First-principles Calculation of Excited State Spectrum in QCD

David Richards

Hadron Spectrum Collaboration

Justin Foley, Colin Morningstar
Carnegie Mellon University
Jozef Dudek, Robert Edwards, Balint Joo,
David Richards, Christopher Thomas
Jefferson Lab
Jimmy Juge
University of the Pacific
Stephen Wallace
University of Maryland
Huey-Wen Lin
University of Washington
International:
John Bulava
NIC, DESY-Zeuthen, Germany
Nilmani Mathur
Tata Institute, Mumbai
Mike Peardon, Sinead Ryan
Trinity College, Dublin

T(r)opical QCD
Cairns, Australia
Sept 26 - Oct 1, 2010

Meson spectrum
Outline

• Motivation
• Excited States in Lattice QCD
 – Methodology
 – Light meson spectrum
 – Unstable resonances - pi-pi scattering length
 – Light baryon spectrum
• Electromagnetic Properties
 – Radiative Transitions
• Summary
Low-lying Hadron Spectrum

\[
C(t) = \sum_{\vec{x}} \langle 0 | N(\vec{x}, t) N(0) | 0 \rangle = \sum_{n,\vec{x}} \langle 0 | e^{ip \cdot x} N(0) e^{-ip \cdot x} | n \rangle \langle n | N(0) | 0 \rangle
= | \langle n | N(0) | 0 \rangle |^2 e^{-E_{nt}} = \sum_n A_n e^{-E_{nt}}
\]

Benchmark calculation of QCD - enabling us to do something else!

Control over:
- Quark-mass dependence
- Continuum extrapolation
- finite-volume effects (pions, resonances)

Durr et al., BMW Collaboration

Science 2008
Goals - I

.....but a quantitative understanding of the spectrum is important in its own right...

• **Why is it important?**
 – What are the key degrees of freedom describing the bound states?
 • How do they change as we vary the quark mass?
 – What is the role of the gluon in the spectrum – search for exotics?
 – What is the origin of confinement, describing 99% of observed matter?
 – If QCD is correct and we understand it, expt. data must confront ab initio calculations
• Exotic Mesons are those whose values of J^{PC} are in accessible to quark model
 – Multi-quark states:
 – Hybrids with *excitations of the flux-tube*
• Study of hybrids: revealing *gluonic* and *flux-tube* degrees of freedom of QCD.
Goals - III

• **Nucleon Spectroscopy:** Quark model masses and amplitudes – states classified by isospin, parity and *spin*.

![Diagram showing N to Nγ, Nπ, and ΣK model amplitudes](image)

- Missing, because our pictures do not capture correct degrees of freedom?
- Do they just not couple to probes?

Capstick and Roberts, PRD58 (1998) 074011

CLAS at JLab
Excited Lattice Spectroscopy
Variational Method

• Given \(N \times N \) correlator matrix \(C_{\alpha\beta} = \langle 0 | \mathcal{O}_\alpha(t)\mathcal{O}_\beta(0) | 0 \rangle \), one defines the \(N \) principal correlators \(\lambda_i(t,t_0) \) as the eigenvalues of

\[
C^{-1/2}(t_0)C(t)C^{-1/2}(t_0)
\]

• Principal effective masses defined from correlators plateau to lowest-lying energies

\[
\lambda_i(t, t_0) \to e^{-E_i(t-t_0)} \left(1 + O(e^{-\Delta E(t-t_0)}) \right)
\]

Eigenvectors, with metric \(C(t_0) \), are orthonormal and project onto the respective states

➡ Resolve energy dependence - *anisotropic lattice*
➡ Efficient computation of correlators - *distillation*
➡ Judicious construction of interpolating operators - *cubic symmetry*
• Interested in excited states: $M_H a \sim 1$
• “Clover” Anisotropic lattices $a_t < a_s$

Challenge: setting scale and strange-quark mass

Lattice coupling fixed

$$s_X = \frac{(9/4)[2m_K^2 - m_{\pi}^2]}{m_X^2}$$

Express physics in (dimensionless) (l,s) coordinates

H-W Lin et al (Hadron Spectrum Collaboration),
PRD79, 034502 (2009)
Anisotropic Clover – II

Low-lying spectrum: agrees with experiment to 10%
Correlation functions: Distillation

