

Transverse (Spin) Structure of Hadrons

Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University

Outline

Probabilistic interpretation of GPDs as Fourier trafo of impact parameter dependent PDFs

•
$$H(x, 0, -\mathbf{\Delta}_{\perp}^2) \longrightarrow q(x, \mathbf{b}_{\perp})$$

- $E(x, 0, -\Delta_{\perp}^2) \longrightarrow \bot$ distortion of PDFs when the target is \bot polarized
- $\bar{E}_T(x, 0, -\Delta_{\perp}^2) \longrightarrow$ transversity distribution in unpol. target
- → SSA in SIDID/DY (Sivers & Boer-Mulders)
- \hookrightarrow twist-3 quark-gluon correlations: $\int dx \, x^2 \bar{g}_2(x) \, \& \int dx \, x^2 \bar{e}(x)$
- Summary

Generalized Parton Distributions (GPDs)

• GPDs: decomposition of form factors at a given value of t, w.r.t. the average momentum fraction $x = \frac{1}{2} (x_i + x_f)$ of the active quark

$$\int dx H_q(x,\xi,t) = F_1^q(t) \qquad \int dx \tilde{H}_q(x,\xi,t) = G_A^q(t)$$
$$\int dx E_q(x,\xi,t) = F_2^q(t) \qquad \int dx \tilde{E}_q(x,\xi,t) = G_P^q(t),$$

- x_i and x_f are the momentum fractions of the quark before and after the momentum transfer; $2\xi = x_f x_i$
- GPDs can be probed in deeply virtual Compton scattering (DVCS) as well as deeply virtual meson production (DVMP)

Impact parameter dependent PDFs

define \perp localized state [D.Soper,PRD15, 1141 (1977)]

$$\left|p^{+},\mathbf{R}_{\perp}=\mathbf{0}_{\perp},\lambda\right\rangle\equiv\mathcal{N}\int d^{2}\mathbf{p}_{\perp}\left|p^{+},\mathbf{p}_{\perp},\lambda\right\rangle$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has $\mathbf{R}_{\perp} \equiv \frac{1}{P^+} \int dx^- d^2 \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x) = \sum_i x_i \mathbf{r}_{i,\perp} = \mathbf{0}_{\perp}$ (cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

$$\boldsymbol{q}(\boldsymbol{x}, \mathbf{b}_{\perp}) \equiv \int \frac{dx^{-}}{4\pi} \langle p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} | \, \bar{q}(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{b}_{\perp}) | p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \rangle \, e^{ixp^{+}x^{-}}$$

$$\hookrightarrow \qquad \begin{array}{l} \mathbf{\varphi}(x,\mathbf{b}_{\perp}) &= \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i\mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H(x,0,-\mathbf{\Delta}_{\perp}^2), \\ \Delta q(x,\mathbf{b}_{\perp}) &= \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i\mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}(x,0,-\mathbf{\Delta}_{\perp}^2), \end{array}$$

Impact parameter dependent PDFs

- No relativistic corrections (Galilean subgroup!)
- \hookrightarrow corrolary: interpretation of 2d-FT of $F_1(Q^2)$ as charge density in transverse plane also free from relativistic corrections (Soper 1977; MB 2003)
- $\mathbf{P} \quad q(x, \mathbf{b}_{\perp})$ has probabilistic interpretation as number density

$$\langle p^{+\prime}, 0_{\perp} | b^{\dagger}(x, \mathbf{b}_{\perp}) b(x, \mathbf{b}_{\perp}) | p^{+}, 0_{\perp} \rangle \sim | b(x, \mathbf{b}_{\perp}) \rangle | p^{+}, 0_{\perp} |^{2}$$

works only for $p^+ = p^{+\prime}$

- Reference point for IPDs is transverse center of (longitudinal) momentum $\mathbf{R}_{\perp} \equiv \sum_{i} x_{i} \mathbf{r}_{i,\perp}$
- \hookrightarrow for $x \to 1$, active quark 'becomes' COM, and $q(x, \mathbf{b}_{\perp})$ must become very narrow (δ -function like)

 \hookrightarrow $H(x, 0, -\Delta_{\perp}^2)$ must become Δ_{\perp} indep. as $x \to 1$ (MB, 2000)

↔ consistent with lattice results for first few moments Transverse (Spin) Structure of Hadrons - p.5/32

Transversely Deformed Distributions and $E(x, 0, -\Delta_{\perp}^2)$

M.B., Int.J.Mod.Phys.A18, 173 (2003)

So far: only unpolarized (or long. pol.) nucleon! In general ($\xi = 0$):

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \left\langle P + \Delta, \uparrow \left| \bar{q}(0) \gamma^{+}q(x^{-}) \right| P, \uparrow \right\rangle = H(x, 0, -\Delta_{\perp}^{2})$$

