ,

ℓm sin 2θn −
√

2n cos 2θn = 0 , n > 0 ,

For any n have the following solution: tan 2θn =

√
2n|eB|
m

, En =
p
m2 + 2n|eB|
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Vacuum Condensates and 3+1

Let us construct the vacuum state in a magnetic field |0〉B , annihilated by the operators
anpx and bnpx :

anpx |0〉B = 0 , bnpx |0〉B = 0
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Vacuum Condensates and 3+1

Let us construct the vacuum state in a magnetic field |0〉B , annihilated by the operators
anpx and bnpx :

anpx |0〉B = 0 , bnpx |0〉B = 0

|0〉B =
Q
npx

(cos θn + sin θn â
†
npx b̂

†
n−px

)|0̃〉
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Vacuum Condensates and 3+1

Let us construct the vacuum state in a magnetic field |0〉B , annihilated by the operators
anpx and bnpx :

anpx |0〉B = 0 , bnpx |0〉B = 0

|0〉B =
Q
npx

(cos θn + sin θn â
†
npx b̂

†
n−px

)|0̃〉

finally we come to the problem of dynamical symmetry breaking in the presence of the
magnetic field.

We obtainB〈0|ψ†(xxx)ψ(xxx)|0〉B = − |eB|
2π

A fermion condensate occurs even in the absence of any additional interaction between
fermions. This is an inherent property of the 2+1 dimensional Dirac theory in an external
magnetic field.
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Vacuum Condensates and 3+1

Let us construct the vacuum state in a magnetic field |0〉B , annihilated by the operators
anpx and bnpx :

anpx |0〉B = 0 , bnpx |0〉B = 0

|0〉B =
Q
npx

(cos θn + sin θn â
†
npx b̂

†
n−px

)|0̃〉

finally we come to the problem of dynamical symmetry breaking in the presence of the
magnetic field.

We obtainB〈0|ψ†(xxx)ψ(xxx)|0〉B = − |eB|
2π

A fermion condensate occurs even in the absence of any additional interaction between
fermions. This is an inherent property of the 2+1 dimensional Dirac theory in an external
magnetic field.

In 3+1 Dimensions with quartic interactions we can perform these very same 3-steps.
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A class of Hamiltonians

Consider now the simplest Hamiltonian containing the ladder-Dyson-Schwinger machinery
for chiral symmetry.
In any case most of the results presented here do not depend on the kernel choice

H =

Z
d3x q+(x)

“
−i−→α.−→∇

”
q(x) +

Z
d3x d3y

2
Jaµ(x)Kab

µν(x− y)Jbν(y)
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A class of Hamiltonians

Consider now the simplest Hamiltonian containing the ladder-Dyson-Schwinger machinery
for chiral symmetry.
In any case most of the results presented here do not depend on the kernel choice

H =

Z
d3x q+(x)

“
−i−→α.−→∇

”
q(x) +

Z
d3x d3y

2
Jaµ(x)Kab

µν(x− y)Jbν(y)

With,

Jaµ(x) = q(x)γµ
λa

2
q(x)

Kab
µν(x− y) = δabKµν(|−→x −−→y |)
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A class of Hamiltonians

Consider now the simplest Hamiltonian containing the ladder-Dyson-Schwinger machinery
for chiral symmetry.
In any case most of the results presented here do not depend on the kernel choice

H =

Z
d3x q+(x)

“
−i−→α.−→∇

”
q(x) +

Z
d3x d3y

2
Jaµ(x)Kab

µν(x− y)Jbν(y)

With,

Jaµ(x) = q(x)γµ
λa

2
q(x)

Kab
µν(x− y) = δabKµν(|−→x −−→y |)

This class of Hamiltonians has rich phenomenological consequences enabling us to study a
variety of hadronic phenomena controlled by global symmetries

Reproduces in a non-trivial manner the low energy properties of pion physics like, for
instance, π − π Weinberg results for the scattering lengths together with Oakes-Renner,
Goldberger-Treiman....

