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Abstract

Recently we have introduced a new implementation of the Feynman gauge on the lattice,

based on a minimizing functional that extends in a natural way the Landau-gauge case,

while preserving all the properties of the continuum formulation. The only remaining dif-

ficulty with our approach is that, using the standard (compact) discretization, the gluon

field is bounded while the four-divergence of the gluon field satisfies a Gaussian distribu-

tion, i.e. it is unbounded. This can give rise to convergence problems when a numerical

implementation is attempted. In order to overcome this problem one can use different

discretizations for the gluon field or consider a SU(Nc) group with Nc sufficiently large.

Here we discuss these two possible solutions and present results for the transverse and

longitudinal gluon propagators.
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Why study the linear covariant gauge?

Study Green’s functions in the infrared limit of

Yang-Mills theories in order to understand

low-energy properties of the theory.

Since they depend on the gauge, consider

different gauges (Landau gauge, Coulomb

gauge, λ-gauge, maximally Abelian gauge).

Linear covariant gauge, very popular in

continuum studies, proved quite hostile to the

lattice approach.
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Some analytic results

What do we know about linear covariant gauge?

Coupled Dyson-Schwinger equations for gluon and ghost
propagators (R. Alkofer et al., 2003): scaling solution (the gluon
propagator is infrared suppressed whereas the ghost propagator
is infrared enhanced).

Infrared-finite ghost propagator (A.C. Aguilar and J. Papavassiliou,
2008) using Schwinger-Dyson equation of the ghost propagator.

Gribov’s analysis for small values of the gauge parameter ξ (R.F.
Sobreiro and S.P. Sorella, 2005): the transverse gluon propagator
is infrared suppressed, the longitudinal part is unchanged and the
“ghost propagator” [−∂µDµ(At)]

−1 is infrared enhanced.

It has been proven (D. Binosi and J. Papavassiliou, 2009) that the
background-field Feynman gauge is equivalent (to all orders) to
the pinch technique.
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Linear covariant gauge on the lattice (I)

We want to impose the condition

∂µA
b
µ(x) = Λb(x),

for real-valued functions Λb(x), generated using a Gaussian

distribution with width
√
ξ.

Landau gauge [Λb(x) = 0] is obtained on the lattice by

minimizing the functional

ELG[Ug] = −Tr
∑

µ,x

g(x)Uµ(x)g
†(x+ eµ).

From the second variation of ELG[Ug] we define the

(positive-definite) Faddeev-Popov operator M. The set of local

minima defines the first Gribov region Ω.
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Linear covariant gauge on the lattice (II)

Problem: a no-go theorem (L. Giusti, 1996).

There is no minimizing functional ELCG[U
g,Λ] for the linear

covariant gauge!

Proof: Suppose ELCG[U
g,Λ] exists. Then, it should be given by

ELG[Ug] + F [Ug], for some F [Ug]. The gauge-fixing condition is

obtained from the stationarity condition ∂ELCG

∂wb(x)
= 0, when

g(x) = eiw(x). Also, the second variation should satisfy

∂2ELCG

∂wb(x)∂wc(y)
=

∂2ELCG

∂wc(y)∂wb(x)
.

However, one can show that this equality is not realized since

the two terms are, respectively, proportional to facb and fabc.
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First Solution

Consider a different gauge (L. Giusti, 1996):

F [∂µA
a
µ(x)− Λa(x)] = 0

with F [s] = 0 when s = 0, for which the minimizing
functional E [U (g),Λ] exists; for example F [s] = s2.

Problems:

Possible spurious solutions, F [s] = 0 when s 6= 0; with the

above choice, solutions of Dν∂ν [∂µA
a
µ(x)− Λa(x)] = 0.

With the considered F [s], the gauge fixing is numerically

difficult [non-linear in g(x)].

The Faddeev-Popov matrix is also different from that of the

linear covariant gauge.
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Second solution

Do not minimize! (A. C., A. Maas, T. Mendes, 2008)

1) Fix Uµ(x) to Landau gauge.

2) Solve
(

∂µD
ab
µ φb

)

(x) = Λa(x). For small φb(x) one has
∂µA

′a
µ(x) = ∂µ

(

Aa
µ +Dab

µ φb
)

(x) = Λa(x).