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \left\langle P + \Delta, \uparrow \left| \bar{q}(0) \gamma^{+}q(x^{-}) \right| P, \downarrow \right\rangle = -\frac{\Delta_{x} - i\Delta_{y}}{2M} E(x, 0, -\Delta_{\perp}^{2}).$$

- Consider nucleon polarized in x direction (in IMF) $|X\rangle \equiv |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \uparrow \rangle + |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \downarrow \rangle.$
- \hookrightarrow unpolarized quark distribution for this state:

$$q(x,\mathbf{b}_{\perp}) = \mathcal{H}(x,\mathbf{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} E(x,0,-\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

Physics: $j^+ = j^0 + j^3$, and left-right asymmetry from j^3 !
[X.Ji, PRL **91**, 062001 (2003)]

Transversely Deformed PDFs and $E(x, 0, -\Delta_{\perp}^2)$

$$q(x,\mathbf{b}_{\perp}) = \mathcal{H}(x,\mathbf{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} E(x,0,-\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

mean \perp deformation of flavor q (\perp flavor dipole moment)

$$d_y^q \equiv \int dx \int d^2 \mathbf{b}_\perp q(x, \mathbf{b}_\perp) b_y = \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q^p}{2M}$$

•
$$\kappa^p = 1.913 = \frac{2}{3}\kappa^p_u - \frac{1}{3}\kappa^p_d + \dots$$

 \rightarrow neglecting strange (and heavier) quarks:

•
$$\kappa_u^p = 2\kappa_p + \kappa_n = 1.673 \Rightarrow \text{shift in } +\hat{y} \text{ direction}$$

- $\kappa_d^p = 2\kappa_n + \kappa_p = -2.033 \Rightarrow \text{shift in } -\hat{y} \text{ direction}$
- **•** for proton polarized in $+\hat{x}$ direction

$$d_y^q = \mathcal{O}(\pm 0.2 fm)$$

p polarized in $+\hat{x}$ direction (MB,2003)

virtual photon 'sees' enhancement when quark currents point in direction opposite to photon momentum

sideways shift of quark distributions

sign & magnitude of shift (modelindependently) predicted to be related to the proton/neutron anomalous magnetic moment!

p polarized in $+\hat{x}$ direction

b,

Dx

 $\mathbf{b}_{\mathbf{x}}$

 p_{γ}

example:
$$\gamma^* p \to \pi X$$

 $\dot{p_N}$

- u, d distributions in \perp polarized proton have left-right asymmetry in \perp position space (T-even!); sign "determined" by $\kappa_u \& \kappa_d$
- attractive FSI deflects active quark towards the center of momentum
- \hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$ -direction into momentum asymmetry that favors $-\hat{y}$ direction
- \hookrightarrow correlation between sign of κ_q^p and sign of SSA: $f_{1T}^{\perp q} \sim -\kappa_q^p$
- $f_{1T}^{\perp q} \sim -\kappa_q^p$ confirmed by HERMES data (also consistent with COMPASS deuteron data $f_{1T}^{\perp u} + f_{1T}^{\perp d} \approx 0$)

 $f_{1T}^{\perp}(x,\mathbf{k}_{\perp})_{DY} = -f_{1T}^{\perp}(x,\mathbf{k}_{\perp})_{SIDIS}$

• time reversal: FSI \leftrightarrow ISI

- SIDIS: compare FSI for 'red' q that is being knocked out with ISI for an anti-red \bar{q} that is about to annihilate that bound q
 - \hookrightarrow FSI for knocked out q is attractive
 - DY: nucleon is color singlet \rightarrow when to-be-annihilated q is 'red', the spectators must be anti-red
 - \hookrightarrow ISI with spectators is repulsive
 - test of this relation is a test of TMD factorization

Quark-Gluon Correlations (Introduction)

- (longitudinally) polarized polarized DIS at leading twist —
 'polarized quark distribution' $g_1^q(x) = q^{\uparrow}(x) + \bar{q}^{\uparrow}(x) q_{\downarrow}(x) \bar{q}_{\downarrow}(x)$
- Image: $\frac{1}{Q^2}$ -corrections to X-section involve 'higher-twist' distribution functions, such as $g_2(x)$

$$\sigma_{LL} \propto g_1 - \frac{2Mx}{\nu}g_2$$

- $g_2(x)$ involves quark-gluon correlations and does not have a parton interpretation as difference between number densities
- for \perp polarized target, g_1 and g_2 contribute equally to σ_{LT}

$$\sigma_{LT} \propto g_T \equiv g_1 + g_2$$

- \hookrightarrow 'clean' separation between higher order corrections to leading twist (g_1) and higher twist effects (g_2)
- what can one learn from g_2 ?

