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• Heurstic Discussion Elements  of factorization in 
hard QCD processes, “collinear” to “TMD” 

• Factorization and Transverse spin effects

• Transverse Spin Effects-twist 3 & TMD

• Role of Gauge Links (hard processes)-

         “process dependence”,  Soft Factor (in SIDIS)

• On the merit of Bessel Weighted asymmetries

• Predictions from QCD SIDIS as a tool for nucleon structure

• Fourier Transformed SIDIS cross section

• Cancellation of the Soft Factor from WA 

          (PRE-DIS wkshp http://conferences.jlab.org/QCDEvolution/index.html)
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Factorization

• Depends on momentum of probe                 and 
momentum of  produced hadron        relative to 
hadronic scale 

• Cases

•                             sensitive hadronic scale-TMDs                

•                             twist 3 factorization-ETQSs

•                             insensitive to hadronic scale
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Usual way of exploring the nucleon structure: 
collinear QCD parton model 
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Deep inelastic scattering (DIS)

Process
e− + N → e− + X
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Cross section
The cross section for DIS
factorizes into two parts:

σ = σ̂part. ⊗ PDF}
hard

}

soft

σ̂part.: Partonic part of the
cross section
(calculable in pQCD)

PDF: Parton distribution
function
(not calculable in pQCD)

Stephan Meißner New results on relations between GPDs and TMDs from the analysis of GTMDs

Transverse SPIN Observables SSA (TSSA) p↑ p → πX
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• Single Spin Asymmetry AN = σ↑(xF ,p⊥)−σ↑(xF ,−p⊥)
σ↑(xF ,p⊥)+σ↑(xF ,−p⊥)

≡ ∆σ

• Rotational invariance σ↓(xF , p⊥) = σ↑(xF ,−p⊥)
⇒ Left-Right Asymmetry

# Parity Conserving interactions: SSAs “Transverse” Scattering plane
=⇒ ∆σ ∼ iST · (P × P π

T )

• Correlation in Transverse Momentum PT & Transverse SPIN ST

Note operator structure of DIS
Factorizes into hard and soft
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!(x)= 1
2{f(x)P= + "N!f(x)#5P= +!Tf(x)P= #5S=⊥}:

Correlator



Φij(k;P, S) =
∑

X

∫
d3P X

(2π)3 2EX
(2π)4 δ4(P − k − PX)〈PS|Ψj(0)|X〉〈X|Ψi(0)|PS〉

=
∫

d4 ξ eik·ξ〈PS|Ψj(0)Ψ(ξ)|PS〉

Φ(x, S) =
1
2

[
f1(x) /n+ + SL g1L(x) γ5 /n+ + h1T iσµνγ5nµ

+Sν
T

]

The nucleon, as probed in DIS, in collinear 

configuration:  3 distribution functions 
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Fig. 1. – The handbag diagram for DIS. At leading QED order, the interaction between the
lepton (not shown) and the nucleon is mediated by the exchange of a virtual photon. Thus, the
DIS cross section is just the total cross section for the γ∗N → X process, which, by the optical
theorem, is related to the forward scattering amplitude. In the parton model, at leading QCD
order, the virtual photon scatters off a single quark in the nucleon, as represented in the figure.
The lower blob is thus the matrix element between the nucleon initial and final states of two
quark fields, one ”extracted from” and the other ”replaced into” the nucleon. It is a matrix in
the Dirac spinor space.

and it shows the chiral-odd nature of transversity, as it relates quarks with opposite
helicities. It is then clear why h1 cannot be measured in DIS: the bottom blob of fig. 2
cannot be inserted in the handbag diagram of fig. 1, as the QED (and QCD) interactions
conserve helicity and there is no way, by photon or gluon couplings, of flipping the helicity
of massles quarks.

A measurement of transversity requires a process in which h1 couples to another
chiral-odd function. Several suggestions have been discussed in the literature. At the
moment the most practicable way appears via SIDIS processes [7], in which h1 couples
to a chiral-odd fragmentation function, the Collins fragmentation function, as depicted
in fig. 3. In principle, the cleanest and most direct way should be via the measurement
of the double transverse spin asymmetry ATT in Drell-Yan processes, which couples two
transversity distributions (see fig. 4), as discussed in Section 5.

So far we have only considered collinear partonic configurations, in which the rele-
vant degrees of freedom, describing the nucleon structure, are the parton longitudinal
momentum fraction x and the helicities. Yet, it is already clear that the spin transverse
degree of freedom is at least as interesting, but much less known. It will be much more
so when also the intrinsic transverse motions of partons, k⊥, in addition to x, will be
considered. Which requires a detour into the issue of SSA.

