Transverse (Spin) Structure of Hadrons

Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University

Outline

- Probabilistic interpretation of GPDs as Fourier trafo of impact parameter dependent PDFs
- $H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow q\left(x, \mathbf{b}_{\perp}\right)$
- $E\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow \perp$ distortion of PDFs when the target is \perp polarized
- $\bar{E}_{T}\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow$ transversity distribution in unpol. target
\hookrightarrow SSA in SIDID/DY (Sivers \& Boer-Mulders)
\hookrightarrow twist-3 quark-gluon correlations:

$$
\int d x x^{2} \bar{g}_{2}(x) \& \int d x x^{2} \bar{e}(x)
$$

- Summary

Generalized Parton Distributions (GPDs)

- GPDs: decomposition of form factors at a given value of t, w.r.t. the average momentum fraction $x=\frac{1}{2}\left(x_{i}+x_{f}\right)$ of the active quark

$$
\begin{array}{rlr}
\int d x H_{q}(x, \xi, t) & =F_{1}^{q}(t) \quad \int d x \tilde{H}_{q}(x, \xi, t)=G_{A}^{q}(t) \\
\int d x E_{q}(x, \xi, t) & =F_{2}^{q}(t) \quad \int d x \tilde{E}_{q}(x, \xi, t)=G_{P}^{q}(t)
\end{array}
$$

- x_{i} and x_{f} are the momentum fractions of the quark before and after the momentum transfer; $2 \xi=x_{f}-x_{i}$
- GPDs can be probed in deeply virtual Compton scattering (DVCS) as well as deeply virtual meson production (DVMP)

Impact parameter dependent PDFs

- define \perp localized state [D.Soper,PRD15, 1141 (1977)]

$$
\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \lambda\right\rangle \equiv \mathcal{N} \int d^{2} \mathbf{p}_{\perp}\left|p^{+}, \mathbf{p}_{\perp}, \lambda\right\rangle
$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has
$\mathbf{R}_{\perp} \equiv \frac{1}{P^{+}} \int d x^{-} d^{2} \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x)=\sum_{i} x_{i} \mathbf{r}_{i, \perp}=\mathbf{0}_{\perp}$ (cf.: working in CM frame in nonrel. physics)

- define impact parameter dependent PDF
$q\left(x, \mathbf{b}_{\perp}\right) \equiv \int \frac{d x^{-}}{4 \pi}\left\langle p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right| \bar{q}\left(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right) \gamma^{+} q\left(\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right\rangle e^{i x p^{+} x^{-}}$

$$
\hookrightarrow \quad \begin{array}{cc}
q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right), \\
\Delta q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right),
\end{array}
$$

Impact parameter dependent PDFs

- No relativistic corrections (Galilean subgroup!)
\hookrightarrow corrolary: interpretation of 2d-FT of $F_{1}\left(Q^{2}\right)$ as charge density in transverse plane also free from relativistic corrections (Soper 1977; MB 2003)
- $q\left(x, \mathbf{b}_{\perp}\right)$ has probabilistic interpretation as number density
- $\xi=0$ essential for probabilistic interpretation

$$
\left\langle p^{+\prime}, 0_{\perp}\right| b^{\dagger}\left(x, \mathbf{b}_{\perp}\right) b\left(x, \mathbf{b}_{\perp}\right)\left|p^{+}, 0_{\perp}\right\rangle \sim\left|b\left(x, \mathbf{b}_{\perp}\right)\right\rangle\left|p^{+}, 0_{\perp}\right|^{2}
$$

works only for $p^{+}=p^{+\prime}$

- Reference point for IPDs is transverse center of (longitudinal) momentum $\mathbf{R}_{\perp} \equiv \sum_{i} x_{i} \mathbf{r}_{i, \perp}$
\hookrightarrow for $x \rightarrow 1$, active quark 'becomes' COM, and $q\left(x, \mathbf{b}_{\perp}\right)$ must become very narrow (δ-function like)
$\hookrightarrow H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)$ must become $\boldsymbol{\Delta}_{\perp}$ indep. as $x \rightarrow 1(\mathrm{MB}, 2000)$
\hookrightarrow consistent with lattice results for first few moments
$q\left(x, \mathbf{b}_{\perp}\right)$ for unpol. p

unpolarized p (MB,2000)