Problem: only correct for infinitesimal gauge transformations.

If one considers functions Λa(x) with a Gaussian distribution of width√
ξ, then we should check if ∂µA′a

µ(x) also has a Gaussian distribution
of width

√
ξ and if p2Dl(p

2) = ξ.

Numerical tests have shown
that the distributions of ∂µA′b

µ(x)

and of Λb(x) do not agree very
well and the relation p2Dl(p

2) =

ξ is also not well verified by the
data at small momenta. Λ
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Third solution (2009)

Some details of the no-go theorem: for the minimizing functional
ELCG[U

g,Λ] the gauge condition is given by the first variation, i.e.

δELCG[U
g,Λ] =

∂ELCG

∂U
· ∂U
∂g

δg = 0 .

Solution: remove an implicit hypothesis of the no-go theorem, i.e. that
the gauge transformation appears in the minimizing functional in the
“canonical” way g(x)Uµ(x)g(x+ eµ). Thus, we can look for a
minimizing functional of the type ELCG[U

g, g,Λ]!

Simple hint: if you want to solve Bφ = c just minimize 1

2
φBφ− φc! In

our case

ELCG[U
g, g,Λ] ∼ ELG[U

g]− gΛ .
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The minimizing functional

The lattice linear covariant gauge condition can be obtained by minimizing the functional

ELCG[Ug , g,Λ] = ELG[Ug ] + ℜ Tr
∑

x

i g(x) Λ(x)

where

ELG[Ug ] = −Tr
∑

µ,x

g(x)Uµ(x)g
†(x+ eµ).

One can interpret the Landau-gauge functional ELG[Ug ] as a spin-glass Hamiltonian for
the spin variables g(x) with a random interaction given by Uµ(x). Then, our new
functional corresponds to the same spin-glass Hamiltonian when a random external
magnetic field Λ(x) is applied.

Note: the functional ELCG{Ug , g} is linear in the gauge transformation {g(x)}.

By considering a one-parameter subgroup g(x, τ) = exp
[

iτγb(x)λb
]

it is easy to check
that the stationarity condition implies the lattice linear covariant gauge condition. Also,
the second variation of the term i g(x) Λ(x) is purely imaginary and it does not
contribute to the Faddeev-Popov matrix, i.e. M is a discretized version of the usual
Faddeev-Popov operator −∂ ·D.

T(R)OPICAL QCD 2010 CAIRNS



Numerical tests of the gauge fixing
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We have performed some
numerical tests using the so-
called stochastic-overrelaxation
algorithm for the 4d SU(2) case
at β = 4, with V = 84 and 164,
and ξ = 0, 0.01, 0.05, 0.1, 0.5.
We show the value of ∆ =
∑

x,b[∇ · Ab(x) − Λb(x)]2 as
a function of the number of
iterations n for β = 4, V = 164,
ξ = 0 (red line) and ξ = 0.05

(green line).

Note that periodic boundary conditions imply
∑

x Λb(x) = 0. Also, the rate of
convergence is essentially the same in the two cases (but the tuning of the
stochastic-overrelaxation algorithm is different).
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Longitudinal gluon propagator
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We also checked that

p2Dl(p
2) = ξ

In the SU(2) case, for
V = 164, β = 4 and ξ =

0.5 a fit a/pb for Dl(p
2)

gives a = 0.502(5) and
b = 2.01(1) with a
χ2/dof = 1.1.
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Discretization effects (I)

The gluon field Aa
µ(x) is (usually) bounded (compact formulation).

The functions Λb(x) satisfy a Gaussian distribution, i.e. they are
unbounded.

Convergence problems (the problem gets more severe when ξ is
larger).

The problem is more severe for a larger volume.

Observation: One can try to use different discretizations of the gluon
fields.

We did some tests using the angle projection (K. Amemiya and H.
Suganuma, 1999) and the stereographic projection (L. von Smekal et
al., 2007). In the latter case, the gluon field is in principle unbounded
even for a finite lattice spacing.
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Discretization effects (II)

We tested the standard discretization, the angle projection and the
stereographic projection using V = 84, ξ = 0.01, 0.05, 0.1, 0.5, 1.0 and
β = 2.2, 2.3, . . . , 2.9, 3.0.

