Electroweak tests and nucleon structure:

Ross D. Young

PacSPIN 2011, Cairns, Australia 21 June 2011

COEPP

ARC Centre of Excellence for Particle Physics at the Terascale

University of Adelaide

Electroweak tests and nucleon structure:

Spin searches for "new physics"

Ross D. Young

PacSPIN 2011, Cairns, Australia 21 June 2011

COEPP

ARC Centre of Excellence for Particle Physics at the Terascale

University of Adelaide

Electroweak tests and nucleon structure:

Ross D. Young

PacSPIN 2011, Cairns, Australia 21 June 2011

COEPP

ARC Centre of Excellence for Particle Physics at the Terascale

University of Adelaide

 "Dark Matter Results from 100 Live Days of XENON100 Data" arXiv:1104.2549

The New York Times

Particle Hunt Nets Almost Nothing; the Hunters Are Almost Thrilled April 13, 2011

Ozier Muhammad/The New York Times

"Dark Matter Results from 100 Live Days of XENON100 Data" arXiv:1104.2549

The New York Times

Ozier Muhammad/The New York Times

 "Dark Matter Results from 100 Live Days of XENON100 Data" arXiv:1104.2549

The New York Eimes

 "Dark Matter Results from 100 Live Days of XENON100 Data" arXiv:1104.2549

The New York Eimes

Today... convince you this CMSSM blob is too "high"

CMSSM: Constrained Minimal Supersymmetric Standard Model

WIMP-Nucleon cross section

• The Constrained MSSM (CMSSM):

Eur. Phys. J. C (2011) 71: 1634 DOI 10.1140/epjc/s10052-011-1634-1 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Implications of initial LHC searches for supersymmetry

O. Buchmueller¹, R. Cavanaugh^{2,3}, D. Colling¹, A. De Roeck^{4,5}, M.J. Dolan⁶, J.R. Ellis^{4,7}, H. Flächer⁸, S. Heinemeyer⁹, G. Isidori¹⁰, K. Olive^{11,a}, S. Rogerson¹, F. Ronga¹², G. Weiglein¹³

WIMP-Nucleon cross section

• The Constrained MSSM (CMSSM):

Eur. Phys. J. C (2011) 71: 1634 DOI 10.1140/epjc/s10052-011-1634-1 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Implications of initial LHC searches for supersymmetry

O. Buchmueller¹, R. Cavanaugh^{2,3}, D. Colling¹, A. De Roeck^{4,5}, M.J. Dolan⁶, J.R. Ellis^{4,7}, H. Flächer⁸, S. Heinemeyer⁹, G. Isidori¹⁰, K. Olive^{11,a}, S. Rogerson¹, F. Ronga¹², G. Weiglein¹³

WIMP-Nucleon cross section

• The Constrained MSSM (CMSSM):

Eur. Phys. J. C (2011) 71: 1634 DOI 10.1140/epjc/s10052-011-1634-1 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Implications of initial LHC searches for supersymmetry

O. Buchmueller¹, R. Cavanaugh^{2,3}, D. Colling¹, A. De Roeck^{4,5}, M.J. Dolan⁶, J.R. Ellis^{4,7}, H. Flächer⁸, S. Heinemeyer⁹, G. Isidori¹⁰, K. Olive^{11,a}, S. Rogerson¹, F. Ronga¹², G. Weiglein¹³

see eg. Ellis, Olive & Savage, PRD77:065026(2008)

Scalar neutralino–quark contact interaction

 $\mathcal{L}_{SI} = \sum_{i} \alpha_{3i} \bar{\chi} \chi \bar{q}_i q_i$ $\land \alpha_{3i}$

depend on model (eg. CMSSM) evolved down to low-energy scale

• Cross section $\sigma_{SI}^p \propto |f_p|^2$

see eg. Ellis, Olive & Savage, PRD77:065026(2008)

Scalar neutralino–quark contact interaction

 $\mathcal{L}_{SI} = \sum_{i} \alpha_{3i} \bar{\chi} \chi \bar{q}_{i} q_{i}$ depend on model (eg. CMSSM) evolved down to low-energy scale • Cross section $\sigma_{SI}^{p} \propto |f_{p}|^{2}$ $\frac{f_{p}}{M_{p}} = \sum_{q=u,d,s} \bar{\sigma}_{pq} \frac{\alpha_{3q}}{m_{q}} + \frac{2}{27} f_{TG}^{p} \sum_{q=c,b,t} \frac{\alpha_{3q}}{m_{q}}$

see eg. Ellis, Olive & Savage, PRD77:065026(2008)