3. – The (problem of) transverse Single Spin Asymmetries

Let us consider a 2 into 2 physical process, like AB → C D, in the center of mass
reference frame, A(p) + B(−p) → C(p′) + D(−p′), like in fig. 5. We wonder whether
or not the cross section for such a process can depend on the spin polarization S of one
particle only, say A; particle B is not polarized and the polarization of the final particles

Correlator:
xP+
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Collinear DIS picture of the nucleon
  x   &   Q2
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The theoretical  hint to go 
beyond coliner limit



g1 =
1
2

∑

q

e2
q ∆q(x, Q2)

great success, but essentially x and Q2 degrees of freedom …. 
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Fig. 20. Helicity structure a) of the parton-hadron forward scattering amplitude; b) of the u-channel
discontinuity which contributes to a parton distribution function.

4.1. Helicity Amplitudes

Part of the task is simply to enumerate the independent distribution functions at twist-
two and twist-three. This is simplified by viewing distribution functions as discontinuities in
forward parton-(quark or gluon) hadron scattering. Suppressing all momentum indices, each
quark distribution can be labeled by four helicities: a target of helicity Λ emits a parton of
helicity λ which then participates in some hard scattering process. The resulting parton with
helicity λ′ is reabsorbed by a hadron of helicity Λ′. The process of interest to us is actually a
u-channel discontinuity of the forward parton-hadron scattering amplitude AΛλ,Λ′λ′ as shown
in fig. (20). Note the ordering of indices – although Λ and λ′ are the incoming helicities, it is
convenient to label the amplitude in the sequence: initial hadron, struck quark, final hadron,
returned quark.

Since the parton-hadron amplitude results from squaring something like 〈X|ψ|PS〉,
the amplitude must be diagonal in the target spin. However spin eigenstates (in particular,
transverse spin eigenstates) are linear superpositions of helicity eigenstates, so the {A} do
not have to be diagonal in the target helicity. Only forward scattering is of interest, so the
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Jaffe Ji 1991 prl
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∆λ = 2

∆λ = −1

•Evolves as a non-singlet!  
       ie doesn’t mix with glue
•Uniquely Valence-like 
•A golden opportunity for JLAB 6 &12 GeV 
Hall A and CLAS programs and EIC

No Gluon Transversity

Eur. Phys. J. Plus (2011),
H. Gao, L. Gamberg, J.-P. Chen, X. Qian, Y. Qiang, M. Huang, A. Afanasev,
M. Anselmino, H. Avakian, G. Cates, E. Chudakov, E. Cisbani, C. de
Jager, F. Garibaldi, B.T. Hu, X. Jiang, K. S. Kumar, X.M. Li, H.J. Lu,
Z.-E. Meziani, B.-Q. Ma, Y.J. Mao, J.-C. Peng, A. Prokudin, M. Schlegel,
P. Souder, Z.G. Xiao, Y. Ye and L. Zhu



Study of Transverse Structure driven by Discrepancies 
between Exp results on TSSAs and Collinear QCD Pic

• Exp. Large TSSAs while collinear picture predicts 
triviality
• Quark transversity             distribution on the same 
footing as         and            yet   inaccessible in DIS ! 
• While Collinear QCD can account for unpol. and 
long. pol. pheno, the pheno. of transverse structure 
demands the  more general kinematic and dynamic 
structure of “unintegrated” pdfs---what Jaffe referred 
to as a “renaissance” in QCD spin physics (2001).
•1993 Collins consider that SIDIS at low       provides 
a tool to measure quark transversity
•Physics potential reinfored by rediscovery of Sivers’ 
effect by BHS

∆q(x)q(x)
∆T q(x)

Ph⊥



Transverse Spin Effects



Transverse SPIN Observables SSA (TSSA) p↑ p → πX
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• Single Spin Asymmetry AN = σ↑(xF ,p⊥)−σ↑(xF ,−p⊥)
σ↑(xF ,p⊥)+σ↑(xF ,−p⊥)

≡ ∆σ

• Rotational invariance σ↓(xF , p⊥) = σ↑(xF ,−p⊥)
⇒ Left-Right Asymmetry

# Parity Conserving interactions: SSAs “Transverse” Scattering plane
=⇒ ∆σ ∼ iST · (P × P π

T )

• Correlation in Transverse Momentum PT & Transverse SPIN ST
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Ingredients of factorization in 
Transverse SPIN Observables TSSA        P ↑P → π X



    Reaction Mechanism Partonic Description

âN =
σ̂↑ − σ̂↓

σ̂↑ + σ̂↓
∼

Im
(
M+∗M−)

|M+|2 + |M−|2

| ↑ / ↓〉 = (|+〉± i|−〉)
D

f

M∗

f

M

∆σpp↑→πX ∼ fa ⊗ fb ⊗∆σ̂ ⊗Dq→π

Collinear factorized QCD parton dynamics

∆σ̂ ≡ σ̂↑ − σ̂↓

P ↑P → π X

Interference of helicity flip and non-flip amps
1) requires breaking of chiral symmetry mq /E
2) relative phases require higher order corrections

Transv. polarization cross section 
“interference” of helicity flip and 
non-flip  amps. 