$x=$ momentum fraction of the quark
$\vec{b}=\perp$ position of the quark

Transversely Deformed Distributions and $E\left(x, 0,-\Delta_{\perp}^{2}\right.$

M.B., Int.J.Mod.Phys.A18, 173 (2003)

- So far: only unpolarized (or long. pol.) nucleon! In general $(\xi=0)$:

$$
\begin{aligned}
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \uparrow\rangle & =H\left(x, 0,-\Delta_{\perp}^{2}\right) \\
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \downarrow\rangle & =-\frac{\Delta_{x^{-}-i \Delta_{y}}^{2 M}}{2 M}\left(x, 0,-\Delta_{\perp}^{2}\right)
\end{aligned}
$$

- Consider nucleon polarized in x direction (in IMF)

$$
|X\rangle \equiv\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \uparrow\right\rangle+\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \downarrow\right\rangle
$$

\hookrightarrow unpolarized quark distribution for this state:

$$
q\left(x, \mathbf{b}_{\perp}\right)=\mathcal{H}\left(x, \mathbf{b}_{\perp}\right)-\frac{1}{2 M} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} E\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}}
$$

- Physics: $j^{+}=j^{0}+j^{3}$, and left-right asymmetry from j^{3} ! [X.Ji, PRL 91, 062001 (2003)]

Transversely Deformed PDFs and $E\left(x, 0,-\Delta_{\perp}^{2}\right)$

- $q\left(x, \mathbf{b}_{\perp}\right)$ in \perp polarized nucleon is deformed compared to longitudinally polarized nucleons !

$$
q\left(x, \mathbf{b}_{\perp}\right)=\mathcal{H}\left(x, \mathbf{b}_{\perp}\right)-\frac{1}{2 M} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} E\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}}
$$

- mean \perp deformation of flavor q (\perp flavor dipole moment)

$$
d_{y}^{q} \equiv \int d x \int d^{2} \mathbf{b}_{\perp} q\left(x, \mathbf{b}_{\perp}\right) b_{y}=\frac{1}{2 M} \int d x E_{q}(x, 0,0)=\frac{\kappa_{q}^{p}}{2 M}
$$

- $\kappa^{p}=1.913=\frac{2}{3} \kappa_{u}^{p}-\frac{1}{3} \kappa_{d}^{p}+\ldots$
\hookrightarrow neglecting strange (and heavier) quarks:
- $\kappa_{u}^{p}=2 \kappa_{p}+\kappa_{n}=1.673 \Rightarrow$ shift in $+\hat{y}$ direction
- $\kappa_{d}^{p}=2 \kappa_{n}+\kappa_{p}=-2.033 \Rightarrow$ shift in $-\hat{y}$ direction
- for proton polarized in $+\hat{x}$ direction
- $d_{y}^{q}=\mathcal{O}(\pm 0.2 f m)$
p polarized in $+\hat{x}$ direction (MB,2003)

$$
d\left(x, \mathbf{b}_{\perp}\right)
$$

- virtual photon 'sees' enhancement when quark currents point in direction opposite to photon momentum
\hookrightarrow sideways shift of quark distributions
- sign \& magnitude of shift (modelindependently) predicted to be related to the proton/neutron anomalous magnetic moment!

p polarized in $+\hat{x}$ direction

lattice results (\rightarrow QCDSF)

GPD \longleftrightarrow SSA (Sivers)

- example: $\gamma^{*} p \rightarrow \pi X$

- u, d distributions in \perp polarized proton have left-right asymmetry in \perp position space (T-even!); sign "determined" by $\kappa_{u} \& \kappa_{d}$
- attractive FSI deflects active quark towards the center of momentum
\hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$-direction into momentum asymmetry that favors $-\hat{y}$ direction
\hookrightarrow correlation between sign of κ_{q}^{p} and sign of SSA: $f_{1 T}^{\perp q} \sim-\kappa_{q}^{p}$
- $f_{1 T}^{\perp q} \sim-\kappa_{q}^{p}$ confirmed by Hermes data (also consistent with Compass deuteron data $f_{1 T}^{\perp u}+f_{1 T}^{\perp d} \approx 0$)

