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1. Introduction

Heavy flavor physics is a good area to

I Find CP violation in heavy hadron decays

I Measure parameters in SM accurately

I Look for new physics beyond SM

I Extract non-perturbative QCD information

Many heavy mesons and baryons have been observed.
Comparing with heavy mesons, heavy baryons have been less
studied both experimentally and theoretically.

Most heavy baryons with more than one heavy quarks have
not been observed.



Some new heavy hadron states were measured by BaBar
(SLAC), Belle (KEKB), CDF, D0, SELEX, FOCUS
(Fermilab), CLEO (Cornell) etc. For example:

I excited states of B mesons: B∗2 (5747)(2+), B∗s2(5840)(2+)

I excited states of heavy baryons containing one c
quark：：：Λc(2880)(5/2+), Λc(2940) (JP undetermined),
Ξc(2980, 3080) (JP undetermined), Ξc(3055, 3123) (JP

undetermined)

I heavy baryons containing one b quark：：：Σb, Σ∗b, Ξb, Ωb

I heavy baryons containing two c quarks：：： Ξcc(3520)
(reported by SELEX，，，not observed by BaBar, Belle,
FOCUS, JP undetermined)



In recent years, some experimental results for decays:

I Λb’s lifetime by CDF, D0

I Λb → Λc semileptonic decay by DELPHI

I Λb → Λcπ by CDF

I Γ(Σ∗c → Λcπ) and Γ(Σc → Λcπ) by CLEO and FOCUS

I Γ(Σ∗b → Λbπ) and Γ(Σb → Λbπ) by CDF in 2010

In the future we expect more and more data. Experiments
need predictions.



In QCD, hadrons with structures like glueball (gg,ggg),
hybrid (qqg)，，，multiple quark states (quark numbers are
bigger than 3)，，，molecular states of hadrons may exist.

In recent years some possible exotic states were observed,
for instance, D∗

s0(2317)±, Ds1(2460)±, X (3872). They may
have structures which are not those of traditional mesons
and baryons. There are many theoretical works to study their
structures with different models (like potential model, QCD
sum rules, chiral perturbation theory).



Heavy quark symmetry SU(2)f × SU(2)s simplifies heavy
hadron processes like B → D(D∗), Λb → Λc . In the heavy
quark limit only one form factor (Isgur-Wise function) is
needed. This helps to extract nonperturbative QCD
information.

QCD factorization improves theoretical treatment of
two-body nonleptonic decays of B-meson, B → M1M2. It
provides a way to calculate QCD corrections to conventional
factorization. It is shown that when mb À ΛQCD , QCD
corrections to conventional factorization can be calculated
systematically in terms of short-distance coefficients and
light-cone distribution amplitudes of mesons.

For heavy baryon decays, QCD factorization has been studied
much less.



2. Bethe-Salpeter approach for heavy baryons and
exotic states

Consider a heavy baryon with one heavy quark. When
mQ →∞, due to SU(2)f × SU(2)s , the light degrees of
freedom is blind to the quantum numbers of the heavy
quark, hence have good quantum numbers, including angular
momentum and isospin.

Therefore, we assume that a heavy baryon is composed of a
heavy quark and a light diquark. This is our underlying
assumption. In this picture: Three body system → two body
system

J = 1
2 + j (J: total spin of heavy baryon; j: spin of the brown

muck)

ΛQ : j = 0. Isospin of light diquark = 0 in order to guarantee
that the total wave function of the hadron is antisymmetric.



ω
(∗)
Q (ω = Σ, Ξ, Ω): j = 1. Isospin of light diquark = 1.

J = 1
2 (ΣQ) or 3

2 (Σ∗Q)

The light degrees of freedom of ω
(∗)
Q belong to a 6

representation of flavor SU(3). Taking Q = b as an example,

ω
(∗)
b includes Σ

(∗)+,0,−
b , Ξ

(∗)0,−
b and Ω

(∗)−
b .

In a baryon with two heavy quarks, these two heavy quarks
are reasonably bound into a color-antitriplet heavy diquark
which radius is much smaller than the scale 1/ΛQCD . The
light quark moves in the color field induced by the heavy
diquark. Then the three body system is also reduced to a
two body system.

Two heavy quarks with the same flavor (bb or cc) can only
constitute an axial-vector diquark with spin 1. Two quarks
with different flavors (bc) can constitute both a scalar
diquark and an axial-vector diquark.



