

Weak charge of proton: loop corrections to parity-violating electron scattering

Wally Melnitchouk

Jefferson Lab

with Peter Blunden (Manitoba), Alex Sibirtsev (Juelich), Tony Thomas (Adelaide), John Tjon[†] (Utrecht)

Why proton weak charge $Q_W^p = 1 - 4\sin^2\theta_W$?

electromagnetic

$$G_E^{\gamma} = \sum_q e_q \, G_E^q$$

weak

$$G_E^Z = \sum_q g_q^V G_E^q$$

PDG convention

(= 1/2 x nuclear physics convention)

$$g_q^V = I_q^w - 2e_q \sin^2 \theta_W$$

Why proton weak charge $Q_W^p = 1 - 4\sin^2\theta_W$?

electromagnetic

$$G_E^{\gamma} = \sum_q e_q \, G_E^q$$

<u>weak</u>

$$G_E^Z = \sum_q g_q^V G_E^q$$

$$at Q^2 = 0$$

$$G_E^{u/p} \equiv G_E^{d/n} = 2, \quad G_E^{d/p} \equiv G_E^{u/n} = 1$$

$$G_E^{\gamma p} = 1$$

$$G_E^{\gamma n} = 0$$

$$G_E^{\gamma n} \ll G_E^{\gamma p}$$

$$G_E^{Zp} = \frac{1}{2}Q_W^p$$

$$G_E^{Zn} = -\frac{1}{2}$$

$$|G_E^{Zp}| \ll |G_E^{Zn}|$$

- \rightarrow G_E^{Zp} small but fundamental quantity!
- \rightarrow measured in *Qweak* experiment at JLab

Why proton weak charge $Q_W^p = 1 - 4\sin^2\theta_W$?

Bentz, Cloet, Londergan, Thomas PLB **693**, 462 (2010)

* 4% measurement of Q_W^p

Outline

- Background: two-photon exchange in elastic ep scattering
 - electric/magnetic form factor ratio:
 Rosenbluth separation vs. polarization transfer

- Parity-violating electron scattering
 - \rightarrow effect of γZ exchange on strange form factors
 - dispersive corrections to proton's weak charge: "Qweak" experiment at Jefferson Lab

Summary

Two-photon exchange in elastic *e-p* scattering

Proton G_E/G_M ratio

Rosenbluth (<u>L</u>ongitudinal-<u>T</u>ransverse) Separation

Arrington et al., PRC 68, 034325 (2003)

LT method

$$\sigma_R = G_M^2(Q^2) + \frac{\varepsilon}{\tau} G_E^2(Q^2)$$

- \longrightarrow G_E from slope in ε plot
- \rightarrow suppressed at large Q^2

Proton G_E/G_M ratio

Rosenbluth (<u>L</u>ongitudinal-<u>T</u>ransverse) Separation

Arrington et al., PRC 68, 034325 (2003)

Polarization Transfer

Jones et al., PRL **84**, 1398 (2000) Gayou et al., PRL **88**, 092301 (2002)

LT method

$$\sigma_R = G_M^2(Q^2) + \frac{\varepsilon}{\tau} G_E^2(Q^2)$$

- \rightarrow G_E from slope in ε plot
- \rightarrow suppressed at large Q^2

PT method

$$\frac{G_E}{G_M} = -\sqrt{\frac{\tau(1+\varepsilon)}{2\varepsilon}} \frac{P_T}{P_L}$$

 $ightarrow P_{T,L}$ recoil proton polarization in $\vec{e} \ p \rightarrow e \ \vec{p}$

Proton G_E/G_M ratio

Polarization Transfer (latest from JLab)

Puckett et al., PRL 104, 242301 (2010)

LT method

$$\sigma_R = G_M^2(Q^2) + \frac{\varepsilon}{\tau} G_E^2(Q^2)$$

- $\longrightarrow G_E$ from slope in ε plot
- \rightarrow suppressed at large Q^2