Factorization Theorem & SSAs at Partonic level 

at the partonic level

•Born amps are real -- need “loops”----> phases
•QCD interactions conserve helicity up to corrections 

∆σ̂ ∼ Im[M∗
+M−]

+ −
X

mq
−+ + +

⊗

∗

Im

O
(

mq

Eq

)

Twist three and trivial in chiral limit

AN ∝ mq

E
αs Kane & Repko, PRL: 1978
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Large Transverse Polarization in Inclusive Reactions

Fixed target
Collider
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Modern Era Transverse SSAʼs at √s = 62.4 & 200 GeV at RHIC

PRL101, 042001 (2008)

patterns of polarization signs. The unfilled 9 bunches are
sequential and correspond to the abort gap needed to eject
the stored beams. Pb was measured every 3 h during RHIC
stores by a polarimeter that detected recoil carbon ions
produced in elastic scattering of protons from carbon rib-
bon targets inserted into the beams. The effective AN of this
polarimeter was determined from p" þ p" elastic scattering
from a polarized gas jet target [24] thereby determining
Pb ¼ 55:0# 2:6% (56:0# 2:6%) for the Blue (Yellow)
beam in the 2006 run [25].

The FPD comprises four modules, each containing a
matrix of lead glass (PbGl) cells of dimension 3:8 cm$
3:8 cm$ 18 radiation lengths. Pairs of modules were
positioned symmetrically left (L) and right (R) of the
beam line in both directions, at a distance of %750 cm
from the interaction point [21]. The modules facing the
Yellow (Blue) beam are square matrices of 7$ 7 (6$ 6)
PbGl cells. Data from all FPD cells were encoded for each
bunch crossing, but only recorded when the summed en-
ergy from any module crossed a preset threshold.

Neutral pions are reconstructed via the decay !0 ! "".
The offline event analysis included conversion of the data
to energy for each cell, formation of clusters and recon-
struction of photons using a fit with the function that
parametrizes the average transverse profile of electromag-
netic showers. Collision events were identified by requiring
a coincidence between the east and west STAR beam-beam
counters, as used for cross section measurements [26].
Events were selected when two reconstructed photons
were contained in a fiducial volume, whose boundary
excludes a region of width 1=2 cell at the module edges.
Detector calibration was determined from the !0 peak
position in diphoton invariant mass (M"") distributions.

The estimated calibration accuracy is 2%. The analysis was
validated by checking against full PYTHIA/GEANT simula-
tions [27]. The reconstructed !0 energy resolution is given
by #E!=E! & 0:16=

ffiffiffiffiffiffiffi
E!

p
.

Because of the limited acceptance there is a strong
correlation between xF and pT for reconstructed !0

(Fig. 1). Spin effects in the xF-pT plane are studied by
positioning the calorimeters at different transverse dis-
tances from the beam, maintaining L=R symmetry for pairs
of modules. Figure 1 shows loci from h$i ¼ 3:3, 3.7, and
4.0. There is overlap between the loci, providing cross-
checks between the measurements. Because the measure-
ments were made at a colliding beam facility, both xF > 0
and xF < 0 results are obtained concurrently.
Events with 0:08<M"" < 0:19 GeV=c2 were counted

separately by spin state from one or the other beam, with
no condition on the spin state of the second beam, in the xF
bins shown in Fig. 1. For each run i, AN;i for each bin was
then determined by forming a cross ratio

AN;i ¼
1

Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p ' ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p ; (1)

whereNLðRÞ"ð#Þ;i is the number of events in the L (R) module
when the beam polarization was up (down). Equation (1)
cancels spin dependent luminosity differences through
second order. Statistical errors were approximated by
!AN;i ¼ ½Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";i þ NL#;i þ NR";i þ NR#;i

p +'1, valid for
small asymmetries. All measurements of Pb for a store
were averaged and applied to get AN;i for each bin. The
run-averaged AN #!AN values are shown in Fig. 2.

FIG. 1 (color online). Correlation between pion longitudinal
momentum scaled by

ffiffiffi
s

p
=2 (xF) and transverse momentum (pT)

for all events. Bins in xF used in Figs. 2 and 4 are indicated by
the vertical lines. There is a strong correlation between xF and
pT at a single pseudorapidity (h$i).

