Five-quark components and breathing mode for baryons

Bing-Song Zou Institute of High Energy Physics, CAS, Beijing Theoretical Physics Center for Science Facilities, CAS

Outline:

- Introduction -- 5-quark components in the proton
- New scheme for N*(1535) and its1/2⁻ nonet partners with large 5-quark components and breathing mode
- Evidence for the predicted $\Sigma^*(1/2^-)$
- Extension to hidden charm and beauty
- Conclusion

1. Introduction: 5-quark components in the proton

Classical picture of the proton

Flavor asymmetry of light quarks in the nucleon sea

Deep Inelastic Scattering (DIS) + Drell-Yan (DY) process

→ d̄ - ū ~ 0.12 for a proton
 Garvey&Peng, Prog. Part. Nucl. Phys.47, 203 (2001)

Table 1. Values of the integral $\int_0^1 [\bar{d}(x) - \bar{u}(x)] dx$ determined from the DIS, semi-inclusive DIS, and Drell-Yan experiments.

Experiment	$\langle Q^2\rangle~({\rm GeV^2/c^2})$	$\int_0^1 [\bar{d}(x) - \bar{u}(x)] dx$
NMC/DIS	4.0	0.147 ± 0.039
HERMES/SIDIS	2.3	0.16 ± 0.03
FNAL E866/DY	54.0	0.118 ± 0.012

Two major theoretical schemes for $\overline{\mathbf{d}} - \overline{\mathbf{u}} \sim 0.12$

Meson cloud picture: Thomas, Speth, Henley, Meissner, Miller, Weise, Oset, Brodsky, Ma, ...

 $|\mathbf{p}\rangle \sim |\mathbf{uud}\rangle + \varepsilon_1 |\mathbf{n}(\mathbf{udd})\pi^+(\mathbf{du})\rangle$

 $+ \varepsilon_2 | \Delta^{++} (uuu) \pi^{-} (\overline{ud}) > + \varepsilon' | \Lambda (uds) K^{+} (\overline{su}) > \dots$

Penta-quark picture : Riska, Zou, Zhu, ... $|\mathbf{p} > \sim |\mathbf{uud} > + \varepsilon_1 | [\mathbf{ud}][\mathbf{ud}] \ \mathbf{d} > + \varepsilon' | [\mathbf{ud}][\mathbf{us}] \ \mathbf{s} > + \dots$

Detailed balance model : Zhang, Ma, Zou, Yang, Alberg, Henley

uud
$$\Leftrightarrow$$
 uudg \checkmark uudd \overline{d} 1/2
1 : 1 uudu \overline{u} 1/3

p = 0.168 (uud) + 0.168 (uudg) + 0.084 (uudd d) + 0.056 (uudu u) $+ 0.084 (uudgg) + ... <math>\overline{d} - \overline{u} \sim 0.124$ (uud+ng) 50% (uudd \overline{d} +ng) 22.4% (uudu \overline{u} +ng) 15.0% With ~25% qqqqq components in the proton, the "spin crisis" and single spin asymmetry may also be naturally explained.

An-Riska-Zou, PRC73 (2006) 035207; F.X.Wei, B.S.Zou, hep-ph/0807.2324

$$\Delta_{u} = 0.85 \pm 0.17 \qquad \Delta_{u} = \frac{4}{3} |A_{3q}|^{2}$$

$$\Delta_{d} = -(0.33 \sim 0.56) \qquad \Delta_{d} = -\frac{1}{3}(1 - P_{s\bar{s}})$$

$$\Delta L_{q} = \frac{4}{3}(P_{d\bar{d}} + P_{s\bar{s}})$$

We must go beyond the simple 3q models, meson cloud vs penta-quark not settled yet. 2. New scheme for N*(1535) and its1/2⁻ nonet partners

• Mass order reverse problem for the lowest excited baryons

uud (L=1) $\frac{1}{2}$ - ~ N*(1535)should be the lowestuud (n=1) $\frac{1}{2}$ + ~ N*(1440)uds (L=1) $\frac{1}{2}$ - ~ Λ *(1405)

harmonic oscillator $(2n + L + 3/2)h\omega$

• Strange decays of N*(1535) : PDG \rightarrow large $g_{N^*N\eta}$

 $J/\psi \rightarrow pN^* \rightarrow p(K\Lambda) / p(p\eta) \rightarrow large g_{N^*K\Lambda}$ Liu&Zou, PRL96 (2006) 042002; Geng,Oset,Zou&Doring, PRC79 (2009) 025203 $\gamma p \rightarrow p\eta' \& pp \rightarrow pp\eta' \rightarrow large g_{N^*N\eta'}$ M.Dugger et al., PRL96 (2006) 062001; Cao&Lee, PRC78(2008) 035207

