The $\Lambda(1405)$ Resonance in Full-QCD

Benjamin J. MenadueWaseem KamlehDerek B. LeinweberM. S. Mahbub

Special Research Centre for the Subatomic Structure of Matter School of Chemistry & Physics, University of Adelaide, Australia, 5005

8th Circum-Pan-Pacific Symposium on High Energy Spin Physics

・ロト・雪 ・ モ ・ モ ・ ト ・ 日 ・ う へ つ ・

Results

Conclusions

€ 990

The Λ(1405)

• The negative-parity ground state of the Lambda has a mass of 1406 ± 4 MeV.

ヘロト 人間 とくほとくほとう

Results

The Λ(1405)

- The negative-parity ground state of the Lambda has a mass of 1406 ± 4 MeV.
- Such a low mass is puzzling:

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

ъ

Results

The Λ(1405)

- The negative-parity ground state of the Lambda has a mass of 1406 ± 4 MeV.
- Such a low mass is puzzling:
 - lies lower than the Λ(1600), but has negative parity.

イロト 不得 トイヨト イヨト

ъ

The Λ(1405)

- The negative-parity ground state of the Lambda has a mass of 1406 ± 4 MeV.
- Such a low mass is puzzling:
 - lies lower than the Λ(1600), but has negative parity.
 - lies lower than the N(1535), but has a valence strange quark.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The Λ(1405)

• Lattice QCD has so far been unable to isolate such a low-lying state.

The Λ(1405)

- Lattice QCD has so far been unable to isolate such a low-lying state.
- The Roper resonance of the nucleon is also abnormally low-lying, and Lattice QCD has had similar trouble in isolating it.

The Λ(1405)

- Lattice QCD has so far been unable to isolate such a low-lying state.
- The Roper resonance of the nucleon is also abnormally low-lying, and Lattice QCD has had similar trouble in isolating it.
- The CSSM Lattice Collaboration has developed a technique that has successfully isolated the Roper.

M. Selim Mahbub, et al., arXiv:1011.5724 M. S. Mahbub, et al., PoS Lattice 2010, 112, arXiv:1011.0480

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Λ(1405)

• We apply the same techniques to the Lambda in an attempt to isolate the Λ(1405).

The Λ(1405)

- We apply the same techniques to the Lambda in an attempt to isolate the Λ(1405).
- Last year we showed that such an analysis is necessary to isolate this state.

BM, et al., AIP Conf. Proc., 1354, 213 (2011), arXiv:1102.3492

Results

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Outline

🚺 Technique

- Variational Analysis
- Lattice Details

2 Results

- Common Interpolator Results
- Octet & Singlet Flavour-Symmetry Results

Introduction

Technique ●○○○○○○○ Results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Variational Analysis

• Construct a correlation matrix of cross-correlation functions from various interpolating operators.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

Variational Analysis

- Construct a correlation matrix of cross-correlation functions from various interpolating operators.
- Use eigenanalysis to project out correlation functions for individual baryon states.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

Variational Analysis

- Construct a correlation matrix of cross-correlation functions from various interpolating operators.
- Use eigenanalysis to project out correlation functions for individual baryon states.
- Analyse these projected correlation functions using normal techniques.

Introduction
maduction

Technique ○●○○○○○○ Results

Conclusions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Correlation Matrices

• Take a set of *N* operators $\chi_i(\mathbf{x}, t)$ that couple to the baryon we interested in.

Introduction	Technique	Results	Conclusions
	0000000		

Correlation Matrices

- Take a set of *N* operators $\chi_i(\mathbf{x}, t)$ that couple to the baryon we interested in.
- Calculate the *N* × *N* matrix of zero-momentum, parity-projected cross correlation functions from these operators:

$$\begin{aligned} G_{ij}^{\pm}(t) &= \sum_{\mathbf{x}} \operatorname{tr} \left(\Gamma_{\pm} \langle \Omega | \chi_i(\mathbf{x}, t) \overline{\chi}_j(\mathbf{x}, 0) | \Omega \rangle \right) \\ &= \sum_{\alpha=1}^N \lambda_i^{\alpha} \overline{\lambda}_j^{\alpha} \mathrm{e}^{-m_{\alpha} t}. \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Introduction	Technique	Results	Conclusions
	0000000		

Correlation Matrices

- Take a set of *N* operators $\chi_i(\mathbf{x}, t)$ that couple to the baryon we interested in.
- Calculate the *N* × *N* matrix of zero-momentum, parity-projected cross correlation functions from these operators:

$$\begin{aligned} G_{ij}^{\pm}(t) &= \sum_{\mathbf{x}} \operatorname{tr} \left(\Gamma_{\pm} \langle \Omega | \chi_i(\mathbf{x}, t) \overline{\chi}_j(\mathbf{x}, 0) | \Omega \rangle \right) \\ &= \sum_{\alpha=1}^N \lambda_i^{\alpha} \overline{\lambda}_j^{\alpha} \mathrm{e}^{-m_{\alpha} t}. \end{aligned}$$

• Construct a set of N "perfect" operators $\varphi_{\alpha}(\mathbf{x}, t)$ that completely isolate the N lowest states from linear combinations of our original operators:

$$\chi_i = \sum_{\alpha} v_i^{\alpha} \varphi_{\alpha}$$
 and $\overline{\chi}_j = \sum_{\alpha} u_j^{\alpha} \varphi_{\alpha}$.