PT method

$$\frac{G_E}{G_M} = -\sqrt{\frac{\tau(1+\varepsilon)}{2\varepsilon}} \frac{P_T}{P_L}$$

 $ightharpoonup P_{T,L}$ recoil proton polarization in $\vec{e}~p
ightharpoonup e~\vec{p}$

QED radiative corrections

lacktriangle cross section modified by 1γ loop effects

* IR divergences cancel

Two-photon exchange

■ interference between Born and TPE amplitudes

contribution to cross section:

$$\delta^{(2\gamma)} = \frac{2\mathcal{R}e\left\{\mathcal{M}_0^{\dagger} \mathcal{M}_{\gamma\gamma}\right\}}{\left|\mathcal{M}_0\right|^2}$$

- "soft photon approximation" (used in all previous data analyses)
 - \longrightarrow approximate integrand in $\mathcal{M}_{\gamma\gamma}$ by values at γ^* poles
 - → neglect nucleon structure (no form factors)

Mo, Tsai (1969)

$$\mathcal{M}_{\gamma\gamma} = e^4 \int \frac{d^4k}{(2\pi)^4} \frac{N(k)}{D(k)}$$

where

$$N(k) = \bar{u}(p_3) \gamma_{\mu}(\not p_1 - \not k + m_e) \gamma_{\nu} u(p_1) \times \bar{u}(p_4) \Gamma^{\mu}(q - k) (\not p_2 + \not k + M) \Gamma^{\nu}(k) u(p_2)$$

and

$$D(k) = (k^2 - \lambda^2) ((k - q)^2 - \lambda^2)$$
$$\times ((p_1 - k)^2 - m^2) ((p_2 + k)^2 - M^2)$$

with λ an IR regulator, and e.m. current is

$$\Gamma^{\mu}(q) = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_2(q^2)$$
 on-shell approximation

Two-photon exchange

"exact" calculation of loop diagram (including hadron structure)

- \rightarrow few % magnitude, non-linear in ε , positive slope
- → will *reduce* Rosenbluth ratio
- → does not depend strongly on vertex form factors

Higher-mass intermediate states

■ lowest mass excitation is $P_{33} \triangleq (1232)^{\frac{4}{12}} P_{33} = P_{33} =$

$$\begin{array}{c} \boldsymbol{\longrightarrow} \text{ relativistic } \gamma^* \overset{\text{where}}{N\Delta} \overset{\text{vertex}}{\text{vertex}} & \overbrace{ \begin{array}{c} N(k) = \bar{u}(p_3) \\ N(k) = \bar{u}(p_3) \end{array} } \overset{\text{form factor } \frac{\Lambda_{\Delta}^4}{\sqrt{\lambda^2 - q^2}} \end{aligned} \\ N(k) = \bar{u}(p_3) \overset{\text{prodef}}{\gamma_{\mu}} (p_1 - k + m_e) \overset{\text{prodef}}{\gamma_{\nu}} u(p_1) \\ \Gamma_{\gamma\Delta \to N}^{\nu\alpha}(p,q) \equiv i V_{\Delta in}^{\nu\alpha}(p,q) = \underbrace{\bar{u}(p_3)}_{P\Delta} (q_2 - k) \overset{\text{prodef}}{\gamma_{\mu}} (q_2 - k + m_e) \overset{\text{prodef}}{\gamma_{\nu}} u(p_1) \\ 2M_{\Delta}^2 & \underbrace{ \left\{ g_1 - k + m_e \right\}_{\gamma_{\nu}} u(p_2 - k + m_e) \overset{\text{prodef}}{\gamma_{\nu}} u(p_1) \\ 2M_{\Delta}^2 & \underbrace{ \left\{ g_1 - k + m_e \right\}_{\gamma_{\nu}} u(p_2 - k + m_e) \overset{\text{prodef}}{\gamma_{\nu}} u(p_1) \\ 2M_{\Delta}^2 & \underbrace{ \left\{ g_1 - k + m_e \right\}_{\gamma_{\nu}} u(p_2 - k + m_e) \overset{\text{prodef}}{\gamma_{\nu}} u(p_1) \\ 2M_{\Delta}^2 & \underbrace{ \left\{ g_1 - k + m_e \right\}_{\gamma_{\nu}} u(p_2 - k + m_e) \overset{\text{prodef}}{\gamma_{\nu}} u(p_1) \\ 2M_{\Delta}^2 & \underbrace{ \left\{ g_1 - k + m_e \right\}_{\gamma_{\nu}} u(p_2 - k + m_e) \overset{\text{prodef}}{\gamma_{\nu}} u(p_1) \\ 2M_{\Delta}^2 & \underbrace{ \left\{ g_1 - k + m_e \right\}_{\gamma_{\nu}} u(p_2 - k + m_e) \overset{\text{prodef}}{\gamma_{\nu}} u(p_1) \\ 2M_{\Delta}^2 & \underbrace{ \left\{ g_1 - k + m_e \right\}_{\gamma_{\nu}} u(p_2 - k + m_e) \overset{\text{prodef}}{\gamma_{\nu}} u(p_2 - k$$