Bethe-Salpeter (BS) equation is a formally exact equation to
describe the relativistic bound state. In the heavy quark
limit, we established BS equations for the heavy baryons
with either one heavy quark or two heavy quarks in the
diquark picture.

The kernel of the BS equation describes the interaction
between the constituents of the bound state. Due to its
nonperturbative nature, usually phenomenological models
have to be applied for the kernel. In our series of work we
assume the kernel containing scalar confinement and one
gluon exchange terms motivated by potential model.



In a baryon containing one heavy quark the light diquark is
not point-like, we introduce a few form factors to describe
the effects of the diquark’s structure.

In a baryon containing two heavy quarks, the heavy diquark
is not really a point object and its radius is enhanced by
lnmQ with respect to 1/mQ (Coulomb potential), so in the
kernel we also introduce a few form factors for the effective
vertex of the heavy diquark coupling to gluon to reflect the
inner structure of the heavy diquark.

In order to study the structure of the diquarks, we also
established the BS equations for the diquarks, with the
kernel also including scalar confinement and one gluon
exchange terms.



Take ΛQ as an example. The BS wave function of ΛQ (QS[ud ])

χ(x1, x2,P) = 〈0|Tψ(x1)ϕ(x2)|ΛQ(P)〉,

obeys the BS equation

χP(p) = SF (λ1P + p)

∫
d4q

(2π)4
K (P, p, q)χP(q)SD(−λ2P + p).

In the limit mQ →∞, χP(p) = φP(p)uΛQ
(v , s) (φP(p) is a

scalar function). Motivated by potential model and heavy
quark spin symmetry we assume the kernel

−iK = I ⊗ IV1 + vµ ⊗ (p2 + p′2)
µV2,

V1: scalar confinement, V2: one gluon exchange diagram.



In the convariant instantaneous approximation

Ṽ1 =
8πκ

[(pt − qt)2 + µ2]2

−(2π)3δ3(pt − qt)

∫
d3k

(2π)3
8πκ

(k2 + µ2)2
,

Ṽ2 = −16π

3

α2
seff Q2

0

[(pt − qt)2 + µ2][(pt − qt)2 + Q2
0 ]

.

The BS equation was solved numerically by discretizing the
integration region (0, ∞) into n pieces (n is chosen to be
sufficiently large) and solving the eigenvalue equation.



Numerical results for BS wave function:
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Figure: Numerical results for φ̃P(pt) ≡
∫

dpl

2π φP(p). The solid (dashed)
line corresponds to mD = 0.7GeV and κ = 0.02(0.1)GeV3, respectively.
The dotted (dot-dashed) line corresponds to κ = 0.04GeV3 and
mD = 0.65(0.8)GeV, respectively.



I 1/mQ corrections for ΛQ were also studied.

I ω
(∗)
Q can be studied in a similar way. It is more

complicated. The BS wave function includes three scalar
functions.

Λb → Λc transition matrix is related to the BS wave functions
of Λb and Λc :

〈Λc(v
′)|Jµ|Λb(v)〉 =

∫
d4p

(2π)4
χ̄P′(p

′)γµ(1− γ5)χP(p)S−1
D (p2),

W

p2 p2′

p1 p1′

P P′



I Semileptonic decays and nonleptonic decays Λb → Λc (to
order O(1/mQ))

Table: Predictions for the decay rates for Λb → Λc l ν̄, in units 1010s−1 for
κ = 0.02GeV3 (0.10GeV3), Vcb = 0.045

mD(GeV) Γ0 Γ1/mQ
Γ1/mQ+QCD

0.65 4.77 (7.20) 4.26 (6.62) 3.10 (4.76)
0.70 5.12 (7.12) 4.60 (6.56) 3.34 (4.72)
0.75 5.40 (7.02) 4.89 (6.50) 3.54 (4.67)

XHG and T. Muta, Phys. Rev. D54 (1996) 4629
XHG, A.W. Thomas, and A.G. Williams, Phys. Rev. D61
(2000) 116015

Experimental data (PDG, by Delphi in 2004):
Γ = 2.5 ∼ 5.1× 1010s−1. Consistent.