FIG. 2 (color online). Analyzing powers in xF bins (see Fig. 1)
at two different h$i. Statistical errors are indicated for each
point. Systematic errors are given by the shaded band, excluding
normalization uncertainty. The calculations are described in the
text. The inset shows examples of the spin-sorted invariant mass
distributions. The vertical lines mark the !0 mass.
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flight walls.
With no spin rotator magnets outside the BRAHMS interaction region,

all proton-proton collisions at BRAHMS are transversely polarized in the
vertical direction.

4. Results

A number of results are now available from transversely polarized data
taken by the BRAHMS and PHENIX experiments at center-of-mass ener-
gies of 200 and 62.4 GeV. The transverse single-spin asymmetries discussed
below are all left-right asymmetries, which can be calculated by

ALeft
N =

1

P

N↑ − RN↓

N↑ + RN↓

where ALeft
N

indicates the asymmetry calculated to the left of the polar-
ized beam, P is the beam polarization, N↑ (N↓) is the particle yield from
bunches polarized up (down), and R = L

↑

L↓ is the relative luminosity be-
tween up- and down-polarized bunches. Both beams at RHIC are polarized;
in the calculation of single-spin asymmetries, the polarization of one beam
is considered while averaging over the polarization states of the other.
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Fig. 2. Charged pion asymmetries measured at 200 and 62.4 GeV by the BRAHMS
experiment and at 19.4 GeV by the E704 experiment, shown for overlapping kinematic
ranges (see text).

In the early 1990’s large transverse single-spin asymmetries in forward
pion production were observed by the E704 experiment at Fermilab at a
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• “T-odd” distribution-fragmentation functions enter transverse
momentum dependent correlators at leading twist Boer, Mulders: PRD 1998
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o
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o
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1 ⊗ dσ̂"q→"q ⊗ H⊥
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Twist three and non-trival?!

Q ∼ PT >> Λqcd Co-linear Twist Three Mechanism

Phases in soft poles of propagator in hard subprocess Efremov & Teryaev :PLB 1982

! Get helicity flips and phases mq →∼ MH and
! αs → correlation function

• ∆σ ∼ fa ⊗ TF ⊗ HETQS ⊗ Dq→π Factorized co-linear QCD
Qiu & Sterman:PLB 1991, 1999, Koike et al. PLB 2000. . . 2007, Ji,Qiu,Vogelsang,Yuan:PR

2006,2007. . .
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 ∓ iπδ(xs)
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Not the full story @ Twist 3 approach ETQS approach

Factorization and Pheno: Qiu, Sterman 1991,1999...,  Koike et al, 2000, ... 2010,  
Ji, Qiu, Vogelsang, Yuan, 2005 ... 2008 ..???,   Yuan, Zhou 2008, 2009, Kang, Qiu, 2008, 2009 ...   
Kouvaris Ji,  Qiu,Vogelsang! 2006,  Vogelsang and Yuan 2007
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PT ∼ Q >> Λqcd Co-linear Twist Three Mechanism

Phases in soft poles of propagator in hard subprocess Efremov & Teryaev :PLB 1982

! Get helicity flips and phases mq →∼ MH
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Transverse SPIN Observables SSA (TSSA) p↑ p → πX
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• Single Spin Asymmetry AN = σ↑(xF ,p⊥)−σ↑(xF ,−p⊥)
σ↑(xF ,p⊥)+σ↑(xF ,−p⊥)

≡ ∆σ

• Rotational invariance σ↓(xF , p⊥) = σ↑(xF ,−p⊥)
⇒ Left-Right Asymmetry

# Parity Conserving interactions: SSAs “Transverse” Scattering plane
=⇒ ∆σ ∼ iST · (P × P π
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• Correlation in Transverse Momentum PT & Transverse SPIN ST

Q ∼ PT >> Λqcd                             Co-linear Twist 3 Mechanism
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Sensitivity to pT ∼ k⊥ << Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is associated w/ correlation transverse spin and
momenta in initial state hadron

∆σpp↑→πX ∼ D ⊗ f⊗∆f⊥⊗σ̂Born ⇒ iST · (P × k⊥) → f⊥
1T (x, k⊥)

• Collins NPB: 1993 TSSA is associated with transverse spin of fragmenting
quark and transverse momentum of final state hadron

∆σep↑→eπX ∼ ∆D⊥ ⊗ δf ⊗ σ̂Born ⇒ isT · (P × p⊥) → H⊥
1 (x, p⊥)
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∆f⊥(x, k⊥) = iST · (P × k⊥)

∆D⊥(x, p⊥) = isT · (P × p⊥)

TSSAs thru “T-odd” non-pertb. spin-orbit correlations....

pT ∼ kT <<
√

Q2Sensitivity to 



Mechanism FSI produce phase in TSSAs-Leading Twist

Brodsky, Hwang, Schmidt PLB: 2002

SIDIS w/ transverse polarized nucleon target SIDIS

Ji, Yuan PLB: 2002 -Sivers fnct. FSI emerge from Color Gauge-links

∆σ ∼ D⊗∆f⊥⊗σ̂Born

Ji, Ma, Yuan: PLB, PRD 2004, 2005 Extend factorization of CS-NPB: 81

Collins, Metz: PRL 2005 Universality & Factorization “Maximally” Correlated in Frag.

