Physics Beyond the Standard Model

Anthony W. Thomas

T(r)opical Workshop Cairns : October 1st 2010

Australian Government Australian Research Council

Outline

- Strangeness in the Nucleon
- Dark Matter
- The NuTeV anomaly
- Resolution of the NuTeV anomaly
 - CSV in parton distribution functions
 - a new EMC effect
 - strange quark asymmetry

Strangeness in the Nucleon and Dark Matter

Global Analysis of PVES Data

 $Q^2 = 0.1 GeV^2$

Global analysis: Young et al., PRL 99 (2007)122003 and Young arXiv 1004.5163 [nucl-th]

Octet Baryon Masses - LHPC Data

(Walker-Loud et al., arXiv:0806.4549)

Young & Thomas, arXiv:0901.3559 [nucl-th] Phys Rev D81, 014503 (2010)

Summary of Results of Combined Fits (of 2008 LHPC & PACS-CS data)

B	Mass (GeV)	Exp	t.	$\bar{\sigma}_{Bl}$	$\bar{\sigma}_{Bs}$				
N	0.945(24)(4)(3)	0.93	9	0.050(9)(1)(3)	0.033(16)(4)(2)				
Λ	1.103(13)(9)(3)	1.11	6	0.028(4)(1)(2)	0.144(15)(10)(2)				
Σ	1.182(11)(2)(6)	1.19	3	0.0212(27)(1)(17)	0.187(15)(3)(4)				
Ξ	1.301(12)(9)(1)	1.31	8	0.0100(10)(0)(4)	0.244(15)(12)(2)				

$$\bar{\sigma}_{Bq} = (m_q/M_B)\partial M_B/\partial m_q$$

Of particular interest:

$$\label{eq:starses} \begin{split} \sigma \ commutator \ well \ determined : \sigma_{\pi N} = 47 \ (9) \ (1) \ (3) \ MeV \\ and \ strangeness \ sigma \ commutator \ \underline{small} \\ m_s \ \partial M_N / \ \partial \ m_s = 31 \ (15) \ (4) \ (2) \ MeV \\ NOT \ several \ 100 \ MeV \ ! \end{split}$$

Profound Consequences for Dark Matter Searches

CMSSM Predictions for Dark Matter σ

In response to request by Ellis, Olive & Savage, who explored CMSSM

Cross section accurately fixed $\begin{bmatrix} \hat{A} \\ 0 \end{bmatrix}$ (e.g. "New model C") c.f. using $\begin{bmatrix} \pi \\ 0 \end{bmatrix}$ old relation to unknown πN sigma commutator ("Old Model C")

Giedt et al., arXiv: 0907.4177v1 PRL 103 (2009) 201802

CMSSM Predictions for Dark Matter σ

95% CL predictions for all **Constrained Minimal Super-**Symmetric Standard Model extensions consistent with astrophysical data

Cross sections 1-2 orders of magnitude smaller than before BUT very well determined and separated!

The NuTeV anomaly

Radiative Corrections Test of Weak Neutral Current

Not so long ago....

SM line: Erler & Ramsey-Musolf, Phys.Rev.D72:073003,2005

Paschos-Wolfenstein Ratio

NuTeV measured (approximately) P-W ratio:

$$R^{PW} = \frac{\sigma (v Fe \rightarrow v X) - \sigma (v Fe \rightarrow v X)}{\sigma (v Fe \rightarrow \mu^{-} X) - \sigma (v Fe \rightarrow \mu^{+} X)} = \frac{NC}{CC}$$
ratio

$$= \frac{1}{2} - \sin^2 \theta_W$$

NuTeV

 $sin^{2} \theta_{W} = 1 - M_{W}^{2}/M_{Z}^{2} = 0.2277 \pm 0.0013 \pm 0.0009$ other methods $c.f. Standard Model = 0.2227 \pm 0.0004$

(c.f. 1978: 0.230 ± 0.015)