I Nonleptonic decays Λb → Λc P (V )

Table: Decay rates (in units 1010s−1a2
1), and up-down asymmetry

parameters for Λb → ΛcP(V ) for mD = 0.7GeV with κ = 0.02GeV3

(0.10GeV3)

Product Γ0 Γ1/mQ
Γ1/mQ+QCD αtotal

Λ+
c π− 0.30 (0.56) 0.36 (0.67) 0.29 (0.55) -1.00

Λ+
c ρ− 0.44 (0.78) 0.51 (0.94) 0.42 (0.77) -0.89

Λ+
c D−

s 1.03 (1.57) 1.16 (1.81) 1.02 (1.59) -0.98
Λ+

c D∗−
s 0.78 (1.17) 0.89 (1.35) 0.76 (1.15) -0.38

Λ+
c K− 0.022 (0.039) 0.026 (0.048) 0.021 (0.039) -1.00

Λ+
c K ∗− 0.023 (0.041) 0.027 (0.049) 0.022 (0.040) -0.85

Λ+
c D− 0.037 (0.057) 0.042 (0.066) 0.036 (0.057) -0.98

Λ+
c D∗− 0.027 (0.041) 0.031 (0.048) 0.026 (0.040) -0.42

XHG, A.W. Thomas, and A.G. Williams, Phys. Rev. D61
(2000) 116015
Experimental data (PDG, by CDF in 2007):
Γ(Λ+

c π−) = (0.39 ∼ 0.89)× 1010s−1.
Consistent (taking a1(= c1 + 1/Neff

c c2) ∼ 1).



I Nonleptonic decays Ωb → Ω
(∗)
c P (V )

Table: Predictions for decay widths and asymmetry parameters for

Ωb → Ω
(∗)
c P (V ) for mD = 1.20GeV with κ = 0.02GeV3 (0.10GeV3).

Process Γ(1010s−1) α

Ω−b → Ω0
cπ
− 0.052a2

1 (0.154a2
1) −0.67 (−0.70)

Ω−b → Ω0
cD

−
s 0.261a2

1 (0.592a2
1) −0.56 (−0.58)

Ω−b → Ω0
cρ
− 0.073a2

1 (0.207a2
1) −0.68 (−0.71)

Ω−b → Ω0
cD

∗−
s 0.115a2

1 (0.245a2
1) −0.73 (−0.74)

Ω−b → Ω∗0c π− 0.046a2
1 (0.133a2

1) −0.61 (−0.58)

Ω−b → Ω∗0c D−
s 0.165a2

1 (0.370a2
1) −0.54 (−0.52)

Ω−b → Ω∗0c ρ− 0.134a2
1 (0.354a2

1) 0.59 (0.59)

Ω−b → Ω∗0c D∗−
s 0.462a2

1 (0.960a2
1) 0.31 (0.31)

XHG, A.W. Thomas, and A.G. Williams, Phys. Rev. D59
(1999) 116007



I Average kinetic energy of heavy quark in Λb (µ2
π)

Interesting: contribute to inclusive semileptonic decays of
heavy hadrons (Λb → Xl ν̄) when contributions from higher
order terms in 1/mb are considered. 1/m2

b corrections are
characterized by µ2

π.

→ influence determination of CKM matrix elements Vub and
Vcb. No direct measurement of µ2

π yet.

µ2
π =

〈ΛQ |h̄v (iD⊥)2hv |ΛQ〉
2M

,

Result: µ2
π : 0.25 ∼ 0.95GeV 2 in variation ranges of model

parameters.

XHG and H.-K. Wu，，， Phys. Lett. B654 (2007) 97



µ2
π(B) = 0.401± 0.040GeV 2 (obtained by fitting data). No

direct experimental measurement of µ2
π for Λb.

Expanding heavy hadron masses to 1/mQ →

µ2
π(Λb)− µ2

π(B)

=
2M(B)M(D)

M(B)−M(D)
{[M(Λc)−M(D)avg]− [M(Λb)−M(B)avg]}.

Assuming that 1/m2
Q terms in

[M(Λc)−M(D)avg]− [M(Λb)−M(B)avg] is of order Λ̄3/m2
Q to

make a conservative estimate, one may expect µ2
π(Λb) to be

in the range 0.27GeV 2 ∼ 0.58GeV 2. Consistent with our
result, 0.25 ∼ 0.95GeV 2.

Conversely, one may give a rough constraint on the ranges of
the parameters in the BS model from the range of µ2

π(Λb). κ :
0.02GeV 3 ∼ 0.08GeV 3 (mD = 0.65GeV ); 0.02GeV 3 ∼ 0.06GeV 3

(mD = 0.7GeV ); 0.02GeV 3 ∼ 0.04GeV 3 (mD = 0.8GeV ).