Possesses the mechanism of pole-doubling in what concerns scalar decays
(Unitarization).
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Bogoliubov Transformations

We can rotate the creation and annihilation Fock space operators. It is canonical !

|e0 >= Exp
n

bQ+
0 − bQ0

o
|0 >

bQ+
0 (Φ) =

X

cf

Z
d3pΦ(p)M

ss
′ (θ, φ)bb+fcs(

−→p ) bd+
fcs

′ (−−→p )
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Bogoliubov Transformations

We can rotate the creation and annihilation Fock space operators. It is canonical !

|e0 >= Exp
n

bQ+
0 − bQ0

o
|0 >

bQ+
0 (Φ) =

X

cf

Z
d3pΦ(p)M

ss
′ (θ, φ)bb+fcs(

−→p ) bd+
fcs

′ (−−→p )

With, the 3P0 Coupling (Parity +):

M
ss

′ (θ, φ) = −
√

8π
X

mlms

2
4 1 1 |0
ml ms |0

3
5 ×

2
4 1/2 1/2 |1

s s
′ |ms

3
5 y1ml

(θ, φ)
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Bogoliubov Transformations

We can rotate the creation and annihilation Fock space operators. It is canonical !

|e0 >= Exp
n

bQ+
0 − bQ0

o
|0 >

bQ+
0 (Φ) =

X

cf

Z
d3pΦ(p)M

ss
′ (θ, φ)bb+fcs(

−→p ) bd+
fcs

′ (−−→p )

With, the 3P0 Coupling (Parity +):

M
ss

′ (θ, φ) = −
√

8π
X

mlms

2
4 1 1 |0
ml ms |0

3
5 ×

2
4 1/2 1/2 |1

s s
′ |ms

3
5 y1ml

(θ, φ)

The functions Φ(p) classify the infinite set of possible Fock spaces:

...

φ

Fock Space
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Fock Space

The Fock space operators transform like, ebbcfs(−→p ) = Sbbcfs S−1, so that,
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Fock Space

The Fock space operators transform like, ebbcfs(−→p ) = Sbbcfs S−1, so that,

2
4

ebb
ebd
+

3
5

s

=

2
4 cosφ − sinφM

ss
′

sinφM⋆
ss

′ cosφ

3
5

2
4

bb
bd+

3
5
s
′
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Fock Space

The Fock space operators transform like, ebbcfs(−→p ) = Sbbcfs S−1, so that,

2
4

ebb
ebd
+

3
5

s

=

2
4 cosφ − sinφM

ss
′

sinφM⋆
ss

′ cosφ

3
5

2
4

bb
bd+

3
5
s
′

Then we can consider the fermion field Ψfc(
−→x ) as an inner product between the Hilbert

space spanned by the spinors {u,v} and the Fock space spanned by the operators {bb, bd}:

Ψfc(
−→x ) =

Z
d3p

h
us(p) bcfs(

−→p ) + us(p) d
+
cfs(

−→−p)
i
ei

−→p .−→x
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Fock Space

The Fock space operators transform like, ebbcfs(−→p ) = Sbbcfs S−1, so that,

2
4

ebb
ebd
+

3
5

s

=

2
4 cosφ − sinφM

ss
′

sinφM⋆
ss

′ cosφ

3
5

2
4

bb
bd+

3
5
s
′

Then we can consider the fermion field Ψfc(
−→x ) as an inner product between the Hilbert

space spanned by the spinors {u,v} and the Fock space spanned by the operators {bb, bd}:

Ψfc(
−→x ) =

Z
d3p

h
us(p) bcfs(

−→p ) + us(p) d
+
cfs(

−→−p)
i
ei

−→p .−→x

So that requiring invariance of Ψfc(
−→x )under the Fock space rotations, is tantamount to

require a counter-rotation of the spinors u and v,
2
4 u

v

3
5 =

2
4 cosφ − sinφM∗

ss
′

sinφM
ss

′ cosφ

3
5

2
4 u

v

3
5
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Fock Space

The Fock space operators transform like, ebbcfs(−→p ) = Sbbcfs S−1, so that,

2
4

ebb
ebd
+

3
5

s

=

2
4 cosφ − sinφM

ss
′

sinφM⋆
ss

′ cosφ

3
5

2
4

bb
bd+

3
5
s
′

Then we can consider the fermion field Ψfc(
−→x ) as an inner product between the Hilbert

space spanned by the spinors {u,v} and the Fock space spanned by the operators {bb, bd}:

Ψfc(
−→x ) =

Z
d3p

h
us(p) bcfs(

−→p ) + us(p) d
+
cfs(

−→−p)
i
ei

−→p .−→x

So that requiring invariance of Ψfc(
−→x )under the Fock space rotations, is tantamount to

require a counter-rotation of the spinors u and v,
2
4 u

v

3
5 =

2
4 cosφ − sinφM∗

ss
′

sinφM
ss

′ cosφ

3
5

2
4 u

v

3
5

The {u,v}, contain now the information on the angle φ(p).
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Renormalized fermion propagators

Variation in φ is the same as to cut the fermion propagators Sφ,
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Renormalized fermion propagators

Variation in φ is the same as to cut the fermion propagators Sφ,

H 2
A = 0+ +

+ = 0Sδφ φ
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Renormalized fermion propagators

Variation in φ is the same as to cut the fermion propagators Sφ,

H 2
A = 0+ +

+ = 0Sδφ φ

Γµ(p, p
′
) = γµ + i

R d4q
(2π)4

K(q)ΩS(p
′
+ q)Γµ(p

′
+ q, p+ q)ΩS(p

′
+ q)

i(p− p
′
)µ Γµ(p, p

′
) = S−1(p

′
) − S−1(p)

With the full propagator being,�S =�S0 +�S0 S0 +��S0 S0 S0 + : : : =� � �S0 +�S0 S��=��S0 +�+ : : : =�S
S = S0 + S0ΣS, S−1(p0, ~p) = S−1

0 (p0, ~p) − Σ(~p)
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Quasi-Classicalregime and~ expansions

The equation for the mass operator Σ is non-linear,

iΣ(~p) = ~
R

d4k
(2π~)4

V (~p− ~k)γ0
1

S−1

0
(k0,~k)−Σ(~k)

γ0,
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Quasi-Classicalregime and~ expansions

The equation for the mass operator Σ is non-linear,

iΣ(~p) = ~
R

d4k
(2π~)4

V (~p− ~k)γ0
1

S−1

0
(k0,~k)−Σ(~k)

γ0,

the Fourier transform of the linear potential σ|~x| is (with L. Glozman and A. Nefediev):

V (~p) =
R
d3xei

~p~x
~ σ|~x| = − 8πσ~

4

p4
= ~

4Ṽ (~p),

where Ṽ (~p) does not contain ~.
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Quasi-Classicalregime and~ expansions

The equation for the mass operator Σ is non-linear,

iΣ(~p) = ~
R

d4k
(2π~)4

V (~p− ~k)γ0
1

S−1

0
(k0,~k)−Σ(~k)

γ0,

the Fourier transform of the linear potential σ|~x| is (with L. Glozman and A. Nefediev):

V (~p) =
R
d3xei

~p~x
~ σ|~x| = − 8πσ~

4

p4
= ~

4Ṽ (~p),

where Ṽ (~p) does not contain ~.

we find: iΣ(~p) = ~
R

d4k
(2π)4

Ṽ (~p− ~k)γ0
1

S−1

0
(k0,~k)−Σ(~k)

γ0.

Each loop brings an extra power of ~.
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Quasi-Classicalregime and~ expansions

The equation for the mass operator Σ is non-linear,

iΣ(~p) = ~
R

d4k
(2π~)4

V (~p− ~k)γ0
1

S−1

0
(k0,~k)−Σ(~k)

γ0,

the Fourier transform of the linear potential σ|~x| is (with L. Glozman and A. Nefediev):

V (~p) =
R
d3xei

~p~x
~ σ|~x| = − 8πσ~

4

p4
= ~

4Ṽ (~p),

where Ṽ (~p) does not contain ~.

we find: iΣ(~p) = ~
R

d4k
(2π)4

Ṽ (~p− ~k)γ0
1

S−1

0
(k0,~k)−Σ(~k)

γ0.

