Excited States of the Nucleon in 2+1 flavour QCD

Derek Leinweber
CSSM Lattice Collaboration

Key Collaborators: Selim Mahbub, Waseem Kamleh, Ben Lasscock, Peter Moran, Alan Ó Cais and Tony Williams

Centre for Complex Systems and the Structure of Matter (C²SSM) School of Chemistry & Physics University of Adelaide

Outline

- Introduction
- Variational Method
- Sattice Simulation Results
- Summary of Results

Roper Resonance

- Roper resonance (P₁₁) is the first positive parity excited state of the nucleon
- Observed in 1960's from π N scattering
- The resonance is interesting due to its low mass (1440 MeV) relative to the nearest negative-parity (S₁₁) resonance (1535 MeV).
- In a constituent quark model, the Roper state is ≈100 MeV above the S₁₁ (1535 MeV) state.
- The Roper state appeared very high in all previous lattice simulations using the variational method.

• Two point correlation function:

$$G_{ij}(t, \vec{
ho}) = \sum_{\vec{x}} e^{-i\vec{
ho}.\vec{x}} \langle \Omega | T\{\chi_i(x)\bar{\chi}_j(0)\} | \Omega \rangle.$$

Inserting completeness

$$\sum_{\mathcal{B},\vec{p'},s} |\mathcal{B},\vec{p'},s\rangle\langle\mathcal{B},\vec{p'},s| = \mathit{I}$$

Then

$$G_{ij}(t, \vec{p}) = \sum_{B^{+}} \lambda_{B^{+}} \bar{\lambda}_{B^{+}} e^{-E_{B^{+}}t} \frac{\gamma \cdot p_{B^{+}} + M_{B^{+}}}{2E_{B^{+}}} + \sum_{B^{-}} \lambda_{B^{-}} \bar{\lambda}_{B^{-}} e^{-E_{B^{-}}t} \frac{\gamma \cdot p_{B^{-}} - M_{B^{-}}}{2E_{B^{-}}}$$

• λ_{B^\pm} , $\bar{\lambda}_{B^\pm}$ are the couplings of $\chi(0)$ and $\bar{\chi}(0)$ with $|B^\pm\rangle$ defined by

$$egin{align} \langle \Omega | \chi(0) | B^+, ec{
ho}, s
angle &= \lambda_{B^+} \sqrt{rac{M_{B^+}}{E_{B^+}}} \, u_{B^+}(ec{
ho}, s), \ \ \langle B^+, ec{
ho}, s | ar{\chi}(0) | \Omega
angle &= ar{\lambda}_{B^+} \sqrt{rac{M_{B^+}}{E_{B^+}}} \, ar{u}_{B^+}(ec{
ho}, s), \ \ \end{cases}$$

and for the negative parity states,

$$\begin{split} \langle \Omega | \chi(0) | B^-, \vec{p}, s \rangle &= \lambda_{B^-} \sqrt{\frac{M_{B^-}}{E_{B^-}}} \, \gamma_5 \, u_{B^-}(\vec{p}, s), \\ \langle B^-, \vec{p}, s | \bar{\chi}(0) | \Omega \rangle &= -\bar{\lambda}_{B^-} \sqrt{\frac{M_{B^-}}{E_{B^-}}} \, \bar{u}_{B^-}(\vec{p}, s) \, \gamma_5. \end{split}$$

• At $\vec{p} = 0$

$$\begin{split} G_{ij}^{\pm}(t,\vec{0}) &= \mathrm{Tr}_{\mathrm{sp}}[\Gamma_{\pm} G_{ij}(t,\vec{0})] \\ &= \sum_{B^{\pm}} \lambda_{i}^{\pm} \bar{\lambda}_{j}^{\pm} \, \mathrm{e}^{-M_{B^{\pm}}t}. \end{split}$$