Technique ○○●○○○○○ Results

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

Correlation Matrices

• With a bit of algebraic manipulation, can show that u^{α} and v^{α} are the right- and left-eigenvectors of $G^{\pm}(t)^{-1}G^{\pm}(t + \Delta t)$, with eigenvalue $e^{-m_{\alpha}\Delta t}$.

Technique ○○●○○○○○ Results

ション ふゆ マイ ビン・ ビー うくつ

Correlation Matrices

- With a bit of algebraic manipulation, can show that u^a and v^a are the right- and left-eigenvectors of $G^{\pm}(t)^{-1}G^{\pm}(t + \Delta t)$, with eigenvalue $e^{-m_a\Delta t}$.
- Moreover, the quadratic form v^αG[±](t)u^β ∝ δ^{αβ}e^{-m_αt} has *t*-dependence only in a single exponential term.

ション ふゆ マイ ビン・ ビー うくつ

Correlation Matrices

- With a bit of algebraic manipulation, can show that u^a and v^a are the right- and left-eigenvectors of $G^{\pm}(t)^{-1}G^{\pm}(t + \Delta t)$, with eigenvalue $e^{-m_a\Delta t}$.
- Moreover, the quadratic form v^αG[±](t)u^β ∝ δ^{αβ}e^{-m_αt} has *t*-dependence only in a single exponential term.
- Hence, defining G[±]_α(t) := ν^αG[±](t)u^α, can extract the masses m_α using the usual

$$m_{\alpha} = \ln\left(\frac{G_{\alpha}^{\pm}(t)}{G_{\alpha}^{\pm}(t+1)}\right).$$

Technique ○○○●○○○○ Results

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Available Operators

• There are quite a few operators for the Lambda baryon.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

Available Operators

- There are quite a few operators for the Lambda baryon.
- Flavour symmetry gives three operators:
 - Octet:

$$\chi_i^8 = \frac{1}{\sqrt{6}} \varepsilon_{abc} (2(u_a^{\mathrm{T}} A_i d_b) B_i s_c + (u_a^{\mathrm{T}} A_i s_b) B_i d_c - (d_a^{\mathrm{T}} A_i s_b) B_i u_c),$$

• Singlet:

$$\chi^{1} = -2\varepsilon_{abc}(-(u_{a}^{\mathrm{T}}C\gamma_{5}d_{b})s_{c} + (u_{a}^{\mathrm{T}}C\gamma_{5}s_{b})d_{c} - (d_{a}^{\mathrm{T}}C\gamma_{5}s_{b})u_{c}),$$

• Common:

$$\chi_i^c = \frac{1}{\sqrt{2}} \varepsilon_{abc} ((u_a^T A_i s_b) B_i d_c - (d_a^T A_i s_b) B_i u_c,$$

• The *i*-index indicates the spin-structure of the operator:

$$(A_1, B_1) = (C\gamma_5, I), \quad (A_2, B_2) = (C, \gamma_5), \text{ and}$$

 $(A_4, B_4) = (C\gamma_5\gamma_4, I).$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

Available Operators

- Similarly to the CSSM Collaboration's investigation of the Roper, we use gauge-invariant Gaussian smearing of the source and sink to further increase our operator basis.
 - We use 16, 35, 100, and 200 sweeps of smearing.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

Available Operators

- Similarly to the CSSM Collaboration's investigation of the Roper, we use gauge-invariant Gaussian smearing of the source and sink to further increase our operator basis.
 - We use 16, 35, 100, and 200 sweeps of smearing.
- This gives us a total of 28 available operators.
 - There will not be enough signal to extract 28 states, but smaller subsets should give useful isolation of the lowest states.

Lattice Details

• We use the PACS-CS (2 + 1)-flavour full-QCD lattices, available from the ILDG.

PACS-CS Collaboration, Phys. Rev. D, 79, 034503 (2009), arXiv:0807.1661

- Lattice size is $32^3 \times 64$, with a lattice spacing of 0.0907(13) fm.
- There are 5 light quark masses, with the strange quark mass held fixed.
- These correspond to pion masses of 623.40 ± 0.75 MeV down to 170.7 ± 2.1 MeV.

Lattice Details

• We use the PACS-CS (2 + 1)-flavour full-QCD lattices, available from the ILDG.

PACS-CS Collaboration, Phys. Rev. D, 79, 034503 (2009), arXiv:0807.1661

- Lattice size is $32^3 \times 64$, with a lattice spacing of 0.0907(13) fm.
- There are 5 light quark masses, with the strange quark mass held fixed.
- These correspond to pion masses of 623.40 ± 0.75 MeV down to 170.7 ± 2.1 MeV.
- **PROBLEM**: The strange quark is too heavy!