Each loop brings an extra power of ~.

Parametrize Σ(~p), in the form, Σ(~p) = [Ap −m] + (~γ~̂p)[Bp − p],

to obtain the dressed–quark Green’s function: S−1(~p, p0) = γ0p0 − (~γ~̂p)Bp − Ap.
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Quasi-Classicalregime and~ expansions

The equation for the mass operator Σ is non-linear,

iΣ(~p) = ~
R

d4k
(2π~)4

V (~p− ~k)γ0
1

S−1

0
(k0,~k)−Σ(~k)

γ0,

the Fourier transform of the linear potential σ|~x| is (with L. Glozman and A. Nefediev):

V (~p) =
R
d3xei

~p~x
~ σ|~x| = − 8πσ~

4

p4
= ~

4Ṽ (~p),

where Ṽ (~p) does not contain ~.

we find: iΣ(~p) = ~
R

d4k
(2π)4

Ṽ (~p− ~k)γ0
1

S−1

0
(k0,~k)−Σ(~k)

γ0.

Each loop brings an extra power of ~.

Parametrize Σ(~p), in the form, Σ(~p) = [Ap −m] + (~γ~̂p)[Bp − p],

to obtain the dressed–quark Green’s function: S−1(~p, p0) = γ0p0 − (~γ~̂p)Bp − Ap.

The functions Ap and Bp represent the scalar part and the space–vectorial part of the
effective Dirac operator.

Finally tanϕp =
Ap

Bp

ϕp→∞ → 0: only the vectorial part survives
ϕp→0 → π/2: only the scalar part survives
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Breakdown of the expansion forϕp in powers of~

The mass gap equation Ap cosϕp − Bp sinϕp = 0, with

Ap = m+ ~

2

R
d3k

(2π)3
Ṽ (~p− ~k) sinϕk, Bp = p+ ~

2

R
d3k

(2π)3
(~̂p~̂k)Ṽ (~p− ~k) cosϕk
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Breakdown of the expansion forϕp in powers of~

The mass gap equation Ap cosϕp − Bp sinϕp = 0, with

Ap = m+ ~

2

R
d3k

(2π)3
Ṽ (~p− ~k) sinϕk, Bp = p+ ~

2

R
d3k

(2π)3
(~̂p~̂k)Ṽ (~p− ~k) cosϕk

For free particles the chiral angle reduces to the free Foldy angle, ϕ(0)
p = arctan m

p
,

which diagonalizes the free Dirac Hamiltonian H = ~α~p+ βm
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Ṽ (~p− ~k)

h
cosϕk sinϕp − (~̂p~̂k) sinϕk cosϕp
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.

1-Introduce dimensionless variables in the integral, ~p = µc~x and ~k = µc~y;

2-define µ such that the resulting equation does not contain any scale at all. We have
µ =

√
σ~c/c2 and expand ϕp in low–momentum,

ϕp ≈
p→0

π
2
− const pc

µc2
+ . . . = π

2
− const pc√

σ~c
+ . . . .
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2-define µ such that the resulting equation does not contain any scale at all. We have
µ =

√
σ~c/c2 and expand ϕp in low–momentum,

ϕp ≈
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2
− const pc
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+ . . . = π

2
− const pc√

σ~c
+ . . . .

As ~ vanishes, the chiral angle approaches the trivial solution ϕp = 0 for all p’s and, in
the limit of ~ → 0, we cease to have a low–momentum expansion of ϕp.
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1-Introduce dimensionless variables in the integral, ~p = µc~x and ~k = µc~y;

2-define µ such that the resulting equation does not contain any scale at all. We have
µ =

√
σ~c/c2 and expand ϕp in low–momentum,

ϕp ≈
p→0

π
2
− const pc

µc2
+ . . . = π

2
− const pc√

σ~c
+ . . . .

