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The Λ(1405)

ƞe negative-parity ground
state of the Lambda has a
mass of 1406 ± 4MeV.

Such a low mass is puzzling:

lies lower than the
Λ(1600), but has negative
parity.
lies lower than the
N(1535), but has a valence
strange quark.
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The Λ(1405)

Lattice QCD has so far been unable to isolate such a low-lying
state.

ƞe Roper resonance of the nucleon is also abnormally
low-lying, and Lattice QCD has had similar trouble in isolating
it.
ƞe CSSM Lattice Collaboration has developed a technique
that has successfully isolated the Roper.

M. Selim Mahbub, et al., arXiv:1011.5724
M. S. Mahbub, et al., PoS Lattice 2010, 112, arXiv:1011.0480
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The Λ(1405)

We apply the same techniques to the Lambda in an attempt to
isolate the Λ(1405).

Last year we showed that such an analysis is necessary to isolate
this state.

BM, et al., AIP Conf. Proc., 1354, 213 (2011), arXiv:1102.3492
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Variational Analysis

...1 Construct a correlation matrix of cross-correlation functions
from various interpolating operators.

...2 Use eigenanalysis to project out correlation functions for
individual baryon states.

...3 Analyse these projected correlation functions using normal
techniques.
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Correlation Matrices

Take a set ofN operators χi(x, t) that couple to the baryon we
interested in.

Calculate theN×Nmatrix of zero-momentum, parity-projected
cross correlation functions from these operators:

G±i j(t) =∑
x
tr (Γ± ⟨Ω∣χi(x, t)χj(x, 0)∣Ω⟩)

=
N
∑
α=1

λαi λ
α
j e
−mαt.

Construct a set ofN “perfect” operators φα(x, t) that
completely isolate theN lowest states from linear combinations
of our original operators:

χi =∑
α
vαi φα and χj =∑

α
uαj φα.
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Correlation Matrices

With a bit of algebraic manipulation, can show that uα and vα

are the right- and leƫ-eigenvectors of G±(t)−1G±(t +Δt), with
eigenvalue e−mαΔt.

Moreover, the quadratic form vαG±(t)uβ ∝ δαβe−mαt has
t-dependence only in a single exponential term.
Hence, deƧning G±α(t) ∶= vαG±(t)uα, can extract the massesmα
using the usual

mα = ln(
G±α(t)

G±α(t + 1)
) .
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Available Operators

ƞere are quite a few operators for the Lambda baryon.

Flavour symmetry gives three operators:

Octet:

χ8i =
1√
6
εabc(2(uTaAidb)Bisc + (uTaAisb)Bidc − (dTaAisb)Biuc),

Singlet:

χ1 = −2εabc(−(uTaCγ5db)sc + (u
T
aCγ5sb)dc − (d

T
aCγ5sb)uc),

Common:

χci =
1√
2
εabc((uTaAisb)Bidc − (dTaAisb)Biuc,

ƞe i-index indicates the spin-structure of the operator:

(A1,B1) = (Cγ5, I), (A2,B2) = (C, γ5), and
(A4,B4) = (Cγ5γ4, I).
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Available Operators

Similarly to the CSSM Collaboration’s investigation of the
Roper, we use gauge-invariant Gaussian smearing of the source
and sink to further increase our operator basis.

We use 16, 35, 100, and 200 sweeps of smearing.

ƞis gives us a total of 28 available operators.

ƞere will not be enough signal to extract 28 states, but smaller
subsets should give useful isolation of the lowest states.
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Lattice Details

We use the PACS-CS (2 + 1)-ƪavour full-QCD lattices, available
from the ILDG.
PACS-CS Collaboration, Phys. Rev. D, 79, 034503 (2009), arXiv:0807.1661

Lattice size is 323 × 64, with a lattice spacing of 0.0907(13) fm.
ƞere are 5 light quark masses, with the strange quark mass held
Ƨxed.
ƞese correspond to pion masses of 623.40 ± 0.75MeV down to
170.7 ± 2.1MeV.

PROBLEM: ƞe strange quark is too heavy!
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Implications of a Heavy Strange Quark

Won’t see energies of states
moving directly into their
physical values.

However, don’t have the
avoided level crossings that
are present in, e.g., the Roper
resonance.
We instead look for the
correct arrangement of the
states.
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Results from Common Interpolating Fields

BM, Waseem Kamleh, Derek B. Leinweber, M. Selim Mahbub, in preparation

We use the common interpolating Ƨelds χci to initially
investigate the spectrum.

Gives an idea about how well our analysis can extract the
low-lying states, without making assumptions about the
ƪavour-symmetry properties.

Need to determine which tstart and Δt, and which matrix basis to
use.

Pick κu,d = 0.13727 (mπ = 514.6 ± 0.7MeV).
Use 6 × 6 basis from χc1 and χc2 with 16, 100, and 200 sweeps of
smearing to investigate tstart and Δt.
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Ground State Effective Mass
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Fits
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Octet and Singlet Flavour Symmetry

Now that we have isolated the Λ(1405), we investigate its
properties.
To begin with, we can extend the analysis to include the octet
and singlet ƪavour-symmetric operators.

So far, looked at lightest quark mass (mπ = 170.7 ± 2.1MeV).

Use χ81,2 and χ1 with various sets of smearing.
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Comparison of Bases – All States

16
,3

5

16
,1

00

16
,2

00

35
,1

00

35
,2

00

10
0,

20
0

16
,3

5,
10

0

16
,3

5,
20

0

16
,1

00
,2

00

35
,1

00
,2

00

16
,3

5,
10

0,
20

0

1.0

1.5

2.0

2.5

3.0

3.5

4.0
M

(G
eV

)



. . . . . .

Introduction
. . . . . . . .
Technique

. . . . . . . . . .
Results Conclusions

Comparison of Bases – Lowest Three States
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Conclusions

Now have a method for isolating the Λ(1405) in Lattice QCD.

Using this, we can investigate the properties of this unusual
resonance.

Can attempt to identity the ƪavour-symmetry associated with
each state.
Have also begun a form factor study of the Λ(1405).
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