 \rightarrow coupling constants $\times ((p_1g_1 k_1)^2 - m_2 g_1 e_{tie}^2)((p_2 + k_1)^2 - M^2)$

with λ are gradient and α . Furrent is

$$\Gamma^{\mu}(q) = g_3 \gamma^{\mu} C_{P1}(q^{p}) b + \frac{i - \mu^{\nu} q_{\mu} 2}{2M} F_{2}(q^{2})$$

- higher-mass intermediate states
 - \rightarrow more model dependent, since couplings & form factors not as well known (especially at high Q^2)

Kondratyuk, Blunden, Melnitchouk, Tjon PRL **95** (2005) 172503

Kondratyuk, Blunden PRC **75** (2007) 038201

- \rightarrow dominant contribution from N
- \rightarrow Δ partially cancels N contribution

Global analysis

1.1 $^{\mathrm{Q}}_{\mathrm{M}} \sim ^{\mathrm{Q}}_{\mathrm{D}}$ 0.8 few % correction 0.7 1.0 8.0 ص LT data 0.6 0.4 1.0 0.4 10^{-1} 10¹ 10 Q² [GeV²]

final form factor results from global analysis including TPE corrections

$$\left\{ G_E, \frac{G_M}{\mu_p} \right\} = \frac{1 + \sum_{i=1}^n a_i \tau^i}{1 + \sum_{i=1}^{n+2} b_i \tau^i}$$

Parameter	G_M/μ_p	G_E
a_1 a_2 a_3 b_1 b_2 b_3	-1.465 1.260 0.262 9.627 0.000 0.000	3.439 -1.602 0.068 15.055 48.061 99.304
$b_4 \\ b_5$	11.179 13.245	0.012 8.650

Arrington, Melnitchouk, Tjon PRC 76 (2007) 035205

$$e^+/e^-$$
 comparison

- 1 γ (2 γ) exchange changes sign (invariant) under $e^+ \leftrightarrow e^-$
 - \rightarrow ratio of e^+p/e^-p cross sections sensitive to $\Delta(\varepsilon,Q^2)$

simultaneous e^+p/e^-p measurement using tertiary e^+/e^- beam to $Q^2 \sim 1\text{-}2~{\rm GeV}^2$ (Hall B experiment E04-116)

$$e^+/e^-$$
 comparison

■ 1 γ (2 γ) exchange changes sign (invariant) under $e^+ \leftrightarrow e^-$

Very preliminary Novosibirsk data

e+-p/e-- p cross section ratio

Arrington, Holt et al. (2010)

$$e^+/e^-$$
 comparison

- 1 γ (2 γ) exchange changes sign (invariant) under $e^+ \leftrightarrow e^$
 - strong indication of *inadequacy* of one-photon exchange approximation in *ep* scattering
 - significant role played by hadron structure dependent two-photon exchange corrections