Scalar neutralino–quark contact interaction

 $\mathcal{L}_{SI} = \sum_{i} \alpha_{3i} \bar{\chi} \chi \bar{q}_{i} q_{i}$ depend on model (eg. CMSSM) α_{3i} we had down to low-energy sca evolved down to low-energy scale • Cross section $\sigma_{SI}^p \propto |f_p|^2$ $\frac{f_p}{M_p} = \sum_{q=u,d,s} \bar{\sigma}_{pq} \frac{\alpha_{3q}}{m_q} + \frac{2}{27} f_{TG}^p \sum_{q=c,b,t} \frac{\alpha_{3q}}{m_q}$ Nucleon scalar quark content $\bar{\sigma}_{pq} = \frac{m_q}{M_N} \langle N | \bar{q}q | N \rangle$

see eg. Ellis, Olive & Savage, PRD77:065026(2008)

Scalar neutralino–quark contact interaction

 $\mathcal{L}_{SI} = \sum_{i} \alpha_{3i} \bar{\chi} \chi \bar{q}_{i} q_{i}$ depend on model (eg. CMSSM) α_{3i} we had down to low-energy sca evolved down to low-energy scale • Cross section $\sigma_{SI}^p \propto |f_p|^2$ $\frac{f_p}{M_p} = \sum_{q=u,d,s} \bar{\sigma}_{pq} \frac{\alpha_{3q}}{m_q} + \frac{2}{27} f_{TG}^p \sum_{q=c,b,t} \frac{\alpha_{3q}}{m_q}$ Nucleon scalar quark content $\bar{\sigma}_{pq} = \frac{m_q}{M_N} \langle N | \bar{q}q | N \rangle$

 $\Sigma_{\pi N} = M_N(\bar{\sigma}_{pu} + \bar{\sigma}_{pd}) = \begin{cases} 45 \pm 8 \,\text{MeV} & \text{Gasser et al. (1991)} \\ 64 \pm 7 \,\text{MeV} & \text{GWU (2002)} \end{cases}$

see eg. Ellis, Olive & Savage, PRD77:065026(2008)

Scalar neutralino–quark contact interaction

q=u,d,s

 $\mathcal{L}_{SI} = \sum_{i} \alpha_{3i} \bar{\chi} \chi \bar{q}_{i} q_{i}$ depend on model (eg. CMSSM) α_{3i} we had down to low-energy sca evolved down to low-energy scale • Cross section $\sigma_{SI}^p \propto |f_p|^2$ $\frac{f_p}{M_p} = \sum_{q=u,d,s} \bar{\sigma}_{pq} \frac{\alpha_{3q}}{m_q} + \frac{2}{27} f_{TG}^p \sum_{q=c,b,t} \frac{\alpha_{3q}}{m_q}$ Nucleon scalar quark content $\bar{\sigma}_{pq} = \frac{m_q}{M_N} \langle N | \bar{q}q | N \rangle$ $\Sigma_{\pi N} = M_N(\bar{\sigma}_{pu} + \bar{\sigma}_{pd}) = \begin{cases} 45 \pm 8 \,\text{MeV} & \text{Gasser et al. (1991)} \\ 64 \pm 7 \,\text{MeV} & \text{GWU (2002)} \end{cases}$

 $\mathcal{L}_{\pi N} = M_N(\sigma_{pu} + \sigma_{pd}) = \begin{cases} 64 \pm 7 \,\text{MeV} & \text{GWU} (2002) \end{cases}$ $f_{TG}^p = 1 - \sum \bar{\sigma}_{pq} & \text{Trace anomaly:} \end{cases}$

Shifman, Vainstein & Zakharov, PLB(1978)

The missing ingredient

- Strangeness scalar content $\ ar{\sigma}_{ps} = m_s \langle N | ar{s}s | N
 angle / M_N$
- Commonly used quantity

$$\sigma_0 \equiv \hat{m} \langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle$$

some algebra

$$\Rightarrow \bar{\sigma}_{ps} = \frac{m_s}{2\hat{m}} \left(\Sigma_{\pi N} - \sigma_0 \right) / M_N$$

- Use Feynman-Hellmann relation $m_q \langle N | \bar{q}q | N \rangle = m_q \frac{\partial M_N}{\partial m_q}$
- First-order breaking in SU(3) baryon masses

$$\sigma_0 \simeq \hat{m} \frac{m_{\Xi} + m_{\Sigma} - 2m_N}{m_s - \hat{m}} = 26 \,\mathrm{MeV}$$