I Σ
(∗)
Q → ΛQ + π (BS equation for light diquark)

Γexp(Σ∗c) ≈ (13 - 18) MeV (PDG, CLEO and FOCUS in 97, 01,
05)
Γexp(Σc) ≈ (1.8 - 2.6) MeV (PDG, CLEO in 01, 05)

The light diquark in Σ
(∗)
Q emits a very soft pion, then

combines with the spectator heavy quark to form ΛQ .

Q Q

ϕ φ

Σ
(∗)
Q ΛQ

π

The vertex of the pion, the scalar diquark, and axial-vector
diquark is calculated with the obtained BS wave functions for
the diquarks and with the aid of PCAC, the reduction
formula, and the low energy effective Lagrangian for the
diquarks and the soft pion.



Results: in the range of model parameters, the decay widths

for Σ
(∗)
Q → ΛQ + π :

Γ(Σc) ≈ (2.77 - 6.61) MeV , Γ(Σ∗c) ≈ (11.69 - 18.88) MeV ,

Γ(Σb) ≈ (6.73 - 13.45) MeV , Γ(Σ∗b) ≈ (10.00 - 17.74) MeV .

XHG, X.-H. Wu, and K.-W. Wei, Phys. Rev. D77 (2008)
036003

Nearly consistent with data for Γ(Σ
(∗)
c ). (1/mc corrections are

larger than 1/mb corrections.)

New results from CDF in 2010: the widths of Σb and Σ∗b
were measure for the first time. Γ(Σ+

b ) = 9.2+3.8+1.0
−2.9−1.1,

Γ(Σ∗+b ) = 10.4+2.7+0.8
−2.2−1.2.

Consistent with our predictions.



I Heavy quark distribution functions in ΛQ and ω
(∗)
Q

Heavy baryon |B〉 with momentum P+ = 1√
2
(P0 + P3) and

P⊥ = 0. The twist-2 heavy quark distribution function in
A+ = 0 gauge is defined as:

Q(α) =
√

2P+

∫
dx−

2π
e−iαP+x−〈B|T ψ̄Q(x−)γ+ψQ(0)|B〉, (1)

where γ+ = 1√
2
(γ0 + γ3), ψQ(x−) denotes ψQ(x) at

x+ = x⊥ = 0.

Q(α) measures probability to find Q with “plus” momentum
fraction α.

With the BS wave functions the heavy quark distribution
functions were obtained numerically at low energy scale ν0 (a
few hundred MeV).
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Figure: ΛQ , mQ →∞, ν0. Solid (dot) lines: mD = 0.70GeV and
κ = 0.02GeV3 (κ = 0.10GeV3). Dashed (dot dashed) lines:
κ = 0.06GeV3 and mD = 0.65GeV (mD = 0.75GeV).

XHG, A.W. Thomas, and A.G. Williams, Phys. Rev. D64
(2001) 096004
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Figure: ΣQ , mQ →∞, ν0. Solid (dot) lines: mD = 0.95GeV and
κ = 0.02GeV3 (κ = 0.10GeV3). Dashed (dot dashed) lines:
κ = 0.06GeV3 and mD = 0.90GeV (mD = 1.00GeV).

XHG, A.W. Thomas, and A.G. Williams, Phys. Rev. D64
(2001) 096004



From these figures we can see that:

I For different heavy baryons with the same heavy quark
flavor the shapes of the heavy quark distribution
functions are rather similar.

I There is an obvious peak at some “plus” momentum
fraction carried by the heavy quark, α0, and this peak is
much sharper for b-baryons than c-baryons.

I α0 is much closer to 1 for b-baryons than c-baryons.

I α0 is a little closer to 1 for ΛQ than ΣQ .



QCD running: ν0 is evolved to higher scale, ν, by Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. The
distinction between b-quark and c-quark distribution
functions is still obvious at high ν2.
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Figure: ΛQ , mQ →∞, ν2 = 10GeV2, ν2
0 = 0.25GeV2.



I Non-leptonic decays of doubly heavy baryons emitting a
pseudo-scalar meson

The BS equations for the heavy diquarks and the heavy
baryons are established respectively. With the kernel
containing one gluon exchange and linear confinement terms
the BS wave functions for the heavy diquarks and the heavy
baryons are solved out numerically. Then the non-leptonic
decay widths of the doubly heavy baryons are predicted.