- Use the new “distillation” method.
- Observe

\[L^{(j)} \equiv (1 - \kappa \Delta)^n = \sum_{i \in i} f(\lambda_i) v^{(i)} \otimes v^{*(i)} \]

- Truncate sum at sufficient \(i \) to capture relevant physics modes – we use 64: set “weights” \(f \) to be unity
- Meson correlation function

\[C_M(t, t') = \langle 0 | \bar{d}(t') \Gamma^B(t') u(t') \bar{u}(t) \Gamma^A(t) d(t) | 0 \rangle \]

- Decompose using “distillation” operator as

\[C_M(t, t') = \text{Tr} \langle \phi^A(t') \tau(t', t) \Phi^B(t) \tau^\dagger(t', t) \rangle \]

where

\[\Phi_{\alpha \beta}^{A, ij} = v^{*(i)}(t) [\Gamma^A(t) \gamma_5]_{\alpha \beta} v^{(j)}(t') \]

\[\tau_{i j}^{\alpha \beta}(t, t') = v^{*(i)}(t') M^{-1}_{\alpha \beta}(t', t) v^{(j)}(t). \]

M. Peardon et al., PRD80,054506 (2009)
Distillation Results

ρ Variational Analysis

Errors < 3%

Nucleon Variational Analysis

$I=2$ pi-pi

Overall momentum 0
Basis: pairs of back-to-back operators at momentum ρ
Identification of Spin - I

- Lattice does not respect symmetries of continuum: *cubic symmetry for states at rest*

Problem: requires data at several Lattice spacings – density of states in each irrep large.

Solution: exploit known continuum behavior of overlaps

- Construct interpolating operators of definite (continuum) JM: O^{JM}

$$\langle 0 | O^{JM} | J', M' \rangle = Z^J \delta_{J,J'} \delta_{M,M'}$$

- Use projection formula to find subduction under irrep. of cubic group

$$O^{[J]}_{\Lambda,\lambda} \equiv (\Gamma \times D^{[n_D]})^J_{\Lambda,\lambda} = \text{Lattice ops. retain memory of their continuum ancestors}$$

$$\sum_M S^{J,M}_{\Lambda,\lambda} (\Gamma \times D^{[n_D]})^{J,M} \equiv \sum_M S^{J,M}_{\Lambda,\lambda} O^{J,M}$$
Identification of Spin - MESONS

Overlap of state onto subduced operators

\[\langle 0 | O_{J,M} | J', M' \rangle = Z_J \delta_{J,J'} \delta_{M,M'} \]

\[\langle 0 | O_{\Lambda,\lambda} | J', M' \rangle = S_{\Lambda,\lambda}^{J,M'} Z_J \delta_{J,J'} \]

Common across irreps.

Hadspec collab. (dudek et al), 0909.0200, PRL

\(N_f = 3 \)
Isovector Meson Spectrum - I

Isovector spectrum with quantum numbers reliably identified

Exotic

PRL 103:262001,2009
Isovector Meson Spectrum - II

States of exotic quantum numbers in region accessible to GlueX!

Dudek, Edwards, DGR, Thomas, PRD82, 034508 (2010)
Interpretation of Meson Spectrum

Overlaps: information about quark and gluon structure
look at the ‘overlaps’ \(Z_n^\Gamma = \langle n | \bar{\psi} \Gamma \psi | 0 \rangle \)

<table>
<thead>
<tr>
<th>m/MeV</th>
<th>(1^-)</th>
<th>(3S_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>0.6</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.2</td>
</tr>
</tbody>
</table>

1st excited state is dominantly \(3S_1 \) with some \(3D_1 \)

2nd excited state is dominantly \(3D_1 \)

3rd excited state is dominantly \(3S_1 \) with some \(3S_1 \)

\(\rho \times D^{[2]}_{J=2} \) \(J=1 \) \(3D_1 \)

\(\pi \times D^{[2]}_{J=1} \) \(J=1 \) hybrid?

build a bound state model phenomenology comparable to the quark model using non-perturbative QCD calculations

Non-exotic hybrid?
Where are the multi-hadrons?

Meson spectrum on two volumes: dashed lines denote expected (non-interacting) multi-particle energies.

Calculation is incomplete.