As ~ vanishes, the chiral angle approaches the trivial solution ϕp = 0 for all p’s and, in
the limit of ~ → 0, we cease to have a low–momentum expansion of ϕp.

We cannot build an action S out of the string tension σ and the speed of light c to obtain

an expansion ϕp = ~

S × f1(p) + ~
2

S2 × f2(p) + . . .

QCD Relics of Astrophysical Relevance – p. 21/31



~ expansions:m 6= 0

With m 6= 0 things change: the classical action S ∼ m2c3

σ
; we have an expansion

parameter σ~c
(mc)2

and the mass–gap admits a solution in the form of a “perturbative"

series in powers of ~, ϕp =
P∞
n=0

“
σ~c

(mc2)2

”n
f̃n

` p
mc

´
.

QCD Relics of Astrophysical Relevance – p. 22/31



~ expansions:m 6= 0

With m 6= 0 things change: the classical action S ∼ m2c3

σ
; we have an expansion

parameter σ~c
(mc)2

and the mass–gap admits a solution in the form of a “perturbative"

series in powers of ~, ϕp =
P∞
n=0

“
σ~c

(mc2)2

”n
f̃n

` p
mc

´
.

To sum it up: we have two different regimes according to the parameter m/
√
σ: The

spontaneous breaking of chiral symmetry is relevant for m≪ √
σ, with heavy quark

physics relevant for the opposite
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Summary on V.B. transformations

The true vacuum, with the minimal vacuum energy, contains an infinite set of strongly
correlated 3P0 quark-antiquark pairs

|0[ϕ]〉 = Sϕ|0〉0 = eQ
†
0
−Q0 |0〉0
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†
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|0[ϕ]〉 =
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w0p + 1√
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√
w1pC

†
p + 1
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√
w2pC

†2
p

i
|0〉0
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†
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−Q0 |0〉0
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Q
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h√
w0p + 1√

2

√
w1pC

†
p + 1

2

√
w2pC

†2
p

i
|0〉0

w0p = cos4
ϕp

2
, w1p = 2 sin2 ϕp

2
cos2

ϕp

2
, w2p = sin4 ϕp

2
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2
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cos2

ϕp

2
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2

〈0[ϕ]|0[ϕ]〉 =
Q
p(w0p +w1p +w2p) = 1, 〈0[ϕ]|0〉0 = exp

h
V

P
p ln

`
cos2

ϕp

2

´i
−→
V→∞

0
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Q
p(w0p +w1p +w2p) = 1, 〈0[ϕ]|0〉0 = exp

h
V

P
p ln

`
cos2

ϕp

2

´i
−→
V→∞

0

The V.B. transformations constitute an Abelian Group:

Sϕ

2
4 b†

d

3
5S−vp → R[ϕ]

2
4 b†

d

3
5 , R[ϕ]R[ϕ̃] = R[ϕ+ϕ̃].
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〈0[ϕ]|0[ϕ]〉 =
Q
p(w0p +w1p +w2p) = 1, 〈0[ϕ]|0〉0 = exp

h
V

P
p ln

`
cos2

ϕp
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´i
−→
V→∞

0

The V.B. transformations constitute an Abelian Group:

Sϕ

2
4 b†

d

3
5S−vp → R[ϕ]

2
4 b†

d

3
5 , R[ϕ]R[ϕ̃] = R[ϕ+ϕ̃].