Parity-violating electron scattering

Parity-violating e scattering

lacksquare Left-right polarization asymmetry in $ec{e}~p
ightarrow e~p~$ scattering

$$A_{\rm PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\left(\frac{G_F Q^2}{4\sqrt{2}\alpha}\right) (A_V + A_A + A_s)$$

→ measure interference between e.m. and weak currents

Born (tree) level

Parity-violating e scattering

lacksquare Left-right polarization asymmetry in $ec{e}\ p
ightarrow e\ p$ scattering

$$A_{\rm PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\left(\frac{G_F Q^2}{4\sqrt{2}\alpha}\right) (A_V + A_A + A_s)$$

-> measure interference between e.m. and weak currents

$$A_V = g_A^e \rho \left[(1 - 4\kappa \sin^2 \theta_W) - (\varepsilon G_E^{\gamma p} G_E^{\gamma n} + \tau G_M^{\gamma p} G_M^{\gamma n}) / \sigma^{\gamma p} \right]$$
 radiative corrections, including TBE

→ using relations between weak and e.m. form factors

$$G_{E,M}^{Zp} = (1 - 4\sin^2\theta_W)G_{E,M}^{\gamma p} - G_{E,M}^{\gamma n} - G_{E,M}^s$$

Parity-violating *e* scattering

lacksquare Left-right polarization asymmetry in $ec{e}~p
ightarrow e~p$ scattering

$$A_{\rm PV} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\left(\frac{G_F Q^2}{4\sqrt{2}\alpha}\right) (A_V + A_A + A_s)$$

-> measure interference between e.m. and weak currents

$$A_A = g_V^e \sqrt{\tau(1+\tau)(1-\varepsilon^2)} \ \widetilde{G}_A^{Zp} G_M^{\gamma p}/\sigma^{\gamma p}$$
 includes axial RCs + anapole term

$$A_s = -g_A^e \rho \left(\varepsilon G_E^{\gamma p} G_E^s + \tau G_M^{\gamma p} G_M^s\right)/\sigma^{\gamma p}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
 strange electric & magnetic form factors

Two-boson exchange corrections

 \blacksquare current PDG estimates computed at $Q^2 = 0$

Marciano, Sirlin (1980) Erler, Ramsey-Musolf (2003)

do not include hadron structure effects

Two-boson exchange corrections

parameterize corrections to asymmetry as

$$\begin{split} A_{\mathrm{PV}} &= (1+\delta)A_{\mathrm{PV}}^0 \equiv \left(\frac{1+\delta_{Z(\gamma\gamma)}+\delta_{\gamma(Z\gamma)}}{1+\delta_{\gamma(\gamma\gamma)}}\right)A_{\mathrm{PV}}^0 \\ \delta_{Z(\gamma\gamma)} &= \frac{2\Re e(\mathcal{M}_Z^*\mathcal{M}_{\gamma\gamma})}{2\Re e(\mathcal{M}_Z^*\mathcal{M}_{\gamma})} \quad \text{Born asymmetry} \\ \delta_{\gamma(Z\gamma)} &= \frac{2\Re e(\mathcal{M}_\gamma^*\mathcal{M}_{\gamma Z}+\mathcal{M}_\gamma^*\mathcal{M}_{Z\gamma})}{2\Re e(\mathcal{M}_Z^*\mathcal{M}_{\gamma})} \\ \delta_{\gamma(\gamma\gamma)} &= \frac{2\Re e(\mathcal{M}_\gamma^*\mathcal{M}_{\gamma\gamma})}{|\mathcal{M}_\gamma|^2} \end{split}$$

→ total TBE correction

$$\delta \approx \delta_{Z(\gamma\gamma)} + \delta_{\gamma(Z\gamma)} - \delta_{\gamma(\gamma\gamma)}$$