• With higher-order terms in chiral expansion

$$\sigma_0 \simeq 36 \pm 7 \,\mathrm{MeV} \qquad \Rightarrow \sigma_{ps} = \begin{cases} 110 \pm 130 \,\mathrm{MeV} & [\Sigma_{\pi N}(1)] \\ 350 \pm 120 \,\mathrm{MeV} & [\Sigma_{\pi N}(2)] \end{cases}$$

Lattice QCD determination

	N	Λ	\sum	[I]
$\bar{\sigma}_{Bl}$	0.050(9)(1)(3)	0.028(4)(1)(2)	0.0212(27)(1)(17)	0.0100(10)(0)(4)
$\bar{\sigma}_{Bs}$	0.033(16)(4)(2)	0.144(15)(10)(2)	0.187(15)(3)(4)	0.244(15)(12)(2)

Young & Thomas, PRD(2010)

πN Sigma Term (Expt):GL: Gasser & Leutwyler (1991)GW: Pavan et al. (2001)

Octet Masses & Breaking: Gasser (1981)

NK: Nelson & Kaplan (1987) BM: Borasoy & Meissner (1997)

3-flavour Lattice QCD: YT: Young & Thomas (2009) TF: Toussaint & Freeman (2009)

Lattice QCD determination

	N	Λ	\sum	[I]
$\bar{\sigma}_{Bl}$	0.050(9)(1)(3)	0.028(4)(1)(2)	0.0212(27)(1)(17)	0.0100(10)(0)(4)
$\bar{\sigma}_{Bs}$	0.033(16)(4)(2)	0.144(15)(10)(2)	0.187(15)(3)(4)	0.244(15)(12)(2)

Young & Thomas, PRD(2010)

πN Sigma Term (Expt):GL: Gasser & Leutwyler (1991)GW: Pavan et al. (2001)

Octet Masses & Breaking: Gasser (1981) NK: Nelson & Kaplan (1987) BM: Borasoy & Meissner (1997)

3-flavour Lattice QCD: YT: Young & Thomas (2009) TF: Toussaint & Freeman (2009)

> Strange scalar content is small

2+1-flavour lattice results

Dynamical : $m_u = m_d \& m_s$

Octet baryon masses

 State-of-the-art lattice results approaching the physical domain

Chiral EFT: SU(3) expansion to $m_q^{3/2}$

- Chiral EFT is low-energy effective theory of QCD
- Only way to perform chiral extrapolation consistent with the chiral symmetries and symmetry breaking of QCD

Octet baryon masses

- 4 free parameters (at this order)
 - 1 Overall mass scale
 - 3 Linear perturbation in quark masses

Chiral nonanalytic contributions come with *model-independent* coefficients

Ir

$$\frac{\pi, K, \eta}{\text{Octet}} + \frac{\pi, K, \eta}{\text{Decuplet}}$$

 M_0

 $\alpha_M, \beta_M, \sigma_M$

nputs:
$$g_A = 1.267, D \simeq \frac{3}{5}g_A, F \simeq \frac{2}{5}g_A, C \simeq -2D, f_\pi \simeq 0.087 \,\text{GeV}$$

 $\pm 15\% \pm 15\% \pm 15\% \pm 15\% \pm 5\%$

Corrections to the linear expansion

Poorly converging

Finite Range Regularization (FRR)

- Suppress ultraviolet contributions to loop integrals from scale beyond the validity of the EFT
- Maintain renormalization such that scale dependence is removed to working order

Text book
$$\frac{2}{\pi} \int dk \frac{k^4}{k^2 + m^2} \xrightarrow{R} m^3$$
FRR
$$\frac{2}{\pi} \int dk \frac{k^4}{k^2 + m^2} \theta(\Lambda^2 - k^2) \xrightarrow{R} m^3 \frac{2}{\pi} \arctan \frac{\Lambda}{m}$$

Donoghue, Holstein & Borasoy, PRD59,036002(1999) Leinweber *et al.*, PRD61,074502(2000) Young, Leinweber & Thomas, PPNP 50,399(2003) Leinweber, Thomas & Young, PRL92,242002(2004)

Lattice results "choose" regularisation scale

• Lattice results prefer a regularisation scale of order 1 GeV (Dipole)

New development: preferred scale is **not** input from phenomenology

Young & Thomas, PRD(2010)

Fit to 8 LHPC points

Young & Thomas, PRD(2010)

Fit to 8 PACS-CS points

PACS-CS: 2+1-flavour simulation; different action discretization to LHPC

PACS-CS have an additional run with a different strange quark mass

Young & Thomas, PRD(2010)