Quark-Gluon Correlations (QCD analysis)

$$g_2(x) = g_2^{WW}(x) + \bar{g}_2(x), \text{ with } g_2^{WW}(x) \equiv -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y)$$

 $\mathbf{I} \quad \bar{g}_2(x)$ involves quark-gluon correlations, e.g.

$$\int dx x^2 \bar{g}_2(x) = \frac{1}{3} d_2 = \frac{1}{6MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^+ q(0) \right| P, S \right\rangle$$

• sometimes called color-electric and magnetic polarizabilities $2M^2 \vec{S} \chi_E = \left\langle P, S \left| \vec{j}_a \times \vec{E}_a \right| P, S \right\rangle$ & $2M^2 \vec{S} \chi_B = \left\langle P, S \left| j_a^0 \vec{B}_a \right| P, S \right\rangle$ with $d_2 = \frac{1}{4} \left(\chi_E + 2\chi_M \right)$ — but these names are misleading!

Quark-Gluon Correlations (Interpretation)

9 $\bar{g}_2(x)$ involves quark-gluon correlations, e.g.

$$\int dx x^2 \bar{g}_2(x) = \frac{1}{3} d_2 = \frac{1}{6MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^+ q(0) \right| P, S \right\rangle$$

• QED: $\bar{q}(0)eF^{+y}(0)\gamma^+q(0)$ correlator between quark density $\bar{q}\gamma^+q$ and (\hat{y} -component of the) Lorentz-force

$$F^{y} = e\left[\vec{E} + \vec{v} \times \vec{B}\right]^{y} = e\left(E^{y} - B^{x}\right) = -e\left(F^{0y} + F^{zy}\right) = -e\sqrt{2}F^{+y}.$$

for charged paricle moving with $\vec{v} = (0, 0, -1)$ in the $-\hat{z}$ direction

- \hookrightarrow matrix element of $\bar{q}(0)eF^{+y}(0)\gamma^+q(0)$ yields γ^+ density (density relevant for DIS in Bj limit!) weighted with the Lorentz force that a charged particle with $\vec{v} = (0, 0, -1)$ would experience at that point
- $\hookrightarrow d_2$ a measure for the color Lorentz force acting on the struck quark in SIDIS in the instant after being hit by the virtual photon

 $\langle F^y(0) \rangle = -2M^2 d_2$ (rest frame; $S^x = 1$)

Quark-Gluon Correlations (Interpretation)

- \hookrightarrow different linear combination $f_2 = \chi_E \chi_B$ of χ_E and χ_M
- \hookrightarrow combine with $d_2 \Rightarrow$ disentangle electric and magnetic force
- What should one expect (sign/magnitude)?
 - $\kappa_q^p \longrightarrow$ signs of deformation (u/d quarks in $\pm \hat{y}$ direction for proton polarized in $+\hat{x}$ direction \longrightarrow expect force in $\mp \hat{y}$
 - $\hookrightarrow d_2$ positive/negative for u/d quarks in proton
 - large N_C : $d_2^{u/p} = -d_2^{d/p}$ (consistent with $f_{1T}^{\perp u} + f_{1T}^{\perp d} \approx 0$)
 - $F^y = -2M^2 d_2 = -10 \frac{\text{GeV}}{fm} d_2 \quad \Rightarrow \text{expect} |d_2| \ll 1$
- Iattice (Göckeler et al.): $d_2^u \approx 0.010$ and $d_2^d \approx -0.0056$
- $\hookrightarrow \langle F_u^y(0) \rangle \approx -100 \frac{\text{MeV}}{fm} \qquad \langle F_d^y(0) \rangle \approx 56 \frac{\text{MeV}}{fm}$
- x^2 -moment of chirally odd twist-3 PDF $e(x) \longrightarrow$ transverse force on transversely polarized quark in unpolarized target (\leftrightarrow Boer-Mulders h_1^{\perp})

Transversity Distribution in Unpolarized Target (sign)

- Consider quark in ground state hadron polarized out of the plane
- \leftrightarrow expect counterclockwise net current \vec{j} associated with the magnetization density in this state

- virtual photon 'sees' enhancement of quarks (polarized out of plane) at the top, i.e.
- → virtual photon 'sees' enhancement of quarks with polarization up (down) on the left (right) side of the hadron

Transversity Distribution in Unpolarized Target

Transverse (Spin) Structure of Hadrons – p.18/32

IPDs on the lattice (QCDSF)

Iowest moment of distribution $q(x, \mathbf{b}_{\perp})$ for unpol. quarks in \perp pol. proton (left) and of \perp pol. quarks in unpol. proton (right):