Parity projection operator,

$$\Gamma_{\pm} = \frac{1}{2}(1 \pm \gamma_0).$$

And

$$G_{ij}^{\pm}(t,\vec{0}) \stackrel{t\to\infty}{=} \lambda_{i0}^{\pm} \bar{\lambda}_{j0}^{\pm} \, \mathrm{e}^{-M_{0}\pm t} \quad \mathrm{or} \quad M_{0}^{\pm} = \ln \left(\frac{G_{ij}^{\pm}(t,\vec{0})}{G_{ij}^{\pm}(t+1,\vec{0})} \right) \, .$$

Interpolators

Consider

$$\chi_1(\mathbf{x}) = \epsilon^{abc}(u^{Ta}(\mathbf{x}) C\gamma_5 d^b(\mathbf{x})) u^c(\mathbf{x}),$$

 $\chi_2(\mathbf{x}) = \epsilon^{abc}(u^{Ta}(\mathbf{x}) C d^b(\mathbf{x})) \gamma_5 u^c(\mathbf{x}),$
 $\chi_4(\mathbf{x}) = \epsilon^{abc}(u^{Ta}(\mathbf{x}) C\gamma_5\gamma_4 d^b(\mathbf{x})) u^c(\mathbf{x}).$

Variational Method

Consider N interpolating fields, then

$$\bar{\phi}^{\alpha} = \sum_{i=1}^{N} u_i^{\alpha} \, \bar{\chi}_i,$$

$$\phi^{\alpha} = \sum_{i=1}^{N} V_{i}^{\alpha} \chi_{i},$$

such that,

$$\langle B_{\beta}, p, s | \bar{\phi}^{\alpha} | \Omega \rangle = \delta_{\alpha\beta} \, \bar{z}^{\alpha} \, \bar{u}(\alpha, p, s),$$

$$\langle \Omega | \phi^{\alpha} | B_{\beta}, \boldsymbol{p}, \boldsymbol{s} \rangle = \delta_{\alpha\beta} \, \boldsymbol{z}^{\alpha} \, \boldsymbol{u}(\alpha, \boldsymbol{p}, \boldsymbol{s}),$$

• Then a two point correlation function matrix for $\vec{p} = 0$,

$$G_{ij}^{\pm}(t)u_{j}^{\alpha} = \left(\sum_{\vec{x}} \operatorname{Tr}_{\operatorname{sp}}\left\{\Gamma_{\pm}\langle\Omega|\chi_{i}\bar{\chi}_{j}|\Omega\rangle\right\}\right)u_{j}^{\alpha}$$
$$= \lambda_{i}^{\alpha}\,\bar{z}^{\alpha}\,e^{-m_{\alpha}t}.$$

(no sum over α)

t dependence only in the exponential term

• Then one can have a recurrence relation at time $(t_0 + \triangle t)$,

$$G_{ij}(t_0 + \triangle t) u_i^{\alpha} = e^{-m_{\alpha} \triangle t} G_{ij}(t_0) u_i^{\alpha}.$$

• Multiplying by $[G_{ij}(t_0)]^{-1}$ from left,

$$[(G(t_0))^{-1}G(t_0+\triangle t)]_{ij}\,u_j^\alpha=c^\alpha\,u_i^\alpha,$$

- where $c^{\alpha} = e^{-m_{\alpha} \triangle t}$ is the eigenvalue.
- Similarly, it can also be solved for the left eigenvalue equation for v^{α} eigenvector,

$$v_i^{\alpha} \left[G(t_0 + \triangle t) (G(t_0))^{-1} \right]_{ij} = c^{\alpha} v_i^{\alpha}.$$

• The vectors u_j^{α} and v_i^{α} diagonalize the correlation matrix at time t_0 and $t_0 + \triangle t$ making the projected correlation function

$$\mathbf{v}_{i}^{\alpha} \mathbf{G}_{ij}(t) \mathbf{u}_{j}^{\beta} = \delta^{\alpha\beta} \mathbf{z}^{\alpha} \mathbf{\bar{z}}^{\beta} \mathbf{e}^{-m_{\alpha}t}.$$