M.-H. Weng, X.-H. Guo, and A.W. Thomas, Phys. Rev.
D83 (2011) 056006



Table: Predictions for the non-leptonic decay widths for the doubly heavy
baryons emitting π and K mesons (in units of 10−14a2

1GeV )

Γ(Ξ
∗ 1

2

bb → Ξ
1
2

bcπ) 0.343∼0.362 Γ(Ω
∗ 1

2

bb → Ω
1
2

bcπ) 0.591∼0.607

Γ(Ξ
∗ 1

2

bb → Ξ
∗ 1

2

bc π) 0.205∼0.211 Γ(Ω
∗ 1

2

bb → Ω
∗ 1

2

bc π) 0.380∼0.381

Γ(Ξ
∗ 3

2

bb → Ξ
∗ 3

2

bc π) 4.110∼4.234 Γ(Ω
∗ 3

2

bb → Ω
∗ 3

2

bc π) 7.606∼7.643

Γ(Ξ
1
2

bc → Ξ
∗ 1

2
cc π) 0.848∼1.101 Γ(Ω

1
2

bc → Ω
∗ 1

2
cc π) 1.708∼1.876

Γ(Ξ
∗ 1

2

bc → Ξ
∗ 1

2
cc π) 0.415∼0.587 Γ(Ω

∗ 1
2

bc → Ω
∗ 1

2
cc π) 0.965∼1.019

Γ(Ξ
∗ 3

2

bc → Ξ
∗ 3

2
cc π) 8.626∼12.110 Γ(Ω

∗ 3
2

bc → Ω
∗ 3

2
cc π) 19.435∼20.529

Γ(Ξ
∗ 1

2

bb → Ξ
1
2

bcK ) 0.265∼0.267 Γ(Ω
∗ 1

2

bb → Ω
1
2

bcK ) 0.469∼0.482

Γ(Ξ
∗ 1

2

bb → Ξ
∗ 1

2

bc K ) 0.165∼0.171 Γ(Ω
∗ 1

2

bb → Ω
∗ 1

2

bc K ) 0.307∼0.308

Γ(Ξ
∗ 3

2

bb → Ξ
∗ 3

2

bc K ) 3.317∼3.425 Γ(Ω
∗ 3

2

bb → Ω
∗ 3

2

bc K ) 6.150∼6.170

Γ(Ξ
1
2

bc → Ξ
∗ 1

2
cc K ) 0.649∼0.845 Γ(Ω

1
2

bc → Ω
∗ 1

2
cc K ) 1.313∼1.557

Γ(Ξ
∗ 1

2

bc → Ξ
∗ 1

2
cc K ) 0.328∼0.466 Γ(Ω

∗ 1
2

bc → Ω
∗ 1

2
cc K ) 0.767∼0.806

Γ(Ξ
∗ 3

2

bc → Ξ
∗ 3

2
cc K ) 6.810∼9.612 Γ(Ω

∗ 3
2

bc → Ω
∗ 3

2
cc K ) 15.436∼16.237



Table: Predictions for the non-leptonic decay widths for the doubly heavy
baryons emitting D and Ds mesons (in units of 10−14a2

1GeV )