Two-boson exchange corrections

nucleon intermediate states

Tjon, Melnitchouk, PRL **100** (2008) 082003 Tjon, Blunden, Melnitchouk, PRC **79** (2009) 055201

- -> cancellation between $Z(\gamma\gamma)$ and $\gamma(\gamma\gamma)$ corrections, especially at low Q^2
- \longrightarrow dominated by $\gamma(Z\gamma)$ contribution

Effects on strange form factors

 \blacksquare global analysis of all PVES data at $Q^2 < 0.3 \; {\rm GeV}^2$

$$G_E^s = 0.0025 \pm 0.0182$$

 $G_M^s = -0.011 \pm 0.254$
at $Q^2 = 0.1 \text{ GeV}^2$

Young et al., PRL 97 (2006) 102002

including TBE corrections:

$$G_E^s = 0.0023 \pm 0.0182$$

 $G_M^s = -0.020 \pm 0.254$

at
$$Q^2 = 0.1 \text{ GeV}^2$$

Effects on strange form factors

 \blacksquare global analysis of all PVES data at $Q^2 < 0.3 \; {\rm GeV}^2$

$$G_E^s = 0.0025 \pm 0.0182$$

 $G_M^s = -0.011 \pm 0.254$
at $Q^2 = 0.1 \text{ GeV}^2$

Young et al., PRL 97 (2006) 102002

including TBE corrections:

$$G_E^s = 0.0023 \pm 0.0182$$
 $G_M^s = -0.020 \pm 0.254$

at
$$Q^2 = 0.1 \text{ GeV}^2$$

fixed mainly by ⁴He data ...
... TBE for ⁴He not yet included

in forward limit $A_{\rm PV}$ measures weak charge of proton Q_W^p

$$A_{\rm PV} \rightarrow \frac{G_F \, Q_W^p}{4\sqrt{2}\pi\alpha} t$$

$$t = (k - k')^2 \rightarrow 0$$

$$s = (k + p)^2$$

$$= M(M + 2E)$$

at tree level Q_W^p gives weak mixing angle

$$Q_W^p = 1 - 4\sin^2\theta_W$$

including higher order radiative corrections

$$Q_W^p = (1 + \Delta \rho + \Delta_e)(1 - 4\sin^2\theta_W(0) + \Delta_e')$$

"standard" electroweak vertex & other corrections

including higher order radiative corrections

$$Q_W^p = (1 + \Delta \rho + \Delta_e)(1 - 4\sin^2\theta_W(0) + \Delta_e')$$

 $+ \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z} \longleftarrow \text{box diagrams}$
 $= 0.0713 \pm 0.0008$
Erler et al., PRD 72, 073003 (2005)

including higher order radiative corrections

$$Q_W^p = (1 + \Delta \rho + \Delta_e)(1 - 4\sin^2\theta_W(0) + \Delta_e') + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z} \longleftarrow \text{box diagrams}$$
$$= 0.0713 \pm 0.0008$$
Erler et al., PRD 72, 073003 (2005)

- → WW and ZZ box diagrams dominated by short distances, evaluated perturbatively

- lacksquare what is energy dependence of vector h correction $\Box_{\gamma Z}^{V}$?
 - -> computed in forward limit using dispersion relations

- integration over E' < 0 corresponds to crossed-box, vector h contribution symmetric under $E' \longleftrightarrow -E'$
- \bigstar vanishes as $E \to 0$ (e.g. atomic parity violation) but what about at $\mathcal{O}(1 \text{ GeV})$ of Qweak experiment?

ightharpoonup imaginary part given by γZ interference structure functions

$$\Im m \, \Box_{\gamma Z}^{V}(E) = \frac{\alpha}{(s - M^{2})^{2}} \int_{W_{\pi}^{2}}^{s} dW^{2} \int_{0}^{Q_{\text{max}}^{2}} \frac{dQ^{2}}{1 + Q^{2}/M_{Z}^{2}} \times \left(F_{1}^{\gamma Z} + F_{2}^{\gamma Z} \frac{s (Q_{\text{max}}^{2} - Q^{2})}{Q^{2}(W^{2} - M^{2} + Q^{2})}\right)$$