This Sum Rule Assumes Charge Symmetry Traditionally there is NO label "p" on PDF's ! Its <u>assumed</u> that charge symmetry: $\begin{bmatrix} i & \pi \\ I_2 \end{bmatrix} p$ (u) is exact. 2 Good at < 1% : e.g. (m $_{n}$ – m $_{p}$) / m $_{p}$ ~ 0.1% That is: $u \equiv u^{p} = d^{n}$ $d \equiv d^{p} = u^{n}$ etc. Hence: $F_2^{n} = 4/9 x (d(x) + d(x)) + 1/9 (u(x) + u(x))$ up-quark in n down-quark in n down-quark in n EPECIAL RESEARCI SUBAT

Correction to Paschos-Wolfenstein from CSV

• General form of the correction is:

$$\Delta R_{\rm PW} \simeq \left(1 - \frac{7}{3}s_W^2\right) \frac{\langle x_A \, u_A^- - x_A \, d_A^- - x_A \, s_A^- \rangle}{\langle x_A \, u_A^- + x_A \, d_A^- \rangle}$$

• $u_A = u^p + u^n$; $d_A = d^p + d^n$ and hence

$$u_A - d_A = (u^p - d^n) - (d^p - u^n) \equiv \delta u - \delta d$$

N.B. In general the corrections are C-odd and so involve only valence distributions: q = q - q

Charge Symmetry Violation

Estimates of Charge Symmetry Violation*

- Origin of effect is $m_d \neq m_u$
- Unambiguously predicted : $\left| \delta d_{v} \delta u_{v} > 0 \right|$
- Biggest % effect is for minority quarks, i.e. δd_v
- Same physics that gives : d $_{v}$ / u $_{v}$ small as x \rightarrow 1

and : g_1^p and $g_1^n > 0$ at large x

i.e. mass difference of quark pair spectators to hard scattering

Close & Thomas, Phys Lett B212 (1988) 227

* Sather, Phys Lett B274 (1992) 433; Rodionov et al., Mod Phys Lett A9 (1994) 1799

Non-Perturbative Structure of Nucleon

To calculate PDFs need to evaluate non-perturbative matrix elements

Using either : i) lattice QCD or ii) Model

i) Lattice QCD can only calculate low moments of u ^p – d ^p

quite a lot has been learnt....

BUT nothing yet about CSV

Modeling Valence Distribution

Formally, using OPE $(A_{+} = 0 \text{ gauge})^{*}$:

q(x, Q²₀) = 1/4
$$\pi \int_{-1}^{1} dz \exp[-i M x z] < p| \psi_{+}^{+} (z; 00-z) \psi_{+}(0) |p>$$

nsert complete set of states : $\sum_{n} \int d^{3} p_{n} |n> < n| = 1$

and do $\int dz$ using translational invariance)

q(x, Q²₀) =
$$\sum_{n} \int d^{3} p_{n} | < n | \psi_{+}(0) | p > |^{2} \delta (M(1 - x) - p_{n}^{+})$$

with p +_n = $(m_{n}^{2} + p_{n}^{2})^{1/2} + p_{z} > 0$

^{*} Q²₀ is the scale at which nucleon momentum is carried by ADELAIDE predominantly valence quarks: below 1 GeV²

Di-quark Spectator States Dominate Valence

For s-wave valence quarks, most likely three-momentum is zero :

 δ (M(1 – x) – m_n) determines x where q (x, Q²₀) is maximum

i.e. $x_{peak} = (M - m_n) / M$ and hence lowest $m_n \rightarrow large - x$ behaviour

Natural choice is two-quark state

If $m_2 \downarrow$: x _{peak} moves to right

Application to Charge Symmetry Violation

From: Rodionov et al., Mod Phys Lett A9 (1994) 1799

Remarkably Similar to Recent MRST Fit

FIG. 5: The phenomenological valence quark CSV function from Ref. [23], corresponding to best fit value $\kappa = -0.2$ defined in Eq. (35). Solid curve: $x\delta d_{\rm v}$; dashed curve: $x\delta u_{\rm v}$.