 $\pi^- p \rightarrow n\phi \& pp \rightarrow pp\phi \& pn \rightarrow d\phi \rightarrow large g_{N^*N\phi}$ Xie, Zou & Chiang, PRC77(2008)015206; Cao, Xie, Zou & Xu, PRC80(2009)025203

New Scheme for N*(1535) and its 1/2⁻ nonet partners

Zhang et al, hep-ph/0403210

- $N^{*}(1535) \sim uud (L=1) + \varepsilon [ud][us] s + ...$
- $N^{*}(1440) \sim uud (n=1) + \xi [ud][ud] d + ...$
- $\Lambda^{*}(1405) \sim uds (L=1) + \varepsilon [ud][su] u + ...$

N*(1535): [ud][us] s → larger coupling to Nη, Nη', Nφ & KΛ, weaker to Nπ & KΣ, and heavier !

The breathing mode for the N*(1535)

50% 5q components in $\Lambda^*(1405)$ to reproduce $\Gamma(\Lambda^* \rightarrow \Sigma \pi) = 50$ MeV An, Saghai, Yuan, He, PRC81(2010)045203

The new scheme for the 1/2⁻ nonet predicts:

- **Λ*** [us][ds] s ~ 1575 MeV
- Σ^* [us][du] \overline{d} ~ 1360 MeV
- Ξ^* [us][ds] \overline{u} ~ 1520 MeV

Prediction of other unquenched models:

(1) 5-quark model Helminen & Riska, NPA699(2002)624 $\Sigma^*(1/2^-) \sim \Lambda^*(1/2^-)$

(2) K Λ-KΣ dynamics Weise, Oset et al. broad non-resonant Σ*(1/2⁻) structure Jido-Oset et al, NPA725(2003)181

Important to look for the $\Sigma^*(1/2^-)$ **around 1380 MeV !**

3. Evidence for the predicted $\Sigma^*(1/2^-)$

	$M_{\Sigma^{\star}(3/2)}$	$\Gamma_{\Sigma^{\star}(3/2)}$	$M_{\Sigma^*(1/2)}$	$\Gamma_{\Sigma^*(1/2)}$	$\chi^2/ndf({\rm Fig.1})$	$\chi^2/ndf({\rm Fig.2})$
Fit1	1385.3 ± 0.7	46.9 ± 2.5			68.5/54	10.1/9
Fit2	$1386.1\substack{+1.1 \\ -0.9}$	$34.9^{+5.1}_{-4.9}$	$1381.3^{+4.9}_{-8.3}$	$118.6\substack{+55.2\\-35.1}$	58.0/51	3.2/9

J.J.Wu, S.Dulat, B.S.Zou, PRD80 (2009) 017503

$$K^{-}p \to \Lambda^{*} \to \Sigma_{3/2}^{*-}\pi^{+} \to \Lambda\pi^{+}\pi^{-}$$

$$K^{-}p \to \Lambda^{*} \to \Sigma_{1/2}^{*-}\pi^{+} \to \Lambda\pi^{+}\pi^{-}$$

$$P_{K} \approx 0.4 \text{ GeV}$$

$$P_{K} \approx 0.4 \text{ GeV}$$

$$\sum_{i=0}^{380-390 \text{ MeV/c}+} \frac{380-390 \text{ MeV/c}+}{160} \frac{390-400 \text{ MeV/c}}{150} \frac{160}{150} \frac{160}{150$$

J.J.Wu, S.Dulat, B.S.Zou, Phys. Rev. C81 (2010) 045210

 $\Sigma^*(3/2^+)$ & $\Sigma^*(1/2^-) \rightarrow$ different Dalitz plots & mass spectra

Both are needed to reproduce the data !