 The projected correlator, is then analyzed to obtain masses of different states,

$$v_i^{\alpha} G_{ij}^{\pm}(t) u_j^{\alpha} \equiv G_{\pm}^{\alpha},$$

We construct the effective mass

$$M_{ ext{eff}}^{lpha}(t) = \ln \left(rac{G_{\pm}^{lpha}(t, ec{0})}{G_{\pm}^{lpha}(t+1, ec{0})}
ight).$$

2×2 correlation matrix of $\chi_1 \chi_2$ for a point source

- $t_{\text{start}} = t_0$ is shown in major tick marks
- \bullet $\triangle t$ is shown in minor tick marks

Eigenvectors - Point Source, for $\chi_1\chi_2$

Left Eigenvectors

Right Eigenvectors

Roper state: Compilation of existing results in QQCD

Smeared Source Problem

Mahbub, et al., Phys. Rev. D 80, 054507 (2009)

[arXiv:0905.3616 [hep-lat]]

Roper state: Compilation of existing results in QQCD

Source Smearing

Correlation matrices are built from a variety of source and sink smearings.

$$\psi_i(\mathbf{x},t) = \sum_{\mathbf{x}'} F(\mathbf{x},\mathbf{x}') \, \psi_{i-1}(\mathbf{x}',t),$$

where,

$$\begin{split} F(\mathbf{x}, \mathbf{x}') &= (1 - \alpha) \, \delta_{\mathbf{x}, \mathbf{x}'} + \\ &\frac{\alpha}{6} \sum_{\mu=1}^{3} \left[U_{\mu}(\mathbf{x}) \, \delta_{\mathbf{x}', \mathbf{x} + \hat{\mu}} + U_{\mu}^{\dagger}(\mathbf{x} - \hat{\mu}) \, \delta_{\mathbf{x}', \mathbf{x} - \hat{\mu}} \right] \,, \end{split}$$

Fixing $\alpha = 0.7$, the procedure is repeated $N_{\rm sm}$ times.

4×4 bases of $\chi_1 \bar{\chi}_1$

- Consider smeared-smeared correlation functions
- Variety of smearing sweeps used to form basis interpolators

$\overline{ \text{Sweeps} \to }$	1	3	7	12	16	26	35	48	
Basis No. ↓	Bases								
1	1	-	7	-	16	-	35	-	
2	-	3	7	-	16	-	35	-	
3	1	-	-	12	-	26	-	48	
4	-	3	-	12	-	26	35	-	
5	-	3	-	12	-	26	-	48	
6	-	-	-	12	16	26	35	-	
7	-	-	7	-	16	-	35	48	

V1/2[−] State and the Level Crossing Roper State in Dynamical-Fermion QCD V1/2[−] State in Dynamical-Fermion QCD

Smeared Source - Point Sink Correlators

4×4 correlation matrix for the 4th basis (3, 12, 26, 35)

- $t_{\text{start}} = t_0$ is shown in major tick marks
- $\triangle t$ is shown in minor tick marks

Effective Mass of Roper: 5th Basis

$$\chi^2/dof = 0.51$$

Methodology and Status N1/2 State and the Level Crossing Roper State in Dynamical-Fermion OCD

4×4 bases of $\chi_1 \bar{\chi}_1$

$Sweeps \to$	1	3	7	12	16	26	35	48	
Basis No. ↓	Bases								
1	1	-	7	-	16	-	35	-	
2	-	3	7	-	16	-	35	-	
3	1	-	-	12	-	26	-	48	
4	-	3	-	12	-	26	35	-	
5	-	3	-	12	-	26	-	48	
6	-	-	-	12	16	26	35	-	
7	-	-	7	-	16	-	35	48	

Projected correlator masses from 4 × 4 analysis

Mahbub et al., Phys. Lett. B 679, 418 (2009), [arXiv:hep-lat/0906.5433].