$f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}\right)_{D Y}=-f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}\right)_{S I D I S}$

a)

b)

- time reversal: $\mathrm{FSI} \leftrightarrow \mathrm{ISI}$

SIDIS: compare FSI for 'red' q that is being knocked out with ISI for an anti-red \bar{q} that is about to annihilate that bound q
\hookrightarrow FSI for knocked out q is attractive
DY: nucleon is color singlet \rightarrow when to-be-annihilated q is 'red', the spectators must be anti-red
\hookrightarrow ISI with spectators is repulsive

- test of this relation is a test of TMD factorization

Quark-Gluon Correlations (Introduction)

- (longitudinally) polarized polarized DIS at leading twist \longrightarrow 'polarized quark distribution' $g_{1}^{q}(x)=q^{\uparrow}(x)+\bar{q}^{\uparrow}(x)-q_{\downarrow}(x)-\bar{q}_{\downarrow}(x)$
- $\frac{1}{Q^{2}}$-corrections to X -section involve 'higher-twist' distribution functions, such as $g_{2}(x)$

$$
\sigma_{L L} \propto g_{1}-\frac{2 M x}{\nu} g_{2}
$$

- $g_{2}(x)$ involves quark-gluon correlations and does not have a parton interpretation as difference between number densities
- for \perp polarized target, g_{1} and g_{2} contribute equally to $\sigma_{L T}$

$$
\sigma_{L T} \propto g_{T} \equiv g_{1}+g_{2}
$$

\hookrightarrow 'clean' separation between higher order corrections to leading twist $\left(g_{1}\right)$ and higher twist effects $\left(g_{2}\right)$

- what can one learn from g_{2} ?

Quark-Gluon Correlations (QCD analysis)

- $g_{2}(x)=g_{2}^{W W}(x)+\bar{g}_{2}(x)$, with $g_{2}^{W W}(x) \equiv-g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(y)$
- $\bar{g}_{2}(x)$ involves quark-gluon correlations, e.g.

$$
\int d x x^{2} \bar{g}_{2}(x)=\frac{1}{3} d_{2}=\frac{1}{6 M P^{+2} S^{x}}\langle P, S| \bar{q}(0) g G^{+y}(0) \gamma^{+} q(0)|P, S\rangle
$$

- $\sqrt{2} G^{+y} \equiv G^{0 y}+G^{z y}=-E^{y}+B^{x}$
- sometimes called color-electric and magnetic polarizabilities $2 M^{2} \vec{S} \chi_{E}=\langle P, S| \vec{j}_{a} \times \vec{E}_{a}|P, S\rangle \& 2 M^{2} \vec{S} \chi_{B}=\langle P, S| j_{a}^{0} \vec{B}_{a}|P, S\rangle$ with $d_{2}=\frac{1}{4}\left(\chi_{E}+2 \chi_{M}\right)$ - but these names are misleading!

Quark-Gluon Correlations (Interpretation)

- $\bar{g}_{2}(x)$ involves quark-gluon correlations, e.g.

$$
\int d x x^{2} \bar{g}_{2}(x)=\frac{1}{3} d_{2}=\frac{1}{6 M P^{+2} S^{x}}\langle P, S| \bar{q}(0) g G^{+y}(0) \gamma^{+} q(0)|P, S\rangle
$$

- QED: $\bar{q}(0) e F^{+y}(0) \gamma^{+} q(0)$ correlator between quark density $\bar{q} \gamma^{+} q$ and (\hat{y}-component of the) Lorentz-force
$F^{y}=e[\vec{E}+\vec{v} \times \vec{B}]^{y}=e\left(E^{y}-B^{x}\right)=-e\left(F^{0 y}+F^{z y}\right)=-e \sqrt{2} F^{+y}$.
for charged paricle moving with $\vec{v}=(0,0,-1)$ in the $-\hat{z}$ direction
\hookrightarrow matrix element of $\bar{q}(0) e F^{+y}(0) \gamma^{+} q(0)$ yields γ^{+}density (density relevant for DIS in Bj limit!) weighted with the Lorentz force that a charged particle with $\vec{v}=(0,0,-1)$ would experience at that point
$\hookrightarrow d_{2}$ a measure for the color Lorentz force acting on the struck quark in SIDIS in the instant after being hit by the virtual photon

$$
\left\langle F^{y}(0)\right\rangle=-2 M^{2} d_{2} \quad\left(\text { rest frame } ; S^{x}=1\right)
$$