Regardless of the particular form of the Kµν(x, y) these class of models have
phenomenologically nice features:

1. For massless quarks it possesses a massless pion. (As an instance of the Mass Gap )

2. It is at least qualitatively successful in describing hadronic scattering, namely the issue
of π − π scattering: (The Adler zeros)
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The pion:An example of Mass Gap

Phys.Rev.D65:076008,2002.
P. Bicudo, S. Cotanch, F. Llanes-Estrada, P. Maris, JEFTR, A. Szczepaniak
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Exotic versus non-exotic:π-π scattering

A pictorial description of the Weinberg formula for the scattering lengths of pions. We have,
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Macroscopic properties of a replica-filled domain

The full internal-energy density ε(T ) = εvac(T ) + εh(T ). of a macroscopic domain
whose quantum states are built on top of a replica goes as follows
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Macroscopic properties of a replica-filled domain

The full internal-energy density ε(T ) = εvac(T ) + εh(T ). of a macroscopic domain
whose quantum states are built on top of a replica goes as follows

εvac(T ) = εR(T ) − ε0(T ) : the difference of the internal-energy density of the excited
vacuum, corresponding to a replica state inside the domain, and the internal-energy
density of the unexcited vacuum outside the domain
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Macroscopic properties of a replica-filled domain

The full internal-energy density ε(T ) = εvac(T ) + εh(T ). of a macroscopic domain
whose quantum states are built on top of a replica goes as follows

εvac(T ) = εR(T ) − ε0(T ) : the difference of the internal-energy density of the excited
vacuum, corresponding to a replica state inside the domain, and the internal-energy
density of the unexcited vacuum outside the domain

The internal-energy density of the unexcited vacuum has the form

ε0(T ) =
1

4

»
− b

32π2

˙
G2

¸
T

+ (mu +md)
˙
ψ̄ψ

¸
T

–
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Macroscopic properties of a replica-filled domain

The full internal-energy density ε(T ) = εvac(T ) + εh(T ). of a macroscopic domain
whose quantum states are built on top of a replica goes as follows

εvac(T ) = εR(T ) − ε0(T ) : the difference of the internal-energy density of the excited
vacuum, corresponding to a replica state inside the domain, and the internal-energy
density of the unexcited vacuum outside the domain

The internal-energy density of the unexcited vacuum has the form

ε0(T ) =
1

4

»
− b

32π2

˙
G2

¸
T

+ (mu +md)
˙
ψ̄ψ

¸
T

–

Use the known temperature-dependent gluonic and chiral condensates, which at
temperatures T ≪ mπ of interest read

˙
G2

¸
T

=
˙
G2

¸
− 24m3

πT

b
S1

“mπ
T

”
,

˙
ψ̄ψ

¸
T

=
˙
ψ̄ψ

¸ »
1 − 3mπT

4π2f2
π

S1

“mπ
T

”–
.
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˙
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+ (mu +md)
˙
ψ̄ψ

¸
T

–

Use the known temperature-dependent gluonic and chiral condensates, which at
temperatures T ≪ mπ of interest read

˙
G2

¸
T

=
˙
G2

¸
− 24m3
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b
S1

“mπ
T

”
,

˙
ψ̄ψ

¸
T

=
˙
ψ̄ψ

¸ »
1 − 3mπT

4π2f2
π

S1

“mπ
T

”–
.

Using the Gell-Mann–Oakes–Renner relation we have

ε0(T ) = ε0(0) +
3m3

πT

8π2
S1

“mπ
T

”
,

where we used the expansion Sν(x) ≡
∞P
n=1

Kν(nx)
nν .
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Macroscopic properties of a replica-filled domain

For the internal-energy density of the excited vacuum (GMOR rules), we must have an
expression similar:

εR(T ) = εR(0) +
3m3

πR
T

8π2
S1

“mπR

T

”
,

QCD Relics of Astrophysical Relevance – p. 27/31



Macroscopic properties of a replica-filled domain

For the internal-energy density of the excited vacuum (GMOR rules), we must have an
expression similar:

εR(T ) = εR(0) +
3m3

πR
T

8π2
S1

“mπR

T

”
,

εvac(T ) = ε+
3T

8π2

h
m3
πR
S1

“mπR

T

”
−m3

πS1

“mπ
T

”i
,
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Macroscopic properties of a replica-filled domain

For the internal-energy density of the excited vacuum (GMOR rules), we must have an
expression similar:

εR(T ) = εR(0) +
3m3

πR
T

8π2
S1

“mπR

T

”
,

εvac(T ) = ε+
3T

8π2

h
m3
πR
S1

“mπR

T

”
−m3

πS1

“mπ
T

”i
,

Neglect the outer temperature with respect to the temperature inside the domain (
neglect the outer pressure). Then the pressure of the relativistic pionic gas inside the
domain reads:

ph(T ) =
3m2

πR
T 2

2π2
S2

“mπR

T

”
.
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Neglect the outer temperature with respect to the temperature inside the domain (
neglect the outer pressure). Then the pressure of the relativistic pionic gas inside the
domain reads:

ph(T ) =
3m2

πR
T 2

2π2
S2

“mπR

T

”
.

Use standard thermodynamics εh(T ) = T
dph(T )
dT

− ph(T ). to obtain at temperatures
T ≪ mπ

ε(T ) ≃ ε− 3Tm3
π

8π2
K1

“mπ
T

”
.
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T
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Neglect the outer temperature with respect to the temperature inside the domain (
neglect the outer pressure). Then the pressure of the relativistic pionic gas inside the
domain reads:

ph(T ) =
3m2

πR
T 2

2π2
S2

“mπR

T

”
.

Use standard thermodynamics εh(T ) = T
dph(T )
dT

− ph(T ). to obtain at temperatures
T ≪ mπ

ε(T ) ≃ ε− 3Tm3
π

8π2
K1

“mπ
T

”
.

mπR = 250 MeV, 〈ψ̄ψ〉R = −(100 MeV)3, ε ≃ (250 MeV)4, mπ = 140 MeV we plot
these quantities. Up to the temperatures ∼ 20MeV we can disregard hadronic contributions
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Macroscopic properties of a replica-filled domain
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Macroscopic properties of a replica-filled domain
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 3.90626

 3.90627

 0  5  10  15  20  25  30  35

T [MeV]

Exact ε(T)
Approximate ε(T) Approximate the internal-energy

density of the domain by the
constant value ε(T ) ≃ ε =

(250 MeV)4.

It happens that, with an ex-
ponential accuracy, a replica-
filled domain occupying a suffi-
ciently large volume V (3) is sta-
ble against the decays into the
ground-state vacuum.
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(250 MeV)4.

It happens that, with an ex-
ponential accuracy, a replica-
filled domain occupying a suffi-
ciently large volume V (3) is sta-
ble against the decays into the
ground-state vacuum.

The mass of a replica-filled domain grows with
the volume as ε × V (3), so that the problem of
stability with respect to the gravitational collapse
becomes relevant.

Tolman–Oppenheimer–Volkoff de-
fines the maximal possible radius of
the domain as

RG =
1√

3πεG
≃ 14 km,
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Gravitational field of a spherical object with constant energy density

Assume that the matter forming a star is a perfect fluid: This implies the
energy-momentum tensor of the form Tµν = (p+ ε)uµuν − pgµν , with uµ(x) being the
four-velocity of the fluid, such that gµνuµuν = 1.
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In the local rest frame of the fluid, where uµ = (
√
g00,0), the energy-momentum tensor

is diagonal:

Tµ ν = (p+ ε)uµuν − pδµ ν = diag (ε,−p,−p,−p).
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Tµ ν = (p+ ε)uµuν − pδµ ν = diag (ε,−p,−p,−p).

Outside the star we get the Schwarzschild metric

a(r) = −b(r) = ln
“
1 − rg

r

”

For r < R, we have M(r) = 4π
R r
0 dr

′r′2ε(r′). The Einstein equation
R0

0 − 1
2
R = 8πGT 0

0 can be written as

e−b

r

„
db

dr
− 1

r

«
+

1

r2
= 8πGε.
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0 − 1
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R = 8πGT 0

0 can be written as

e−b

r

„
db

dr
− 1

r

«
+

1

r2
= 8πGε.