Collins, Qui PRD 08 Factorization in jeopardy for H H → h h X at high PT

11

LG, Goldstein, Oganessyan 2002, 2003 PRD  Boer-Mulders Fnct, and Sivers -spectator model
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Brodsky Hwang Schmidt PLB 2002- SIDIS w/ transverse polarized target 

Figure 1: The amplitude W including FSIs between re-scattered eikonalized quark

and antiquark. The FSIs are described by a non-perturbative scattering amplitude M that

is calculated in a generalized ladder approximation. Gluon interactions as shown in the

second diagram are not taken into account (see text).

non-perturbative eikonal methods [70, 71] to calculate higher-

order soft gluon contributions from the gauge link and study

how these soft gluons impact Eq. (5). Up till now the relation

(5) was used to predict the sign of T-odd TMDs in conjunc-

tion with numbers for the u- and d-quark contributions to the

anomalous magnetic moment of the nucleon and the assump-

tion that FSIs are attractive [66]. We will also investigate the

latter assumption.

3. TMD-GPD Relation for a Pion

We focus our attention on a pion in a valence quark configu-

ration that one expects for relatively large Bjorken x. Working

in the spectator framework [35, 36, 38, 72, 73] and inserting

a complete set of states, 1 =
∑
x |X〉〈X| in the quark corre-

lation function Eq. (1), we truncate this sum to an antiquark

and neglect multi-particle intermediate states. The usefulness

of this approach is twofold: First, we are able to improve on

the one gluon exchange approximation for FSIs to studying T-

odd PDFs by including higher order gluonic contributions and

color degrees of freedom. Second we are able to explore to

what extent transverse polarization effects due to T-odd PDFs

can be described in terms of factorization of FSIs and a spatial

distortion of impact parameter space including higher gluonic

corrections [46, 48] with color. Thus, we express the pion Boer-

Mulders function (1) in the following way

εi j
T
k
j

T
h⊥1 (x,"k

2
T ) =

mπ

8(2π)3(1 − x)P+
∑

σ,d

W̄iσi+γ5W, (6)

with the matrix elementW given by

W
α,δ
i
(P, k;σ) = 〈P − k,σ, δ| [∞n ; 0]αβ qβ

i
(0) |P〉. (7)

where σ and δ represent the helicity and color of the interme-
diate spectator antiquark. We model (7) by the diagram shown

in Fig. 1, where the FSIs – generated by the gauge link in (7)

– are described by a non-perturbative amputated scattering am-

plitude (M)
αβ
γδ with β, α (γ, δ) color indices of incoming and

outgoing quark (antiquark). In the next section we calculate

the scattering amplitude using non-perturbative eikonal meth-

ods thereby considering a subclass of possible diagrams with

interactions between quark and antiquark. We neglect classes

of gluon exchanges in the second diagram in Fig. 1 represented

by the red rungs since they would be attributed to the “inter-

action” between the quark fields and the operator I in (2) and

lead to terms which break the relation (5). We also neglect real

gluon emission and (self)-interactions of quark and antiquark

lines the second diagram in Fig. 1 since they represent radiative

corrections of the GPD and are effectively modeled in terms of

spectator masses and a phenomenological vertex function.

The pion-quark vertex is modeled with the interaction La-

grangian

L = − gπ√
Nc
δαβq̄αγ5"τ · "ϕqβ, (8)

where we allow the coupling gπ to depend on the momentum of

the active quark in order to take into account the compositeness

of the hadron and to suppress large quark virtualities [42, 43,

73]. Applying the Feynman rules we obtain an expression for

the matrix elementW in (7) from the first diagram in Fig. 1

W
αβ
i,σ(P, k) =

−iτ√
Nc


δ
αβgπ(k

2)

[
( /k+mq)v(Ps,σ)

]
i

k2−m2q+i0
+

∫
d4q

(2π)4

gπ
(
(P−q)2

) [
( /P− /q+mq)γ5( /q−ms) (M)

αδ
δβ (q, Ps)v(Ps,σ)

]
i

[
n · (Ps−q) + i0

] [
(P−q)2−m2q+i0

] [
q2−m2s+i0

]