- ★ little direct data on interference structure functions (neutral currents at HERA at very small x)
- \bigstar in parton model $F_2^{\gamma Z}=2x\sum_q e_q\,g_V^q\,(q+\bar q)=2xF_1^{\gamma Z}$
 - $ightharpoonup F_2^{\gamma Z} pprox F_2^{\gamma}$ good approximation at $low\ x$
 - \rightarrow provides upper limit at $large \ x \ (F_2^{\gamma Z} \lesssim F_2^{\gamma})$

- in resonance region use phenomenological input for F_2 , empirical SLAC fit for $R=\sigma_L/\sigma_T=(1+4M^2x^2/Q^2)F_2/(2xF_1)-1$
 - for transitions to I=3/2 states (e.g. Δ), CVC and isospin symmetry give $F_i^{\gamma Z}=(1+Q_W^p)\,F_i^{\gamma}$
 - for transitions to I=1/2 states, SU(6) wave functions predict $Z \& \gamma$ transition couplings equal to few percent
 - → include contributions from prominent resonances:

$$P_{33}(1232), D_{13}(1520), F_{15}(1680), F_{37}(1950)$$

in resonance region use phenomenological input for F_2 , empirical SLAC fit for $R=\sigma_L/\sigma_T=(1+4M^2x^2/Q^2)F_2/(2xF_1)-1$

lacksquare total $\Box_{\gamma Z}^{V}$ correction:

$$\Re e \prod_{\gamma Z}^{V} = 0.0047^{+0.0011}_{-0.0004}$$

or $6.6^{+1.5}_{-0.6}\,\%$ of uncorrected Q_W^p

$$Q_W^p = 0.0713(8) \rightarrow 0.0760^{+0.0014}_{-0.0009}$$

ightharpoonup significant shift in central value, errors within projected experimental uncertainty $\Delta Q_W^p = \pm 0.003$

- axial h correction $\prod_{\gamma Z}^A$ dominant γZ correction in atomic parity violation at very low (zero) energy
 - → computed by Marciano & Sirlin as sum of two parts:
 - ★ low-energy part approximated by Born contribution (elastic intermediate state)
 - ightharpoonup high-energy part (above scale $\Lambda \sim 1~{
 m GeV}$) computed in terms of scattering from free~quarks

$$\Box_{\gamma Z}^{A} = \frac{5\alpha}{2\pi} (1 - 4\sin^2\theta_W) \left[\ln\frac{M_Z^2}{\Lambda^2} + C_{\gamma Z}(\Lambda) \right]$$

$$\approx 0.0028$$
 short-distance | long-distance

Marciano, Sirlin, PRD **29**, 75 (1984) Erler et al., PRD **68**, 016006 (2003)

- axial h correction $\prod_{\gamma Z}^A$ dominant γZ correction in atomic parity violation at very low (zero) energy
 - → computed by Marciano & Sirlin as sum of two parts:
 - ★ low-energy part approximated by Born contribution (elastic intermediate state)
 - ightharpoonup high-energy part (above scale $\Lambda \sim 1~{
 m GeV}$) computed in terms of scattering from free~quarks

$$\square_{\gamma Z}^{A} = \frac{5\alpha}{2\pi} (1 - 4\sin^2\theta_W) \left[\ln \frac{M_Z^2}{\Lambda^2} + C_{\gamma Z}(\Lambda) \right]$$