The function a(r) inside the star can be found from the covariant conservation of the
energy-momentum tensor, ∇µTµν = 0,

−∂µp · gµν + ∂µ [(p+ ε)uµuν ] + (p+ ε)
“
Γµλµu

λuν + Γνλµu
µuλ

”
= 0.
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Gravitational field of a spherical object with constant energy density

Assume an hydrostatic-equilibrium condition, yielding

∂µ[(p+ ε)uµuν ] = ∂0[(p+ ε)u0u0] = 0. We get d ln g00
dr

= −2 · dp/dr
p+ε

.
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Assume an hydrostatic-equilibrium condition, yielding

∂µ[(p+ ε)uµuν ] = ∂0[(p+ ε)u0u0] = 0. We get d ln g00
dr

= −2 · dp/dr
p+ε

.

The solution is g00(r) = g00(R) · exp
h
2

R R
r dr′ dp/dr

′

p+ε

i
, g00(R) = 1 − rg

R
. We have

a(r) = ln g00(r). b(r) and a(r) interpolate smoothly r < R and r > R.

QCD Relics of Astrophysical Relevance – p. 30/31



Gravitational field of a spherical object with constant energy density

Assume an hydrostatic-equilibrium condition, yielding

∂µ[(p+ ε)uµuν ] = ∂0[(p+ ε)u0u0] = 0. We get d ln g00
dr

= −2 · dp/dr
p+ε

.

The solution is g00(r) = g00(R) · exp
h
2

R R
r dr′ dp/dr

′

p+ε

i
, g00(R) = 1 − rg

R
. We have

a(r) = ln g00(r). b(r) and a(r) interpolate smoothly r < R and r > R.

The equation for p(r) can be obtained from the Einstein equation
R1

1 − 1
2
R = 8πGT 1

1, that is

da
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„
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The equation for p(r) can be obtained from the Einstein equation
R1

1 − 1
2
R = 8πGT 1

1, that is

da

dr
= eb

„
1

r
+ 8πGrp

«
− 1

r
.

That yields the so-called Tolman–Oppenheimer–Volkoff equation for p(r):

−dp
dr

=
GεM
r2

„
1 − 2GM

r

«−1 “
1 +

p

ε

” „
1 +

4πr3p

M

«
.

Together with dM
dr

= 4πr2ε and the equation of state, they form a set of three equations
for the three unknown functions: p, ε, and M.
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= eb
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1
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+ 8πGrp
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That yields the so-called Tolman–Oppenheimer–Volkoff equation for p(r):

−dp
dr

=
GεM
r2

„
1 − 2GM

r

«−1 “
1 +

p

ε

” „
1 +

4πr3p

M

«
.

Together with dM
dr

= 4πr2ε and the equation of state, they form a set of three equations
for the three unknown functions: p, ε, and M.

In the particular case ε = const with the boundary condition p(R) = 0 we can define an
upper limit for the star radius: R ≤ 1√

3πεG
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Conclusions

We put forward a conjecture that the domains of coherently excited pions could have
been created in the early Universe.
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Such domains are hot (as the estimates made in this paper remain valid up to
temperatures of order 20 MeV) and stable against the gravitational collapse up to the
maximum radius of about 14 km

Moreover, since the decay width of the coherent pionic states into photons is quite small

Γ(π → γγ) · 〈ψ̄ψ〉R

〈ψ̄ψ〉0
m2

π

m2
πR

≃ 0.17 eV these domains cannot evaporate by means of the

electromagnetic radiation
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Conclusions

We put forward a conjecture that the domains of coherently excited pions could have
been created in the early Universe.

Such domains are hot (as the estimates made in this paper remain valid up to
temperatures of order 20 MeV) and stable against the gravitational collapse up to the
maximum radius of about 14 km

Moreover, since the decay width of the coherent pionic states into photons is quite small

Γ(π → γγ) · 〈ψ̄ψ〉R

〈ψ̄ψ〉0
m2

π

m2
πR

≃ 0.17 eV these domains cannot evaporate by means of the

electromagnetic radiation

Since one can also argue for the stability of the coherent pionic states against the strong
and weak decays, such encapsulated domains can have had a chance to survive till the
present time, remaining however dark to external observers.
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