, (9)

where Ps ≡ P − k is the spectator momentum. The first term
in (9) represents the contribution without FSIs while the sec-

ond term corresponds to the first diagram in Fig. 1. We then

express the FSIs through the amputated quark - antiquark scat-

tering amplitude M. Here both incoming quark and antiquark

are subject to the eikonal approximation (see, e.g. [74] and ref-

erences therein). While the active quark undergoes a natural

eikonalization for a massless fermion since it represents the

gauge link contribution, the eikonalization for a massive spec-

tator fermion is a simplification that is justified by the phys-

ical picture of partons in an infinite momentum frame. The

eikonalization of a massive fermion can be traced back to the

Nordsieck-Bloch approximation [75] which describes a highly

energetic helicity conserving fermion undergoingmultiple scat-

tering with very small momentum transfer. In this approxi-

mation the Dirac vertex structure ū(p1)γµu(p2) ∼ pµ/m ≡ vµ
where (p1 + p2)/2 ≡ p. For a massive anti-fermion one iden-

tifies the velocity vµ = −pµ/m, and the numerator of a fermion
propagator becomes i(− /p + m)→ i(−v · p + m).
We proceed by performing a contour-integration of the light-

cone loop-momentum q− in Eq. (9) where we consider poles
which originate from the denominators in (9). This assumes

that the scattering amplitude M does not contain poles in q−

and the integrand is well behaved on the contour in q −. Be-
fore we proceed, it is important to point out that one-loop cal-

culations of T-odd functions were performed in a scalar di-

quark model [33, 35, 38] and a quark target model [76] where

there are no contributions from a pole in q− in the exchanged

3
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Source of T-Odd Contributions to TSSA and AA in SIDIS

• “T-odd” distribution-fragmentation functions enter transverse
momentum dependent correlators at leading twist Boer, Mulders: PRD 1998
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Parton model & DIS kinematics 

zh =
P · Ph

P · q
≈

P−h
q−

xB =
Q2

2P · q

“structures”

Factorize



(P, Λ) (P, Λ′)

(p, λ) (p, λ′)

(k, µ) (k, µ′)
(γ∗, ε)

Ph

q

PX

PX ′ ∆

Φ

Small transverse 
momentum !!!

Wµν(q, P, S, Ph) ≈
∑

a

e2

∫
d2pT dp−dp+

(2π)4

∫
d2kT dk−dk+

(2π)4
δ(p+ − xBP+)δ(k− −

P−h
z

)δ2(pT + qT − kT )

×Tr [Φ(p, P, S)γµ∆(k, Ph)γν ]

Wµν(q, P, S, Ph) =
∫

d2pT

(2π)4

∫
d2kT

(2π)4
δ2(pT −

Ph⊥
z

− kT )Tr
[(∫

dp−Φ
)

γµ

(∫
dk+∆

)
γν

]

Φ(x,pT , S) ≡
∫

dp−Φ(p, P, S)
∣∣∣
p+=xBP+

, ∆(z,kT ) ≡
∫

dk+∆(k, Ph)
∣∣∣
k−= P−

zh

Factorization parton model when PT of the hadron small



Structure functions are convolutions 
in momentum-space

d6σ = σ̂hard C[wfD]
∆

Φ

P

Ph

q

p

k

Factorization & Sensitivity to                     TMDsPT ∼ k⊥

Ralson & Soper NPB 1979-Drell Yan, Mulders 
Tangerman NPB 1996-SIDIS
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B. Transverse momentum dependent distributions at tree level

Based on QCD factorization arguments for the reaction at large momentum transfer Q ! ΛQCD at tree level
(zeroth order in αS) [4, 6], the hadronic tensor appearing in the cross section can be further decomposed into a hard
reaction and soft parts. The latter include the transverse momentum dependent parton distribution functions (TMDs),
here generically denoted f , and transverse momentum dependent fragmentation functions, generically denoted D. At
leading order in αs, the structure functions FF

XY can then be written as convolutions of distribution and fragmentation
functions [6]:

C
[
wfD

]
≡ xB

∑

a

e2a

∫
d2pT d2kT δ(2)

(
pT − kT − P h⊥/z

)
w(pT ,kT ) f

a(x, p2T )D
a(z, z2k2T )

= xB

∑

a

e2a

∫
d2pT d2KT δ(2)

(
zpT +KT − P h⊥

)
w

(
pT ,−

KT

z

)
fa(x, p2T )D

a(z,K2
T ) . (6)

where ea is the electric charge of quark flavor a, where w is an appropriate weighting function, and whereKT ≡ −kT z.
For example,

F sin(φh−φS)
UT,T = C

[
−(ĥ·pT /M)f⊥

1T D1

]
× (1 +O(αs)) , (7)

with ĥ ≡ P h⊥/|P h⊥|. Here the TMD f⊥
1T is the Sivers function and the D1 is the unpolarized fragmentation function.