Quark-Gluon Correlations (Interpretation)

- x^{2}-moment of twist-4 polarized PDF $g_{3}(x)$

$$
\int d x x^{2} g_{3}(x) \rightsquigarrow\langle P, S| \bar{q}(0) g \tilde{G}^{\mu \nu}(0) \gamma_{\nu} q(0)|P, S\rangle \sim f_{2}
$$

\hookrightarrow different linear combination $f_{2}=\chi_{E}-\chi_{B}$ of χ_{E} and χ_{M}
\hookrightarrow combine with $d_{2} \Rightarrow$ disentangle electric and magnetic force

- What should one expect (sign/magnitude)?
- $\kappa_{q}^{p} \longrightarrow$ signs of deformation (u / d quarks in $\pm \hat{y}$ direction for proton polarized in $+\hat{x}$ direction \longrightarrow expect force in $\mp \hat{y}$
$\hookrightarrow d_{2}$ positive/negative for u / d quarks in proton
- large $N_{C}: d_{2}^{u / p}=-d_{2}^{d / p} \quad$ (consistent with $\left.f_{1 T}^{\perp u}+f_{1 T}^{\perp d} \approx 0\right)$
- $F^{y}=-2 M^{2} d_{2}=-10 \frac{\mathrm{GeV}}{f m} d_{2} \quad \Rightarrow$ expect $\left|d_{2}\right| \ll 1$
- lattice (Göckeler et al.): $d_{2}^{u} \approx 0.010$ and $d_{2}^{d} \approx-0.0056$
$\hookrightarrow\left\langle F_{u}^{y}(0)\right\rangle \approx-100 \frac{\mathrm{MeV}}{f m} \quad\left\langle F_{d}^{y}(0)\right\rangle \approx 56 \frac{\mathrm{MeV}}{f m}$
- x^{2}-moment of chirally odd twist-3 PDF $e(x) \longrightarrow$ transverse force on transversely polarized quark in unpolarized target (\leftrightarrow Boer-Mulders h_{1}^{\perp})

Transversity Distribution in Unpolarized Target (sign)

- Consider quark in ground state hadron polarized out of the plane
\hookrightarrow expect counterclockwise net current \vec{j} associated with the magnetization density in this state

- virtual photon 'sees’ enhancement of quarks (polarized out of plane) at the top, i.e.
\hookrightarrow virtual photon 'sees' enhancement of quarks with polarization up (down) on the left (right) side of the hadron

Transversity Distribution in Unpolarized Target

IPDs on the lattice (QCDSF)

- lowest moment of distribution $q\left(x, \mathbf{b}_{\perp}\right)$ for unpol. quarks in \perp pol. proton (left) and of \perp pol. quarks in unpol. proton (right):

Boer-Mulders Function

- SIDIS: attractive FSI expected to convert position space asymmetry into momentum space asymmetry
\hookrightarrow e.g. quarks at negative b_{x} with spin in $+\hat{y}$ get deflected (due to FSI) into $+\hat{x}$ direction
\hookrightarrow (qualitative) connection between Boer-Mulders function $h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$ and the chirally odd GPD \bar{E}_{T} that is similar to (qualitative) connection between Sivers function $f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$ and the GPD E.
- Boer-Mulders: distribution of \perp pol. quarks in unpol. proton

$$
f_{q^{\uparrow} / p}\left(x, \mathbf{k}_{\perp}\right)=\frac{1}{2}\left[f_{1}^{q}\left(x, \mathbf{k}_{\perp}^{2}\right)-h_{1}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right) \frac{\left(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}\right) \cdot S_{q}}{M}\right]
$$

- $h_{1}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right)$ can be probed in Drell-Yan (RHIC, J-PARC, GSI) and tagged SIDIS (JLab, eRHIC), using Collins-fragmentation

probing BM function in tagged SIDIS

how to measure the transversity distribution of quarks without measuring the transversity of a quark?