Γ(Ξ
∗ 1

2

bb → Ξ
1
2

bcD) 0.818∼0.832 Γ(Ω
∗ 1

2

bb → Ω
1
2

bcD) 1.404∼1.466

Γ(Ξ
∗ 1

2

bb → Ξ
∗ 1

2

bc D) 0.693∼0.741 Γ(Ω
∗ 1

2

bb → Ω
∗ 1

2

bc D) 1.292∼1.319

Γ(Ξ
∗ 3

2

bb → Ξ
∗ 3

2

bc D) 13.885∼14.834 Γ(Ω
∗ 3

2

bb → Ω
∗ 3

2

bc D) 25.873∼26.419

Γ(Ξ
1
2

bc → Ξ
∗ 1

2
cc D) 1.136∼1.528 Γ(Ω

1
2

bc → Ω
∗ 1

2
cc D) 2.434∼2.552

Γ(Ξ
∗ 1

2

bc → Ξ
∗ 1

2
cc D) 0.945∼1.464 Γ(Ω

∗ 1
2

bc → Ω
∗ 1

2
cc D) 2.383∼2.426

Γ(Ξ
∗ 3

2

bc → Ξ
∗ 3

2
cc D) 19.525∼30.028 Γ(Ω

∗ 3
2

bc → Ω
∗ 3

2
cc D) 47.895∼48.741

Γ(Ξ
∗ 1

2

bb → Ξ
1
2

bcDs) 0.285∼0.290 Γ(Ω
∗ 1

2

bb → Ω
1
2

bcDs) 0.511∼0.515

Γ(Ξ
∗ 1

2

bb → Ξ
∗ 1

2

bc Ds) 0.253∼0.271 Γ(Ω
∗ 1

2

bb → Ω
∗ 1

2

bc Ds) 0.471∼0.483

Γ(Ξ
∗ 3

2

bb → Ξ
∗ 3

2

bc Ds) 5.065∼5.435 Γ(Ω
∗ 3

2

bb → Ω
∗ 3

2

bc Ds) 9.437∼9.668

Γ(Ξ
1
2

bc → Ξ
∗ 1

2
cc Ds) 0.368∼0.497 Γ(Ω

1
2

bc → Ω
∗ 1

2
cc Ds) 0.794∼0.828

Γ(Ξ
∗ 1

2

bc → Ξ
∗ 1

2
cc Ds) 0.328∼0.513 Γ(Ω

∗ 1
2

bc → Ω
∗ 1

2
cc Ds) 0.828∼0.851

Γ(Ξ
∗ 3

2

bc → Ξ
∗ 3

2
cc Ds) 6.763∼10.520 Γ(Ω

∗ 3
2

bc → Ω
∗ 3

2
cc Ds) 16.650∼17.099



I Possible molecular state D∗
s0(2317)+

D∗
s0(2317)+ was observed by BaBar, Belle and CLEO in 2003

and 2004. The isospin and spin-parity quantum numbers are
I (JP) = 0(0+) (PDG). The decay width is narrow, Γ ≤ 3.8
MeV.

Various models have been proposed:

a traditional cs state

an exotic meson state such as
a four-quark state
a Dsπ bound state
a DK bound state
a state of cs mixed with DK or with a four-quark state

In the BS equation approach, we studied the possibility that
D∗

s0(2317)+ is an S-wave DK molecular bound state.



The BS equation of the two pseudo-scalar meson system can
be easily established. The kernel is generated by exchanging
ρ and ω mesons between D and K :

In order to reflect the effects of the non-point interaction of
the hadrons, a form factor is introduced in each interaction

vertex (a cutoff is involved), F (k) =
2Λ2−M2

V

2Λ2+k2 .

It is found that the DK bound system can exist. Therefore,
the bound state of DK system does contribute to the state
D∗

s0(2317)+.



The bound state D∗
s0(2317)+ can decay to D+

s π0 through
exchanging vector mesons D∗ or K ∗.

The decay is isospin-violating and thus we also include η − π
mixing which gives important contribution.

The decay width is 29 ∼ 38 KeV, consistent with
Γexp < 3.8MeV.

Z.-X. Xie, G.-Q. Feng, XHG, Phys. Rev. D81(2010)036014



3. Proof of QCD factorization for Λb → Λcπ

QCD factorization was proven to be applicable to b-meson
decays by Beneke, Buchalla, Neubert, and Sachrajda. They
showed that in the case of heavy-light final states (B → Dπ)
factorization holds at O(αs) when mb →∞.

Λ0
b → Λ+

c π− is much more complex: the additional light quark
in Λb (and Λc) generates many more Feynman diagrams.

In the framework of QCD factorization, we proved that most
of these diagrams are 1/mb suppressed, leaving only the
vertex corrections at O(αs). → Factorization still holds at
O(αs) for Λ0

b → Λ+
c π− when mb →∞.

Furthermore, the decay amplitude is renormalization-scale-
and scheme-independent at O(αs).

Z.-H. Zhang, XHG, and G. Lu, Phys. Rev. D83 (2011)
031501(R)



I Effective Hamiltonian for Λ0
b → Λ+

c π−

Heff =
GF√

2
V ∗

udVcb [c1(µ)Q1 + c2(µ)Q2] + H.c .,

c1 and c2 are Wilson coefficients at the scale µ ( ∼ O(mb)),

Q1 = d̄γµ(1− γ5)uc̄γµ(1− γ5)b,

Q2 = d̄ iγµ(1− γ5)u
j c̄ jγµ(1− γ5)b

i .