C. The soft factor

The formalism becomes more complicated once diagrams beyond leading order in αs are taken into account. Various
strategies have been proposed to address extra divergences that appear at one loop level and higher order [16–18].
Improvement of these frameworks for transverse momentum dependent factorization and establishment of the complete
proofs of the corresponding factorization theorems, is still an active field of research, see, e.g. [19]. The proposed
strategies require the introduction of new variables that act as regularization scales, and, most importantly for this
work, modify the convolution integral Eq. (6) by introducing a so called soft factor S coming from soft-gluon radiation.
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A. The SIDIS cross section and asymmetries

The lepton-hadron cross section can be expressed in a model-independent way by a set of structure functions
[3, 6, 14, 15], which in the notation of Ref. [6] is:

dσ

dxB dy dψ dzh dφh dP 2
h⊥

=
α2

xByQ2

y2

2 (1− ε)

(
1 +

γ2

2xB

){
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sin(φh+φS)
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√
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]}
, (1)

where in DIS kinematics dψ ≈ dφS and variables are defined as

xB =
Q2

2P · q , y =
P · q
P · l , zh =

P ·Ph

P · q , γ =
2Mx

Q
, ε =

1− y − 1
4 γ

2y2

1− y + 1
2 y

2 + 1
4 γ

2y2
. (2)

For our purposes, we may assume x ≈ xB , z ≈ zh and γ ≈ 0. Individual structure functions can be projected from
the cross section using, e.g., spin asymmetries, which we introduce generically as

AF
XY ≡ 2

∫
dφh dφS F(φh,φS)

(
dσ↑ − dσ↓)

∫
dφhdφS (dσ↑ + dσ↓)

, (3)

Here the labels X,Y represent the polarization, “un” (U), longitudinally (L) and transversely (T ) of the beam and
target, respectively. The angles φS and φh specify the directions of the hadron spin polarization and the transverse
hadron momentum, respectively, relative to the lepton scattering plane. The cross sections dσ↑ and dσ↓ correspond
to opposite spin polarization of the incident lepton / target hadron. 〈TODO: be a bit more specific?〉 The weighting
function F is a sine (or cosine) of a linear combination of the polarization angles, e.g., F(φh,φS) = sin(φh−φS). The
combination dσ↑ − dσ↓ in the numerator projects out the structure functions FF

XY in Eq. 1, while the combination
dσ↑ + dσ↓ in the denominator corresponds to the unpolarized structure function FUU,T :

dσ↑ + dσ↓ =
α2

sx2
By

2

(
1 + (1− y)2

)
FUU,T . (4)

Weighted asymmetries are introduced in a similar way:

AW
XY = 2

∫
d|P h⊥| |P h⊥| dφh dφS W(|P h⊥|,φh,φS)

(
dσ↑ − dσ↓)

∫
d|P h⊥| |P h⊥| dφh dφS (dσ↑ + dσ↓)

, (5)

where the weighting function W now can also contain different powers of |P h⊥|, e.g., W(|P h⊥|,φh,φS) =
|P h⊥|
zM sin(φh − φS), see Ref. [5].
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The projections leading in 1/Q areleading
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The probabilistic interpretation of the leading transverse momentum depen-
dent PDFs is schematically shown in Fig. 3.10. There are two groups of additional
PDFs possible because of the presence of a non-vanishing transverse quark mo-
mentum. The functions g1T (x,p2T ), h

⊥
1L(x,p

2
T ), and h

⊥
1T (x,p

2
T ) are non-vanishing,

if there is a correlation between longitudinal quark polarisation (helicity) and
transverse hadron polarisation, or vice versa. This possibilities, surprising at
first glance, do exist because of the extra distinction of a direction by the trans-
verse quark momentum components; otherwise they would be forbidden simply
by rotational invariance. Note that the existence of two transverse directions x
and y is reflected in the number of independent chiral-odd functions. The sec-
ond group of additional functions consists of the (naive) time-reversal odd PDFs
f⊥1T (x,p

2
T ) (the so-called Sivers function [19]) and h

⊥
1 (x,p

2
T ) correlating transverse

quark momentum to transverse hadron spin, or transverse quark momentum to
transverse quark spin, respectively. 2

A symmetric integration over pT relates the transverse momentum dependent
PDFs with their integrated counterparts

f(x) =
∫
d2pT f(x,p

2
T ) (3.41)

for a generic PDF f(x,p2T ). Note that a symmetric integration of Φ
[iσi+γ5](x,pT )

over pT receives two non-vanishing contributions resulting in the identification

h1(x) =
∫
d2pT

(

h1T (x,p
2
T ) +

p2T
2M2

h⊥1T (x,p
2
T )

)

. (3.42)

2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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(P, Λ) (P, Λ′)

(p, λ) (p, λ′)

(k, µ) (k, µ′)
(γ∗, ε)

Ph

q

PX

PX ′ ∆

Φ

Small transverse 
momentum !!!