MRST, Eur Phys J C35 (2004) 325

Model Calculations Reduce NuTeV by 1σ

Two original ('92 and '93) calculations agree very (too?) well with each other and with recent approximation based on phenomenological PDFs

Includes effect of NuTeV acceptance

(Zeller et al., hep-ex/0203004)

TABLE II: CSV corrections to determination of $\sin^2 \theta_W$ in neutrino scattering. *PW* is the contribution to the Paschos-Wolfenstein ratio, *Nu* is the result weighted by the NuTeV functional. ΔU is the total contribution from δu_v , ΔD is the contribution from δd_v and *Tot* is the total CSV correction.

	ΔU_{PW}	ΔD_{PW}	$Tot_{\scriptscriptstyle PW}$	ΔU_{Nu}	ΔD_{Nu}	Tot_{Nu}
Rodionov	0010	.0011	0020	00065	00081	0015
Sather	00078	.0013	0021	00060	0011	0017
analytic	0008	.0014	0022	0006	0012	0017

Londergan & Thomas, Phys Lett B558 (2003) 132

An additional source of CSV

 In addition to the u-d mass difference, MRST (Eur Phys J C39 (2005) 155) and Glück et al (PRL 95 (2005) 022002) suggested that "QED splitting":

- which is obviously larger for u than d quarks, would be an additional source of CSV. Assume zero at some low scale and then evolve – so CSV from this source grows with Q²
- Effect on NuTeV is exactly as for regular CSV and magnitude but grows logarithmically with Q²
- For NuTeV it gives: $\Delta R^{
 m QED} = -0.0011$ to which we assign 100% error

Isovector EMC Effect

The EMC Effect: Nuclear PDFs

- Observation stunned and electrified the HEP and Nuclear communities 20 years ago
- Nearly 1,000 papers have been generated.....
- Medium modifies the momentum distribution of the quarks!

SUBAT

Attempt to Understand this based on QMC

- Two major, recent papers:
 - 1. Guichon, Matevosyan, Sandulescu, Thomas, Nucl. Phys. A772 (2006) 1.
 - 2. Guichon and Thomas, Phys. Rev. Lett. 93 (2004) 132502
- Built on earlier work on QMC: e.g.
 - 3. Guichon, Phys. Lett. B200 (1988) 235
 - 4. Guichon, Saito, Rodionov, Thomas, Nucl. Phys. A601 (1996) 349
- Major review of applications of QMC to many nuclear systems:
 - 5. Saito, Tsushima, Thomas,
 - Prog. Part. Nucl. Phys. 58 (2007) 1-167 (hep-ph/0506314)

Recent Calculations for Finite Nuclei

Spin dependent EMC effect TWICE as large as unpolarized

FIG. 7: The EMC and polarized EMC effect in ¹¹B. The empirical data is from Ref. [31].

FIG. 9: The EMC and polarized EMC effect in $^{27}\mathrm{Al.}\,$ The empirical data is from Ref. [31].

Cloët et al., Phys. Lett. B642 (2006) 210 (nucl-th/0605061)

NuTeV Reassessed

- New realization concerning EMC effect:
 - isovector force in nucleus (like Fe) with N≠Z
 effects ALL u and d quarks in the nucleus
 - subtracting structure functions of extra neutrons is not enough
 - there is a shift of momentum from all u to all d quarks
- This has same sign as charge symmetry violation associated with m_u≠ m_d
- Sign and magnitude of both effects exhibit little model dependence

Cloet et al., arXiv: 0901.3559v1 ; Londergan et al., Phys Rev D67 (2003) 111901

Iso-vector EMC Effect

Cloet, Bentz, Thomas

PRL 102, 252301 (2009)

PHYSICAL REVIEW LETTERS

Means that excess neutrons in Fe shift momentum from <u>all</u> u- to <u>all</u> d-quarks and subtracting their direct contribution does not remove this effect

This has implications for the NuTeV anomaly – more than 1σ reduction of "anomaly"

Strange Quark Asymmetry

- Required in principle by chiral symmetry (s and s have different chiral behaviour*)
- Experimental constraint primarily through opposite sign di-muon production with neutrinos (CCFR & NuTeV)