Allowed two-particle states - symmetries of volume
Strong Decays

• For interacting particles, energies are shifted from their free-particle values, by an amount that depends on the energy.
• Luscher: relates shift in the free-particle energy levels to the phase shift at the corresponding E.

Breit-Wigner fit
CP-PACS, arXiv:0708.3705

\[\delta E(L) \leftrightarrow \delta(E) \]

\[E_n = 2 \sqrt{m^2 + \left(\frac{2n\pi}{L}\right)^2} \]

Talk of Gerrit Schierholz
I=2 Pi-Pi Scattering - I

• Simpler - no bound state - but illustrates method
• Use a operator basis back-to-back pions

\[\sum_{\vec{x}} e^{-i\vec{p} \cdot \vec{x}} [\bar{\psi} \gamma_5 \psi](\vec{x}) \cdot \sum_{\vec{y}} e^{-i(-\vec{p}) \cdot \vec{y}} [\bar{\psi} \gamma_5 \psi](\vec{y}) \]

Non-interacting states are:

\[| \pi(0, 0, 0)\pi(0, 0, 0)\rangle, | \pi(-1, 0, 0)\pi(1, 0, 0)\rangle, | \pi(-1, -1, 0)\pi(1, 1, 0)\rangle \ldots \]

Gives non-interacting energy levels - depend on volume
Method applies below inelastic threshold
$N_F = 2+1 \ (u,d,s) \quad m_\pi \sim 400 \text{ MeV}$

$Lüscher method seems to be practical ?$

Very Preliminary

$\rho \rho$ inelastic
Excited Baryon Spectrum
Excited Baryon Spectrum - I

J Bulava et al, PRD82, 014507

Scaling to larger volumes - Morningstar..
Omega spectrum - only ground-state quantum assignments

Lattice QCD Predictions
Excited Baryon Spectrum - II

Subduction of continuum operators - reliable determination of baryon spins

$\mu_\pi \simeq 560\text{MeV}$

Where is the “Roper”? R. Edwards, Hadron 2009
Excited Baryon Spectrum -III

Leonid - please close your eyes..

Discern structure: wave-function overlaps

Suggests spectrum at least as dense as quark model

< 2% error bars

[56,2\(^+\)]
D-wave

[70,1\(^-\)]
P-wave

[56,2\(^+\)]
D-wave

[70,1\(^-\)]
P-wave

Thomas Jefferson National Accelerator Facility
Roper Resonance - I

Roper (1440): lightest positive parity excitation of the nucleon – lighter than the N(1535) negative-parity excitation. Hard to reconcile with constituent quark model.

Two quenched calculations observe light Roper

Mahbub et al., arXiv:0910:2789

Derek Leinweber - PM
Radiative Transitions
Testbed - Charmonium

Radiative transitions,
Dudek, Edwards, DGR, PRD73, 074507

Two-photon widths,
Dudek, Edwards, PRL97, 172001

Photo-production
Use of variational method, and the optimized meson operators, to compute radiative transitions between excited states and exotics.

Radiative width of hybrid comparable to conventional meson – important for GlueX

Summary

• Spectroscopy of excited states affords an excellent theatre in which to study QCD in low-energy regime.

• Major progress at reliable determinations of the spectrum, with quantum numbers identified. **Major advance!**

• Lattice calculations used to construct new “phenomenology” of QCD.

• Beyond spectrum - electromagnetic properties

• Next step for lattice QCD:
 – Isoscalars…
 – Complete the calculation: where are the multi-hadrons?
 – Determine the phase shifts - model dependent extraction of resonance parameters

• Calculations at physical light-quark masses
Accelerator “setup”

- Crays/BlueGene for Gauge Generation - capability
- GPUs for physics measurements - capacity
Multi-hadron Operators

Need “all-to-all”

Usual methods give “point-to-all”
The road to exascale for Spectroscopy

- Photocouplings in charmonium
- Cascade Spectrum
- Meson and baryon spectrum with $m_{\pi} \sim 180$ MeV
- Precise computations of ground-states
- Spectrum and properties of mesons, in particular with exotic quantum number
- N-N* transition form factors
- N* Spectrum
- Spectrum and photoproduction of isovector mesons

December 10, 2008

Plenary Afternoon Session
Discovery Potential: Cascade

Cascades (uss) are largely *terra incognita*

Thanks to N. Mathur