6×6 bases of $\chi_1 \bar{\chi}_1$

$\overline{ \ Sweeps \to }$	1	3	7	12	16	26	35	48	
Basis No. ↓	Bases								
1	1	3	7	12	16	26	-	-	
2	1	3	7	12	16	-	35	-	
3	1	3	7	-	16	26	35	-	
4	1	3	-	12	16	26	-	48	
5	1	-	7	12	16	26	35	-	
6	-	3	7	12	16	26	35	-	

6×6 bases of $\chi_1 \chi_2$

$Sweeps \to$	1	3	7	12	16	26	35	48	
Basis No. ↓		Bases							
1	1	-	-	-	16	-	-	48	
2	-	3	-	12	-	26	-	-	
3	-	3	-	-	16	-	-	48	
4	-	-	7	-	16	-	35	-	
5	-	-	-	12	16	26	-	-	
6	-	-	-	-	16	26	35	-	

Methodology and Status N1/2 State and the Level Crossing Report State in Dynamical Farmion OCD

8×8 bases of $\chi_1 \chi_2$

$Sweeps \to$	1	3	7	12	16	26	35	48	
Basis No. ↓	Bases								
1	1	-	7	-	16	-	35	-	
2	-	-	7	12	16	26	-	-	
3	-	3	-	12	-	26	-	48	
4	-	-	7	12	-	26	35	-	
5	-	-	7	-	16	26	35	-	
6	-	-	7	-	16	-	35	48	
7	-	-	-	12	16	26	35	-	

 $m V1/2^-$ State and the Level Crossing Roper State in Dynamical-Fermion QCD $m V1/2^-$ State in Dynamical-Fermion QCD

V1/2[—] State and the Level Crossing Roper State in Dynamical-Fermion QCD V1/2[—] State in Dynamical-Fermion QCD

V1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD V1/2⁻ State in Dynamical-Fermion QCD

V1/2[—] State and the Level Crossing Roper State in Dynamical-Fermion QCD V1/2[—] State in Dynamical-Fermion QCD

V1/2⁻ State and the Level Crossing Roper State in Dynamical-Fermion QCD V1/2⁻ State in Dynamical-Fermion QCD

 $V1/2^-$ State and the Level Crossing Roper State in Dynamical-Fermion QCD $V1/2^-$ State in Dynamical-Fermion QCD

V1/2[—] State and the Level Crossing Roper State in Dynamical-Fermion QCD V1/2[—] State in Dynamical-Fermion QCD

N1/2[—] State and the Level Crossing Roper State in Dynamical-Fermion QCD N1/2[—] State in Dynamical-Fermion QCD

Projected masses from 8 \times 8 analysis of $\chi_1 \chi_2$

/1/2⁻ State and the Level Crossing loper State in Dynamical-Fermion QCD /1/2⁻ State in Dynamical-Fermion QCD

Positive Parity Results

Methodology and Status

V1/2[—] State and the Level Crossing Roper State in Dynamical-Fermion QCD V1/2[—] State in Dynamical-Fermion QCD

Positive Parity Results

8×8 bases of $\chi_1 \chi_2$ for $N1/2^-$ Analysis

$Sweeps \to$	1	3	7	12	16	26	35	48	
Basis No. ↓	Bases								
1	-	3	-	12	-	26	-	48	
2	-	-	7	12	-	26	35	-	
3	-	-	7	-	16	26	35	-	
4	-	-	7	-	16	-	35	48	

Projected $N1/2^-$ masses from 8 × 8 bases

Roper and $N1/2^-$ states

PACS-CS lattice: Simulation details

PACS-CS Collaboration: S. Aoki, et al., Phys. Rev. **D79** (2009) 034503.