I Wave functions of hadron H

|H(q)〉 =
∑
n

|H(q)〉n,

|H(q)〉n =

∫
[dξdq]a†1 · · · a†n|0〉Ψ(n)

H (ξ∗, q∗⊥),

Ψ
(n)
H : BS wave function for the n-parton Fock state,

[dξdq] =

[
n∏

l

dξld
2ql⊥

2(2π)3
√

ξl

]
2(2π)3δ

(
1−

∑

l

ξl

)
δ(2)

(∑

l

~ql⊥

)
.

Normalization condition:

〈H(q)|H(q′)〉 = (2π)3E~qδ
(3)(~q − ~q′).

n〈H(q)|H(q′)〉m = λ
(n)
H (2π)3E~qδ

(3)(~q − ~q′)δnm,

where

λ
(n)
H =

∫
{dξdq}|Ψ(n)

H (ξ∗, q∗⊥)|2,
∑
n

λ
(n)
H = 1.



I Power-counting rules for valence Fock state wave
functions

Light cone distribution amplitude ΦH and decay constant fH :
∫
{dq⊥}ΨH(ξ∗, q∗⊥) ∼ fHΦH(ξ∗),

∫
DξΦH(ξ∗) = 1.

For π,

Ψπ(ξ∗, q∗⊥) ∼
{ −ifπΦπ(ξ∗)/Λ2

QCD , for |q∗⊥| ∼ ΛQCD ,

0, for |q∗⊥| À ΛQCD ;

Φπ(ξ∗) ∼
{ O(1), for ξ1&ξ2 ∼ O(1),

ξi , for ξi ∼ 0;

For ΛQ ,

ΨΛQ
(ξ∗, q∗⊥) ∼

{ −fΛQ
ΦΛQ

(ξ∗)/Λ4
QCD , for |q∗⊥| ∼ ΛQCD ,

0, for |q∗⊥| À ΛQCD ;

ΦΛQ
(ξ∗) ∼

{
(mQ/ΛQCD)2 , for ξ1&ξ2(light) ∼ O(ΛQCD/mQ),

0, else.



I Infinite-momentum frame

The decay amplitude is Lorentz-invariant. For convenience,
we work in the infinite-momentum frame of Λb. We start
with the rest frame of Λb, in which π moves along the z axis;
then, go to the infinite-momentum frame by making a
Lorentz boost along the z axis.

In this frame, the transverse momenta of three particles are
zero and pΛb

: pΛc : pπ = 1 : z2 : (1− z2) (z = mc/mb).



I Valence Fock state contributions at tree level

Factorizable (left, TA) and non-factoriazable (right, TB)
diagrams at tree level:

Using the power counting rules for the wave functions:

TA ∼ ū(pΛc )/pπ(1− γ5)u(pΛc )ΛQCD ,

TB ∼ TA

(
ΛQCD

mb

)2

.

Therefore, the only diagram that contributes at the leading
order of αs is TA in the heavy-quark limit, which is
factorizable.



I Valence Fock state contributions at O(αs)

At O(αs), the diagrams can be classified into three
categories: (a) corrections to TA, (b) corrections to TB , (c)
annihilation diagrams.

(a) Corrections to TA: There are two kinds of diagrams.

The first one: vertex corrections, which are O(1) in 1/mb

expansion.



The second one: spectator-scattering diagrams, which are
nonfactorizable but 1/mb suppressed.

Unlike B → Dπ, there are four such diagrams for Λ0
b → Λ+

c π−

due to an additional light quark in Λb (and Λc). One can find
that each of them are of the order αsTA, which is not
suppressed. However, the leading terms cancel when one
sums up all of the four diagrams, leading to 1/mb

suppression.



(b) Corrections to TB : There are 11 diagrams.

There are two kinds of diagrams: the first one is vertex
corrections to TB that contain one loop, while the second
one is tree diagrams.



We prove that all the diagrams are 1/mb suppressed. The
first kind of diagrams contain infrared and ultraviolet
divergences because of the loops, but since this kind of
diagrams are of the order αsTB , they are still 1/mb

suppressed.



(c) Annihilation diagrams:

We prove that all the diagrams are 1/mb suppressed. For

instance, the first diagram ∼ αsTA
Λ2

QCD

m2
b

.



I Nonvalence Fock state contributions

The proof for the suppression of higher-Fock-state
contributions of the π meson is very similar to the decay
B → Dπ given by Beneke, Buchalla, Neubert, and Sachrajda
(NPB, 2000, hard collinear gluon and soft gluon are
considered respectively).