	$\langle x s^- angle$	ΔR^s	$\Delta R^{\mathrm{total}}$	$\sin^2 \theta_W \pm \text{syst.}$
Mason et al. [8]	0.00196 ± 0.00143	-0.0018 ± 0.0013	-0.0063 ± 0.0018	0.2214 ± 0.0020
NNPDF [9]	0.0005 ± 0.0086	-0.0005 ± 0.0078	-0.0050 ± 0.0079	$0.2227 \pm large$
Alekhin et al. [31]	$0.0013 \pm 0.0009 \pm 0.0002$	$-0.0012 \pm 0.0008 \pm 0.0002$	-0.0057 ± 0.0015	0.2220 ± 0.0017
MSTW [32]	$0.0016\substack{+0.0011\\-0.0009}$	$-0.0014_{+0.0008}^{-0.0010}$	-0.0059 ± 0.0015	0.2218 ± 0.0018
CTEQ [33]	$0.0018\substack{+0.0016\\-0.0004}$	$-0.0016\substack{+0.0014\\-0.0004}$	$-0.0061\substack{+0.0019\\-0.0013}$	$0.2216\substack{+0.0021\\-0.0016}$
This work (Eq. (10))	0.0 ± 0.0020	0.0 ± 0.0018	-0.0045 ± 0.0022	0.2232 ± 0.0024

Summary of Corrections to NuTeV Analysis

- Isovector EMC effect: $\Delta R^{\rho^0} = -0.0019 \pm 0.0006$
 - using NuTeV functional
- **CSV:** $\Delta R^{\text{CSV}} = -0.0026 \pm 0.0011$
 - again using NuTeV functional
- Strangeness: $\Delta R^{s} = -0.0011 \pm 0.0014$
 - this is largest uncertainty (systematic error); desperate need for an accurate determination of s⁻(x), e.g. semi-inclusive DIS?
- Final result: $\sin^2 \theta_W = 0.2221 \pm 0.0013 (\text{stat}) \pm 0.0020 (\text{syst})$

– c.f. Standard Model:
$$\sin^2 heta_W=0.2227\pm0.0004$$

Bentz et al., arXiv: 0908.3198

Separate Neutrino and Anti-neutrino Ratios

• Biggest criticism of this explanation has been that NuTeV actually measured R^{ν} and $R^{\bar{\nu}}$, separately: Claim we should compare directly with these.

• Have done this:
$$\delta R^{\nu} = \frac{2\left(3\,g_{Lu}^2 + g_{Ru}^2\right)\left\langle x_A\,u_A^- - x_A\,d_A^-\right\rangle}{\left\langle 3\,x_A\,u_A + 3\,x_A\,d_A + x_A\,\bar{u}_A + x_A\,\bar{d}_A + 6\,x_A\,s_A\right\rangle}$$
$$\delta R^{\bar{\nu}} = \frac{-2\left(3\,g_{Rd}^2 + g_{Ld}^2\right)\left\langle x_A\,u_A^- - x_A\,d_A^-\right\rangle}{\left\langle x_A\,u_A + x_A\,d_A + 3\,x_A\,\bar{u}_A + 3\,x_A\,\bar{d}_A + 6\,x_A\,\bar{s}_A\right\rangle}$$

• Then R^{ν} moves from 0.3916 ± 0.0013 c.f. 0.3950 in the Standard Model to 0.3933 ± 0.0015 ;

 $R^{ar{
u}}$ moves from 0.4050 ± 0.0027 to 0.4034 ± 0.0028 , c.f. 0.4066 in SM

• This is tremendous improvement : χ^2 changes from 7.2 to 2.6 for the two ratios!

Bentz et al., arXiv: 0908.3198

The Standard Model works... again

Bentz et al., arXiv: 0908.3198

Summary

- Standard Model has again survived major tests:
 - strange quarks as analog of Lamb shift in QED
- Determination of m_s < ss> in proton has important implications for dark matter detection
- The outstanding discrepancy with Standard Model predictions for Z⁰ was NuTeV anomaly
 - this is resolved by CSV and newly discovered isovector correction to nuclear structure functions
- Parity Violating DIS is an ideal way to test both effects
- Major remaining uncertainty is $s(x) \overline{s}(x) \dots$