- Lattice volume: 32³ × 64
- Non-perturbative $\mathcal{O}(a)$ -improved Wilson quark action
- Iwasaki gauge action
- 2 + 1 flavour dynamical-fermion QCD
- $\beta = 1.9$ providing a = 0.0907 fm
- $\bullet \ \textit{K}_{\textit{ud}} = \{ \ 0.13700, \ 0.13727, \ 0.13754, \ 0.13770, \ 0.13781 \ \}$
- $K_s = 0.13640$
- Lightest pion mass is 156 MeV.

4×4 bases of $\chi_1 \bar{\chi}_1$

$Sweeps \to$	16	25	35	50	70	100	125	200	400	800
Basis No. ↓	Bases									
1	16	-	35	-	70	100	-	-	-	-
2	16	-	35	-	70	-	125	-	-	-
3	16	-	35	-	-	100	-	200	-	-
4	16	-	35	-	-	100	-	-	400	-
5	16	-	-	50	-	100	125	-	-	-
6	16	-	-	50	-	100	-	200	-	-
7	16	-	-	50	-	-	125	-	-	800
8	-	25	-	50	-	100	-	200	-	-
9	-	25	-	50	-	100	-	-	400	-
10	-	-	35	-	70	-	125	-	400	-

Smeared Source - Point Sink Effective Masses

For second lightest quark: 50 cfgs

For all 4 × 4 bases: $K_{ud} = 0.137700$

Smeared Source - Point Sink Effective Masses

For the heaviest quark: 50 cfgs

Even Parity Nucleon Spectrum in full QCD

Configs: Lightest = 750 cfgs, rest are 350 cfgs.

Ground and Roper states (fixed lattice spacing)

Ground and Roper states (Sommer scale sets a)

Ground and Roper states (Sommer scale sets a)

Ground and Roper states (Sommer scale sets a)

Quenched Vs Dynamical (Sommer scale)

Quenched Vs Dynamical (Sommer scale)

$N_{\frac{1}{2}}^{1-}$ (1535) (Sommer scale)

$N_{\frac{1}{2}}^{1-}$ (1535) (Sommer scale)

$N_{\frac{1}{2}}^{1-}$ (1535) (Sommer scale)

Quenched Vs Dynamical, N⁻ states (Sommer scale)

Summary

- Several fermion-source and -sink smearing levels have been used to construct correlation matrices.
- A variety of 4 × 4, 6 × 6, and 8 × 8 matrices were considered to demonstrate the independence of the eigenstate energies from the basis interpolators.
- A low-lying Roper state has been identified in both quenched and full QCD using this correlation-matrix based method.
- The approach to the chiral limit is significantly different.
- The two heaviest quark masses considered in the dynamical case provide states consistent with P-wave πN scattering states.

Quenched Vs Dynamical (Sommer scale)

Summary continued...

- The N1/2⁻ results in quenched and dynamical QCD reveal significant differences in the approach to the physical point.
- A level crossing between the Roper and $N1/2^-$ states is observed in quenched QCD at $m_\pi \simeq 400$ MeV.
- A level crossing between the Roper and $N1/2^-$ states is anticipated in full QCD at $m_\pi \simeq$ 150 MeV, just above the physical pion mass.
- The approach to the experimentally measured masses is encouraging.
- The effects of the finite volume and the role of scattering states remains to be resloved.

Quenched Vs Dynamical $N_{\overline{2}}^{1-}$ (1535) (Sommer scale)

Future Plans

- Extend to a comprehensive analysis of all low-lying baryons.
 - See Ben Menadue's Poster on the Λ(1405).
- Examine the nature of the Roper wave function.
 - See Dale Roberts' Poster on the proton in a magnetic field.
- Explore chiral curvature via chiral effective field theory.
 - Knowledge of meson-baryon couplings to nearby states.
 - See Jonathan Hall's talk on intrinsic scales in χ EFT.
- Resolve excited-state electromagnetic properties.
 - Three-point function and background field approaches.
 - See Thom Primer's Poster on the background field approach to magnetic properties.