Strange-quark mass dependence

Sigma terms from lattice QCD

Updated cross sections for benchmark models

Ellis, Olive & Savage PRD(2008)

Strong dependence on sigma term from poorly known strangeness

$$\bar{\sigma}_{ps} = \frac{m_s}{2\hat{m}} \left(\Sigma_{\pi N} - \sigma_0 \right)$$

Giedt, Thomas & Young, PRL(2009)

Significant reduction in uncertainty

Cross-section reduced by order of magnitude from XENON100 figure

XENON100

• Shift the "blob" down

XENON100

• Shift the "blob" down

XENON100

• Shift the "blob" down

Combined global analysis

PV Electron-Quark Couplings

Constrained by low-energy data!

$$\mathcal{L}_{\rm SM}^{\rm PV} = -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_5 e \sum_{q} C_{1q}^{\rm SM} \bar{q} \gamma^{\mu} q$$

C1q Quark-Vector couplings (electron-axial)

PV Asymmetry

Proton

Neutral-weak form factors

Assume charge symmetry:

$$4G_{E,M}^{pZ} = (1 - 4\sin^2\theta_W)G_{E,M}^{p\gamma} - G_{E,M}^{n\gamma} - G_{E,M}^{s}$$

Proton weak charge Strangeness
$$Q_{\text{weak}}^p = -2(2C_{1u} + C_{1d})$$

PV Asymmetry

Proton

Neutral-weak form factors

Assume charge symmetry:

$$4G_{E,M}^{pZ} = (1 - 4\sin^2\theta_W)G_{E,M}^{p\gamma} - G_{E,M}^{n\gamma} - G_{E,M}^{s}$$

Proton weak charge Strangeness
$$Q_{\text{weak}}^{p} = -2(2C_{1u} + C_{1d})$$

Use data to constrain the parameters of the electroweak theory

Proton Extrapolation

New update on C1q couplings

New update on C1q couplings

New update on C1q couplings

Limits on new physics

- One may be sensitive to a new heavy Z' boson contributing to a new contact interaction
- Imagine a new Z' which has exactly the same couplings to the SM fermions and mass $M_{Z'} \gg M_Z$
 - Simplest Kaluza-Klein excitation from a compact 5th dimension (circle radius *R*)

$$M_{Z_1}^2 = M_Z^2 + \frac{1}{R^2}$$

95% CL $M_{Z_1} > 1.04 \,\text{TeV}$ $R < 2 \times 10^{-4} \,\text{fm}$ ~200 zeptometres

Model-independent limits

 $\mathcal{L}_{\rm SM}^{\rm PV} = -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_5 e \sum_{q} C_{1q}^{\rm SM} \bar{q} \gamma^{\mu} q$ $\mathcal{L}_{\rm NP}^{\rm PV} = \frac{g^2}{4\Lambda^2} \bar{e} \gamma_{\mu} \gamma_5 e \sum_{q} h_V^q \bar{q} \gamma^{\mu} q$

Erler et al., PRD68(2003)

Model-independent limits

Lower bound on NP scale

Lower bound on NP scale

Reminder: Limits on ratio Λ/g

Weak coupling: eg. new perturbative Z'

$g \sim 0.1 \Rightarrow$ low mass limit (also low yield in colliders)

Reminder: Limits on ratio Λ/g

Weak coupling: eg. new perturbative Z'

$g \sim 0.1 \Rightarrow$ low mass limit (also low yield in colliders)

"Typical" coupling: eg. leptoquarks

 $g \sim 1 \; \Rightarrow \;$ ball park TeV scale

Reminder: Limits on ratio Λ/g

Weak coupling: eg. new perturbative Z'

 $g \sim 0.1 \Rightarrow$ low mass limit (also low yield in colliders)

"Typical" coupling: eg. leptoquarks

 $g \sim 1 \; \Rightarrow \;$ ball park TeV scale

Strong coupling: eg. compositeness

 $g \sim \sqrt{4\pi} \Rightarrow \text{ large mass reach}$ strength of precision tests

Future: Q-weak Experiment

Precise measurement of the proton's weak charge in PVES

 $Q_{\text{weak}}^p = -2(2C_{1u} + C_{1d})$ $Q^2 = 0.03 \,\text{GeV}^2, \ \theta = 8^\circ$

• At low energy and small scattering angle:

Impact of Q-weak

Impact of Q-weak (assuming SM)

Impact of Q-weak (assuming SM)

Q-weak constrains new physics to beyond 2 TeV

What about Q-weak discovery?

Assume Q-weak takes central value of current measurements