- consider semi-inclusive pion production off unpolarized target
- spin-orbit correlations in target wave function provide correlation between (primordial) quark transversity and impact parameter
\hookrightarrow (attractive) FSI provides correlation between quark spin and \perp quark momentum $\Rightarrow \mathrm{BM}$ function
- Collins effect: left-right asymmetry of π distribution in fragmentation of \perp polarized quark \Rightarrow 'tag' quark spin
$\hookrightarrow \cos (2 \phi)$ modulation of π distribution relative to lepton scattering plane
$\hookrightarrow \cos (2 \phi)$ asymmetry proportional to: Collins $\times \mathrm{BM}$

probing BM function in tagged SIDIS

Primordial Quark Transversity Distribution
$\longrightarrow \perp$ quark pol.

polarization and γ^{*} absorption

- QED: when the γ^{*} scatters off \perp polarized quark, the \perp polarization gets modified
- gets reduced in size
- gets tilted symmetrically w.r.t. normal of the scattering plane
quark pol. before γ^{*} absorption
quark pol. after γ^{*} absorption
lepton scattering plane

probing BM function in tagged SIDIS

Primordial Quark Transversity Distribution
$\longrightarrow \perp$ quark pol.

probing BM function in tagged SIDIS

Quark Transversity Distribution after γ^{*} absorption

quark transversity component in lepton scattering plane flips

probing BM function in tagged SIDIS

\perp momentum due to FSI

$\longrightarrow \perp$ quark pol.
$\mathbf{k}_{\perp}^{\mathrm{q}}$ due to FSI
lepton scattering plane

on average, FSI deflects quarks towards the center

Collins effect

- When a \perp polarized struck quark fragments, the strucure of jet is sensitive to polarization of quark
- distribution of hadrons relative to \perp polarization direction may be left-right asymmetric
- asymmetry parameterized by Collins fragmentation function
- Artru model:
- struck quark forms pion with \bar{q} from $q \bar{q}$ pair with ${ }^{3} P_{0}$ 'vacuum' quantum numbers
\hookrightarrow pion 'inherits' OAM in direction of \perp spin of struck quark
\hookrightarrow produced pion preferentially moves to left when looking into direction of motion of fragmenting quark with spin up
- Artru model confirmed by Hermes experiment
- more precise determination of Collins function under way (KEK)

probing BM function in tagged SIDIS

SSA of π in jet emanating from \perp pol. q

probing BM function in tagged SIDIS

\hookrightarrow in this example, enhancement of pions with \perp momenta \perp to lepton plane

probing BM function in tagged SIDIS

\hookrightarrow expect enhancement of pions with \perp momenta \perp to lepton plane

Quark-Gluon Correlations (chirally odd)

- \perp momentum for quark polarized in $+\hat{x}$-direction (unpolarized target)

$$
\left\langle k_{\perp}^{y}\right\rangle=\frac{g}{2 p^{+}}\langle P, S| \bar{q}(0) \int_{0}^{\infty} d x^{-} G^{+y}\left(x^{-}\right) \sigma^{+y} q(0)|P, S\rangle
$$

- compare: interaction-dependent twist-3 piece of $e(x)$ (scalar twist-3 PDF)

$$
\int d x x^{2} \bar{e}(x) \equiv \bar{e}_{2}=\frac{g}{4 M P^{+^{2}}}\langle P, S| \bar{q}(0) G^{+y}(0) \sigma^{+y} q(0)|P, S\rangle
$$

$\hookrightarrow\left\langle F^{y}\right\rangle=M^{2} \bar{e}_{2}$
\hookrightarrow (chromodynamic lensing) $\bar{e}_{2}<0$

Summary

- GPDs $\stackrel{F T}{\longleftrightarrow}$ IPDs (impact parameter dependent PDFs)
- $E^{q}\left(x, 0,-\Delta_{\perp}^{2}\right) \leftrightarrow \kappa_{q / p}$ (contribution from quark flavor q to anom magnetic moment)
- $E^{q}\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow \perp$ deformation of PDFs for \perp polarized target
- \perp deformation \leftrightarrow (sign of) SSA (Sivers; Boer-Mulders)
- \perp deformation \leftrightarrow (sign of) quark-gluon correlations ($\int d x x^{2} \bar{g}_{2}(x)$, $\left.\int d x x^{2} \bar{e}(x)\right)$