We need to consider the situation when Λb and/or Λc are at
their nonvalence Fock states while π is at its valence Fock
state.

Most of this kind of diagrams are factorizable and can be
absorbed into the form factor of the transition Λb → Λc .

However, when (at least) one of the valence quarks of π
comes form the sea quarks of Λb, the diagram is
nonfactorizable and cannot be absorbed into the form factor.
We have to consider this kind of diagrams explicitly.



Two examples:

Power-counting rules for the nonvalence Fock states of ΛQ :

The probability that ΛQ is in its valence Fock state is O(1),
→ the power of the wave function of the nonvalence Fock
state is, at most, the order obtained, if we assume that the
probability that ΛQ is in the nonvalence Fock state is a
constant (not suppressed by 1/mQ).

Then we can adopt similar power-counting rules to that of
the valence Fock state.



n-parton Fock state:

Ψ
(n)
ΛQ

(ξ∗, q∗⊥) ∼
{
−f

(n)
ΛQ

Φ
(n)
ΛQ

(ξ∗)/Λ
(2n−2)
QCD , for |q∗⊥| ∼ ΛQCD ,

0, for |q∗⊥| À ΛQCD ;

Φ
(n)
ΛQ

(ξ∗) ∼
{ (

mQ

ΛQCD

)(n−1)
, for ξ1...&ξn−1(light) ∼ O(

ΛQCD

mQ
),

0, else.

With these power-counting rules, the two example diagrams
are 1/mb suppressed.

There may be other diagrams with even more partons in Λb

and Λc . But with the restriction that π should be at its
valence Fock state, the extra partons should go directly from
Λb to Λc . This situation is similar to either the first or the
second example diagrams.



Conclusion: when mb →∞, up to O(αs), only the following
diagrams contribute to Λ0

b → Λ+
c π−.



After removing ultraviolet and infrared divergences, we have
the following factorizable form:

AΛ0
b→Λ+

c π− =
GF√

2
V ∗

udVcb〈π−|d̄γµ(1− γ5)u|0〉〈Λc |c̄γµ(a1V − a1Aγ5)b|Λb〉,

a1j = c̄1(mb) + c̄2(mb)
Nc

[
1 + αs(mb)

4π CF

∫ 1
0 dxΦπ(x)Fj(x , z)

]
,

j = V ,A, Fj(x , z) are defined as

Fj(x , z) =
(
3 + 2 ln

x

x̄

)
ln z2 − 7 + f (x , εjz) + f (x̄ , εj/z),

x̄ = 1− x , εj = 1(−1) for j = V (A), and f (x , z) (complicated).

a1V and a1A are independent of renormalization scale and
scheme at O(αs).



Branching ratio for Λ0
b → Λ+

c π−:

BR(Λ0
b → Λ+

c π−) = |ξ(ω)|2 × 1.74× 10−2 × (1± 5.4%),

where the uncertainty (5.4%) is mainly from the CKM
matrix element |Vcb|.
The Isgur-Wise function ξ is model-dependent.

Branching ratio:
(5.7± 0.3)× 10−3 for soliton model (E. Jenkins, A. Manohar,

and M. Wise, NPB, 1993);
(3.2± 0.2)× 10−3 for MIT bag model (M. Sadzikowski and

K. Zalewski, ZPC, 1993);
(4.5± 0.9)× 10−3 for Bethe-Salpeter-equation model (XHG

and T. Muta, PRD, 1996).

Experimental data: (8.8± 3.2)× 10−3. It seems that the
soliton model and the Bethe-Salpeter equation model agree
with the experimental data better. (1/mQ corrections not
considered yet.)



4. Summary

I When mQ →∞, in the diquark picture, we established
BS equations for ground states of heavy baryons
containing one heavy quark and two heavy quarks,
respectively. The BS equations for both heavy and light
diquarks were also established.

I Assuming kernel to consist of a scalar confinement term
and a one-gluon-exchange term we solved BS equations
numerically in the covariant instantaneous
approximation.

I Applications: semileptonic and nonleptonic decay
widths; average kinetic energy of heavy quark in ΛQ ;

Σ
(∗)
Q → ΛQ + π decay widths; heavy quark distribution

functions
I Possible molecular heavy bound state.
I Some of our predictions have been confirmed by

experiments.
I Proof of QCD factorization for Λb → Λcπ.