- SIDIS: attractive FSI expected to convert position space asymmetry into momentum space asymmetry
- \hookrightarrow e.g. quarks at negative b_x with spin in $+\hat{y}$ get deflected (due to FSI) into $+\hat{x}$ direction
- \hookrightarrow (qualitative) connection between Boer-Mulders function $h_1^{\perp}(x, \mathbf{k}_{\perp})$ and the chirally odd GPD \overline{E}_T that is similar to (qualitative) connection between Sivers function $f_{1T}^{\perp}(x, \mathbf{k}_{\perp})$ and the GPD E.
- **Boer-Mulders**: distribution of \perp **pol.** quarks in **unpol.** proton

$$f_{q^{\uparrow}/p}(x,\mathbf{k}_{\perp}) = \frac{1}{2} \left[f_1^q(x,\mathbf{k}_{\perp}^2) - \frac{h_1^{\perp q}(x,\mathbf{k}_{\perp}^2)}{M} \frac{(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}) \cdot S_q}{M} \right]$$

▶ $h_1^{\perp q}(x, \mathbf{k}_{\perp}^2)$ can be probed in Drell-Yan (RHIC, J-PARC, GSI) and tagged SIDIS (JLab, eRHIC), using Collins-fragmentation

how to measure the transversity distribution of quarks without measuring the transversity of a quark?

- consider semi-inclusive pion production off unpolarized target
- spin-orbit correlations in target wave function provide correlation between (primordial) quark transversity and impact parameter
- $\hookrightarrow\,$ (attractive) FSI provides correlation between quark spin and $\perp\,$ quark momentum \Rightarrow BM function
- Collins effect: left-right asymmetry of π distribution in fragmentation of \perp polarized quark \Rightarrow 'tag' quark spin
- $\hookrightarrow \cos(2\phi)$ modulation of π distribution relative to lepton scattering plane
- $\hookrightarrow \cos(2\phi)$ asymmetry proportional to: Collins \times BM

\perp polarization and γ^* absorption

- QED: when the γ^* scatters off \perp polarized quark, the \perp polarization gets modified
 - gets reduced in size
 - gets tilted symmetrically w.r.t. normal of the scattering plane

lepton scattering plane

quark transversity component in lepton scattering plane flips

on average, FSI deflects quarks towards the center

Collins effect

- When a \perp polarized struck quark fragments, the strucure of jet is sensitive to polarization of quark
- distribution of hadrons relative to \(\box) polarization direction may be left-right asymmetric
- asymmetry parameterized by Collins fragmentation function
- Artru model:
 - struck quark forms pion with \bar{q} from $q\bar{q}$ pair with ${}^{3}P_{0}$ 'vacuum' quantum numbers
 - \hookrightarrow pion 'inherits' OAM in direction of \perp spin of struck quark
 - \hookrightarrow produced pion preferentially moves to left when looking into direction of motion of fragmenting quark with spin up
- Artru model confirmed by HERMES experiment
- more precise determination of Collins function under way (KEK)

SSA of π in jet emanating from \perp pol. q

 \hookrightarrow in this example, enhancement of pions with \perp momenta \perp to lepton plane

 \hookrightarrow expect enhancement of pions with \bot momenta \bot to lepton plane

Quark-Gluon Correlations (chirally odd)

Image the momentum for quark polarized in $+\hat{x}$ -direction (unpolarized target)

$$\langle k_{\perp}^{y} \rangle = \frac{g}{2p^{+}} \left\langle P, S \left| \bar{q}(0) \int_{0}^{\infty} dx^{-} G^{+y}(x^{-}) \sigma^{+y} q(0) \right| P, S \right\rangle$$

compare: interaction-dependent twist-3 piece of e(x) (scalar twist-3 PDF)

$$\int dx x^2 \bar{e}(x) \equiv \bar{e}_2 = \frac{g}{4MP^{+2}} \left\langle P, S \left| \bar{q}(0) G^{+y}(0) \sigma^{+y} q(0) \right| P, S \right\rangle$$

 $\hookrightarrow \langle F^y \rangle = M^2 \bar{e}_2$

 \hookrightarrow (chromodynamic lensing) $\bar{e}_2 < 0$

- **GPDs** $\stackrel{FT}{\longleftrightarrow}$ IPDs (impact parameter dependent PDFs)
- $E^q(x, 0, -\Delta_{\perp}^2) \longrightarrow \bot$ deformation of PDFs for \bot polarized target
- In the deformation \leftrightarrow (sign of) SSA (Sivers; Boer-Mulders)
- ↓ deformation ↔ (sign of) quark-gluon correlations ($\int dx \, x^2 \bar{g}_2(x)$,
 $\int dx \, x^2 \bar{e}(x)$)