Other evidence: failed to reproduce data with Σ *(1385)

LEPS, PRL102(2009)012501

Y. Oh, C. M. Ko, and K. Nakayama, PRC77(2008) 045204

P.Gao, J.J.Wu, B.S.Zou, Phys. Rev. C 81 (2010) 055203

 $J^{P}=1/2^{-}$ I=1 is needed besides $\Lambda^{*}(1405)$!

$$\frac{d\sigma(\pi^{+}\Sigma^{-})}{dM_{I}} \propto \frac{1}{2} |T^{(1)}|^{2} + \frac{1}{3} |T^{(0)}|^{2} + \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*}) + O(T^{(2)})$$
$$\frac{d\sigma(\pi^{-}\Sigma^{+})}{dM_{I}} \propto \frac{1}{2} |T^{(1)}|^{2} + \frac{1}{3} |T^{(0)}|^{2} - \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*}) + O(T^{(2)})$$
$$\frac{d\sigma(\pi^{0}\Sigma^{0})}{dM_{I}} \propto \frac{1}{3} |T^{(0)}|^{2} + O(T^{(2)})$$

J/ψ decay branching ratio * 10⁴ $p \Delta(1232)^+ 3/2+$ < 1 SU(3) breaking $\overline{\Sigma}^{-}\Sigma(1385)^{+}$ 3.1 ± 0.5 $\overline{\Xi}^{+} \Xi (1530)^{-}$ 5.9 ± 1.5 p N*(1535)+ 1/2- 10 ± 3 SU(3) allowed $\overline{\Sigma}^{-}\Sigma(1360)^{+}$? $\overline{\Xi}^{+}\Xi(1520)^{-}$?

It is very important to check whether under the $\Sigma(1385)$ and $\Xi(1520)$ peaks there are $1/2^-$ components ?

4. Extension to hidden charm and beauty

4-quark components in mesons

 $D^*_{s0}(2317) \sim \overline{sc} (L=1) + [\overline{q} \ \overline{s}] [qc] + DK + \dots$ $D^*_{s1}(2460) \sim \overline{sc} (L=1) + D^*K + \dots$ $X(3872) \sim \overline{cc} (L=1) + [\overline{q} \ \overline{c}] [qc] + D^*D + \dots$ Many other proposed dynamically generated states

Problem:

None of them can be clearly distinguished from qqq or qq due to tunable ingredients and possible large mixing of various configurations

Solution:Extension to hidden charm and beauty for baryonsN*(1535)ssuudN*(4260)ccuudJ.J.Wu, R.Molina, E.Oset, B.S.Zou.
arXiv:1007.0573[nucl-th]N*(11050)bbuudJ.J.Wu, B.S.Zou. to be submitted.

KΣ, Kp → $\overline{D}\Sigma_c$, $\overline{D}_s\Lambda_c$ → $B\Sigma_b$, $B_s\Lambda_b$ bound states

J.J.Wu, R.Molina, E.Oset, B.S.Zou. arXiv:1007.0573[nucl-th]

В

$$\begin{aligned} \mathcal{L}_{VVV} &= ig \langle V^{\mu} [V^{\nu}, \partial_{\mu} V_{\nu}] \rangle \\ \mathcal{L}_{PPV} &= -ig \langle V^{\mu} [P, \partial_{\mu} P] \rangle \\ \mathcal{L}_{BBV} &= g (\langle \bar{B} \gamma_{\mu} [V^{\mu}, B] \rangle + \langle \bar{B} \gamma_{\mu} B \rangle \langle V^{\mu} \rangle) \\ V_{ab(P_{1}B_{1} \rightarrow P_{2}B_{2})} &= \frac{C_{ab}}{4f^{2}} (E_{P_{1}} + E_{P_{2}}), \\ V_{ab(V_{1}B_{1} \rightarrow V_{2}B_{2})} &= \frac{C_{ab}}{4f^{2}} (E_{V_{1}} + E_{V_{2}}) \vec{\epsilon}_{1} \cdot \vec{\epsilon}_{2}, \\ T &= [1 - VG]^{-1} V \end{aligned}$$

$$T_{ab} = \frac{g_a g_b}{\sqrt{s} - z_R}$$

	(I,S)	z_R (MeV)		g_a	
N*	(1/2, 0)		$\bar{D}\Sigma_c$	$\bar{D}\Lambda_{c}^{+}$	
		4269	2.85	0	
	(0, -1)		$\bar{D}_s \Lambda_c^+$	$D\Xi_c$	$\overline{D}\Xi'_{c}$
۸*		4213	1.37	3.25	0
		4403	0	0	2.64

TABLE III: Pole positions z_R and coupling constants g_a for the states from $PB \rightarrow PB$.