Technique ○○○○○●○

Results

Conclusions

Kaon Mass

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Ini	0				2	n
	 v	u	u		v	

Technique ○○○○○○● Results

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Implications of a Heavy Strange Quark

• Won't see energies of states moving directly into their physical values.

Results

Conclusions

Implications of a Heavy Strange Quark

- Won't see energies of states moving directly into their physical values.
- However, don't have the avoided level crossings that are present in, e.g., the Roper resonance.

M. Döring, et al., NSTAR 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Technique ○○○○○○● Results

Conclusions

Implications of a Heavy Strange Quark

- Won't see energies of states moving directly into their physical values.
- However, don't have the avoided level crossings that are present in, e.g., the Roper resonance.
- We instead look for the correct arrangement of the states.

M. Döring, et al., NSTAR 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

Results from Common Interpolating Fields

BM, Waseem Kamleh, Derek B. Leinweber, M. Selim Mahbub, in preparation

- We use the common interpolating fields χ^c_i to initially investigate the spectrum.
 - Gives an idea about how well our analysis can extract the low-lying states, without making assumptions about the flavour-symmetry properties.

Results from Common Interpolating Fields

BM, Waseem Kamleh, Derek B. Leinweber, M. Selim Mahbub, in preparation

- We use the common interpolating fields χ^c_i to initially investigate the spectrum.
 - Gives an idea about how well our analysis can extract the low-lying states, without making assumptions about the flavour-symmetry properties.
- Need to determine which t_{start} and Δt , and which matrix basis to use.

Results from Common Interpolating Fields

BM, Waseem Kamleh, Derek B. Leinweber, M. Selim Mahbub, in preparation

- We use the common interpolating fields χ^c_i to initially investigate the spectrum.
 - Gives an idea about how well our analysis can extract the low-lying states, without making assumptions about the flavour-symmetry properties.
- Need to determine which t_{start} and Δt , and which matrix basis to use.
 - Pick $\kappa_{u,d} = 0.13727 \ (m_{\pi} = 514.6 \pm 0.7 \text{ MeV}).$
 - Use 6×6 basis from χ_1^c and χ_2^c with 16, 100, and 200 sweeps of smearing to investigate t_{start} and Δt .

Results ○●○○○○○○○○

Conclusions

Eigenvalues

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Results ○○●○○○○○○○ Conclusions

Ground State Effective Mass

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - の Q ()

Introduction

Results 000●000000

Conclusions

Fits

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆・ のへで

Results 000●000000

Conclusions

Fits

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Results ○○○○●○○○○○ Conclusions

Comparison of Bases

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

Results ○○○○●○○○○○ Conclusions

Comparison of Bases

- * ロト * 課 ト * 語 ト * 語 ト - 語 - のの()

Results 0000●00000 Conclusions

Comparison of Bases

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Results ○○○○●○○○○○ Conclusions

Comparison of Bases

Results

Conclusions

All States

Results

Conclusions

All States

Results

Conclusions

All States

Results

Conclusions

All States

Results

Conclusions

All States

Results ○○○○○○●○○○

Conclusions

Lowest Two States

Results ○○○○○○●○○○

Conclusions

Lowest Two States

Results ○○○○○●○○ Conclusions

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

Octet and Singlet Flavour Symmetry

- Now that we have isolated the $\Lambda(1405)$, we investigate its properties.
- To begin with, we can extend the analysis to include the octet and singlet flavour-symmetric operators.

Results ○○○○○○●○○ Conclusions

ション ふゆ マイ ビン・ ビー うくつ

Octet and Singlet Flavour Symmetry

- Now that we have isolated the $\Lambda(1405)$, we investigate its properties.
- To begin with, we can extend the analysis to include the octet and singlet flavour-symmetric operators.
- So far, looked at lightest quark mass ($m_{\pi} = 170.7 \pm 2.1 \text{ MeV}$).
 - Use $\chi_{1,2}^8$ and χ^1 with various sets of smearing.

Results ○○○○○○○●○ Conclusions

Comparison of Bases – All States

Results

Conclusions

Comparison of Bases – Lowest Three States

Results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusions

• Now have a method for isolating the $\Lambda(1405)$ in Lattice QCD.

- Now have a method for isolating the $\Lambda(1405)$ in Lattice QCD.
- Using this, we can investigate the properties of this unusual resonance.

- Now have a method for isolating the $\Lambda(1405)$ in Lattice QCD.
- Using this, we can investigate the properties of this unusual resonance.
 - Can attempt to identity the flavour-symmetry associated with each state.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Now have a method for isolating the $\Lambda(1405)$ in Lattice QCD.
- Using this, we can investigate the properties of this unusual resonance.
 - Can attempt to identity the flavour-symmetry associated with each state.
 - Have also begun a form factor study of the $\Lambda(1405)$.

Results

Conclusions

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

Acknowledgements

This research was undertaken on the NCI National Facility in Canberra, Australia, which is supported by the Australian Commonwealth Government.