★ repeat calculation for realistic (structure function) input

 \rightarrow imaginary part given by interference $F_3^{\gamma Z}$ structure function

$$\Im m \, \Box_{\gamma Z}^{A}(E) = \frac{\alpha}{(s - M^{2})^{2}} \int_{W_{\pi}^{2}}^{s} dW^{2} \int_{0}^{Q_{\text{max}}^{2}} \frac{dQ^{2}}{1 + Q^{2}/M_{Z}^{2}} \times \frac{g_{V}^{e}}{2g_{A}^{e}} \left(\frac{4ME}{W^{2} - M^{2} + Q^{2}} - 1\right) F_{3}^{\gamma Z}$$

with
$$g_A^e = -\frac{1}{2}$$
, $g_V^e = -\frac{1}{2}(1 - 4\sin^2\theta_W)$

 \bigstar axial *h* contribution *anti*symmetric under $E' \longleftrightarrow -E'$:

$$\Re e \, \square_{\gamma Z}^{A}(E) = \frac{2}{\pi} \int_{0}^{\infty} dE' \frac{E'}{E'^{2} - E^{2}} \, \Im m \, \square_{\gamma Z}^{A}(E')$$

 \bigstar imaginary part can only grow as $\log E' / E'$

- \blacksquare $F_3^{\gamma Z}$ structure function
 - \bigstar elastic part given by $G_M^p G_A^Z$
 - resonance part from parametrization of ν scattering data (Lalakulich-Paschos)
 - \triangle DIS part dominated by leading twist PDFs at small x (MSTW, CTEQ, Alekhin)

- \blacksquare $F_3^{\gamma Z}$ structure function
 - ightharpoonup elastic part given by $G_M^p G_A^Z$
 - resonance part from parametrization of ν scattering data (Lalakulich-Paschos)
 - \triangle DIS part dominated by leading twist PDFs at small x (MSTW, CTEQ, Alekhin)
- real part of $\prod_{\gamma Z}^{A}$ from dispersion relation

$$\Re e \; \square_{\gamma Z}^A(0) \; = \; 0.0006 \; + \; 0.0002 \; + \; 0.0025 \; = \; 0.0033$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
 elastic resonance DIS

 \rightarrow additional + 0.7% correction $Q_W^p = 0.0760 \rightarrow 0.0765$

$$Q_W^p = 0.0760 \rightarrow 0.0765$$

Blunden et al. (2010)

Summary

- Two-photon exchange corrections resolve most of Rosenbluth / polarization transfer G_E^p/G_M^p discrepancy
 - \rightarrow striking demonstration of limitation of one-photon exchange approximation in ep scattering

- Dramatic effect of $\gamma(Z\gamma)$ corrections at forward angles on proton weak charge, $\Delta Q_W^p \sim 6\text{--}7\%$
 - \longrightarrow would shift extracted weak angle by $\Delta \sin^2 \theta_W \approx 0.0013$
 - \rightarrow will be better constrained by direct measurement of $F_{1,2,3}^{\gamma Z}$ (e.g. in PVDIS at JLab)

The End

- Mo-Tsai: soft γ approximation
 - \longrightarrow integrand most singular when k=0 and k=q
 - \longrightarrow replace γ propagator which is not at pole by $1/q^2$
 - \longrightarrow approximate numerator $N(k) \approx N(0)$
 - → neglect all structure effects
- Maximon-Tjon: improved loop calculation
 - → exact treatment of propagators
 - \longrightarrow still evaluate N(k) at k=0
 - → first study of form factor effects
 - \longrightarrow additional ε dependence

- Blunden-WM-Tjon: exact loop calculation
 - \longrightarrow no approximation in N(k) or D(k)
 - → include form factors

$$\Re e \, \delta_{\gamma Z} = \Re e \, \square_{\gamma Z}^{V} / Q_W^p \approx 6\%$$

mostly from high-W ("Regge") contribution

- our formula for $\Im m \square_{\gamma Z}^V$ factor 2 larger (incorrect definition of parton model structure functions: "nuclear physics" vs. "particle physics" weak charges!)
- → GH omit factor (1-x) in definition of $F_{1,2}$ (spurious ~30% enhancement)
- \rightarrow GH use $Q_W^p \sim 0.05 \ cf. \sim 0.07$ (spurious ~40% enhancement)
- numerical agreement purely coincidental!