ξ stand. angle stereog.

0.01 2.2 2.2 2.2

0.05 2.2 2.2 2.2

0.1 2.2 2.2 2.2

0.5 2.8 2.6 2.5

1.0 — 3.0 2.5

Smallest value of β for
which the numerical gauge-
fixing algorithm showed
convergence. Results
are reported for the three
different discretizations and
for five different values of
the gauge parameter ξ.
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Continuum Limit (I)

Note that the continuum relation

∂µA
b
µ(x) = Λb(x)

can be made dimensionless — working in a generic d-dimensional
space — by multiplying both sides by a2g0. Since β = 2Nc/(a

4−dg2
0
) [in

the SU(Nc) case] we have that the lattice quantity

β/(2Nc)

2ξ

∑

x,b

[

a2g0Λ
b(x)

]2

becomes

1

2ξ

1

a4−dg2
0

∫

ddx

ad

∑

b

[

a2g0Λ
b(x)

]2

=
1

2ξ

∫

ddx
∑

b

[

Λb(x)
]2

in the formal continuum limit.
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Continuum Limit (II)

Thus, if we consider a gauge parameter ξ in the continuum, the lattice
quantity a2g0Λ

b(x) is generated from a Gaussian distribution with width

σ =
√

2Ncξ/β

instead of a width
√
ξ.

Note that σ =
√
ξ if β = 2Nc and that for β < 2Nc the lattice width σ is

larger than the continuum width
√
ξ.

In the SU(2) case, one has σ =
√
ξ only for β = 4, corresponding to a

lattice spacing a ≈ 0.001 fm. On the contrary, in the SU3 case, one has
σ =

√
ξ for β = 6, corresponding to a = 0.102 fm. Also, for a fixed

t’Hooft coupling g2
0
Nc = constant we have β ∝ N2

c and σ ∝
√

1/Nc, i.e.
simulations for the linear covariant gauge are probably easier in the
SU(Nc) case for large Nc.
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Continuum Limit (III)

We simulated the SU(2), SU(3) and SU(4) cases for ξ = 1,
V = 84, 164, 244, 324 and the following values of β.

Nc β1 β2 β3 β4

2 3.0 2.485 2.295 2.44

3 6.75 6.67 6.07 5.99

4 12.0 12.59 11.43 10.97

They correspond, respectively, to a t’Hooft coupling
g20Nc = 8/3 (β1), a plaquette average value of about 0.65
(β2) and 0.6 (β3) and a string tension (in lattice units) of
about a2σ = 0.044 (β4) giving a ≈ 0.09 fm.
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Continuum Limit (IV)

84 164 244 324

2 β1, β2 — — —

3 all β1, β2 β1, β2 —

4 all all all β1, β2
∗

Values of β for which the numerical gauge-fixing algorithm
showed convergence. Results are reported for three
different gauge groups and four different lattice volumes. In
all cases the gauge parameter ξ was 1 (Feynman gauge).

∗ We did not test β3 and β4 yet.
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Transverse gluon propagator (I)
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Transverse gluon propaga-
tor Dt(p

2) [using the stere-
ographic projection in the
SU(2) case] as a function
of the momentum p (both
in physical units) for the lat-
tice volume V = 164, β =

2.3 and ξ = 0 (+), 0.05 (×),
0.1 (∗).
Dt(0) decreases as ξ in-
creases (in agreement with
L. Giusti et al., 2001).
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Transverse gluon propagator (II)
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Transverse gluon propaga-
tor Dt(p

2) [using the stere-
ographic projection in the
SU(2) case] as a function
of the momentum p (both
in physical units) for the
gauge coupling ξ = 0.05,
β = 2.3, with the lattice vol-
umes V = 84 (+), 164 (×)

and 244 (∗).
Dt(0) decreases as V in-
creases (as in Landau
gauge).
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Conclusions

We have found a minimizing functional for the linear
covariant gauge which is a simple generalization of the
Landau-gauge functional.

This approach solves most problems encountered in
earlier implementations and ensures a good quality for
the gauge fixing with a ratio Dl(p

2)p2/ξ ≈ 1 for all
cases considered.

Simulations for large lattice volumes when the gauge
parameter ξ is large can probably be done in the
SU(Nc) case for larger Nc.
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