	(I,S)	z_R (MeV)		g_a	
	(1/2, 0)		$\bar{D}^* \Sigma_c$	$\bar{D}^* \Lambda_c^+$	
		4418	2.75	0	
	(0, -1)		$\bar{D}_{s}^{*}\Lambda_{c}^{+}$	$\bar{D}^* \Xi_c$	$\bar{D}^* \Xi'_c$
۸*		4370	1.23	3.14	0
1		4550	0	0	2.53

TABLE IV: Pole position and coupling constants for the bound states from $VB \rightarrow VB$.

	(I, S)	M	Г	Γ_i					
N *	(1/2, 0)			πN	ηN	$\eta' N$	$K\Sigma$		$\eta_e N$
- 1		4261	56.9	3.8	8.1	3.9	17.0		23.4
	(0, -1)			$\bar{K}N$	$\pi\Sigma$	$\eta \Lambda$	$\eta'\Lambda$	$K\Xi$	$\eta_c \Lambda$
Λ^*		4209	32.4	15.8	2.9	3.2	1.7	2.4	5.8
		4394	43.3	0	10.6	7.1	3.3	5.8	16.3

TABLE V: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $PB \rightarrow PB$, with units in MeV.

	(I, S)	M	Г			Г	i		
N*	(1/2, 0)			ρN	ωN	$K^*\Sigma$			$J/\psi N$
± 1		4412	47.3	3.2	10.4	13.7			19.2
	(0, -1)			K^*N	$\rho\Sigma$	$\omega \Lambda$	$\phi \Lambda$	$K^*\Xi$	$J/\psi\Lambda$
Λ^*		4368	28.0	13.9	3.1	0.3	4.0	1.8	5.4
		4544	36.6	0	8.8	9.1	0	5.0	13.8

TABLE VI: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $VB \rightarrow VB$ with units in MeV.

Super-heavy narrow N* and Λ* with hidden charm ! Definitely not qqq states !

Prediction for PANDA

3 orders of magnitude smaller than $N^* \rightarrow p\eta_c$

 $pp \rightarrow ppJ/\psi \sim 0.03 \text{ nb}$

~ 250 events per day at PANDA/FAIR by L=10³¹ cm⁻²s⁻¹

These Super-heavy narrow N* and Λ* can be found at PANDA !

Prediction for 12GeV@JLab

Conclusion I

- Meson-cloud vs diquark cluster for $\overline{d} \overline{u} \sim 0.12$
- Predictions for the strangeness in the proton: meson cloud : $\Delta s < 0$, $\mu_s < 0$, $r_s < 0$ diquark cluster : $\Delta s < 0$, $\mu_s > 0$, $r_s > 0$
- qqqqq in S-state more favorable than qqq with L=1 !
 & qqqq in S-state more favorable than qq with L=1 !
 - $1/2^{-}$ baryon nonet ~ $\overline{q}q^2q^2$ state + ...

 0^+ meson octet ~ $\overline{q}^2 q^2$ state + ...

multiquark components are important for hadrons!

Conclusion II

- Quenched quark models and unquenched models give very distinctive predictions for $\Sigma^*(1/2^-)$;
- Possible existence of a Σ*(1/2⁻) around 1380 MeV: evidence needs confirmation ; relevant to Kp, Kpp interactions or bound states
- It should be checked by forthcoming experiments :

 $\begin{array}{ll} \mathrm{K}^{-} \mathrm{p} \xrightarrow{} \pi \Sigma^{*}, \ \Sigma^{*} \xrightarrow{} \wedge \pi, \Sigma \pi & @ \ \mathrm{JPARC} \\ \gamma \mathrm{N} \xrightarrow{} \mathrm{K}^{+} \Sigma^{*}, \ \Sigma^{*} \xrightarrow{} \wedge \pi, \Sigma \pi & @ \ \mathrm{JLab}, \ \mathrm{Spring-8, ELSA} \\ \psi \xrightarrow{} \overline{\Sigma} \Sigma^{*}, \ \Sigma^{*} \xrightarrow{} \wedge \pi, \Sigma \pi & @ \ \mathrm{BESIII} \end{array}$

Conclusion III

- Super heavy narrow N* and Λ^* are predicted to exist $\overline{D}\Sigma_c, \ \overline{D}_s\Lambda_c \rightarrow B\Sigma_b, B_s\Lambda_b$ bound states
- They are definitely not qqq baryons
- They can be looked for at 12GeV@Jlab and PANDA maybe also at RHIC, EIC?