Minimal requirement satisfy color 
gauge invariance

Factorization parton model when PT of the hadron small

Wµν(q, P, S, Ph) =

∫
d2pT

(2π)4

∫
d2kT

(2π)4
δ2(pT − Ph⊥

z
− kT )Tr

[(∫
dp−Φ

)
γµ

(∫
dk+∆
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γν

]

Φ(x,pT , S) ≡
∫

dp−Φ(p, P, S)
∣∣∣
p+=xBP+
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Ph
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Φ
aρ
A (p,p1)
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p

Hρ,ν = γν

FSIs and TSSAs in Extend Parton Model-Gauge Links

•Obtained by summing the “leading order” gluons 
that implement color gauge invariance?  
•How is the correlator modified?



∫
d4pd4kδ4(p + q − k)Tr

[
Φ[UC

[∞;ξ](p)H†
µ(p, k)∆(k)Hν(p, k)

]

T-Odd Effects From Color Gauge Inv. Factorized QCD-Wilson Line

• Leading twist Gauge Invariant Distribution and Fragmentation Functions

Boer, Mulders: NPB 2000, Ji et al PLB: 2002, NPB 2003, Boer et al NPB 2003

. . .

. . .

k

p

P

K

Φ

∆

. . .

Φ

∆

etc . . .

• Sub-class of interactions of colinear & transverse gluons re-summed to render
physical process color gauge invariant

• Wilson line emerges from resummation of gluon ISI and FSI btw. active quark and
hadron remnants → U [C]

[ξ,∞]
= Pexp(−ig

R ∞
ξ dη · A)

• The path [C] is fixed by hard subprocess within hadronic process.
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Gauge link for TMDs
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Gauge link determined re-summing gluon interactions btwn soft and hard 
Efremov,Radyushkin Theor. Math. Phys. 1981

Belitsky, Ji, Yuan NPB 2003,
Boer, Bomhof, Mulders Pijlman, et al.  2003 - 2008- NPB, PLB, PRD 

Vogelsang and Yuan PRD 2007
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“T-Odd” Effects From Color Gauge Inv. Via Gauge links

Summing gauge link with color
LG, M. Schlegel PLB 2010



• Depends on the hard partonic subprocess. In particular it depends on the color-flow through 
the subprocess

(ξ−, 0, ξT )

ξ−

ξT

Φ[−] pastpointing Φ[+] futurepointing

Wµν =
∫

d4pd4kδ4(p + q − k)Tr
[
ΦU [C]

[∞;ξ](p)H†
µ(p, k)∆(k)Hν(p, k)

]

The path C is fixed by the hard subprocess within the full hadronic reaction



3

and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆Nfab→c

a/A (xa, kaT )
1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (5)

in which a process-dependent Sivers function denoted as ∆Nfab→c
a/A (xa, kaT ) is used rather than that from SIDIS

∆NfSIDIS
a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.

)

-".

!

-,.

+ "

" &

(

!

#$%

!

FIG. 2: Sivers function in SIDIS process in the first non-trivial order (one-gluon exchange).

3

and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆Nfab→c

a/A (xa, kaT )
1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HU
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4

On the other hand, for DY process, the initial-state interaction (as in Fig. 1(right)) leads to

v̄(pb)(−ig)γ−T a −i(p/b + k/)
(pb + k)2 + iε

≈ v̄(pb)
[

g

−k+ − iε
T a

]
, (7)

which has the same real part and opposite imaginary part compared to SIDIS process. This leads to the fact that the
spin-averaged TMD PDFs are the same, while the Sivers function will be opposite in SIDIS and DY processes. This
conclusion can be generalized to all order, and has been proven to be true using parity and time-reversal invariant
arguments [6, 8].
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FIG. 3: Initial- and final-state interactions in qq′ → qq′: (a) initial-state interaction, (b) final-state interaction, (c) and (d) the
final-state interactions for the unobserved particle.

Now let us turn to the case for inclusive single particle production in hadronic collisions, in which 2 → 2 partonic
scattering is the leading order contribution, where both initial- and final-state interactions contribute. We will
start with a simple example: qq′ → qq′. Here the initial-quark q is from the polarized nucleon, and the final-quark q
fragments to the final-state hadron. The one-gluon exchange approximation for the initial- and final-state interactions
are shown in Fig. 3. Under the eikonal approximation, for initial-state interaction Fig. 3(a),

i(p/b + k/)
(pb + k)2 + iε

(−ig)γ−T aū(pb) =
[

−g

−k+ − iε
T a

]
ū(pb), (8)

Likewise, for the final-state interaction Fig. 3(b), we have
[

g

−k+ + iε
T a

]
. (9)

Thus both interactions contribute to the phase −iπδ(k+), which is the same as in the SIDIS process as in Eq. (6).
However, they will have different color flow. To extract the extra color factors for Fig. 3(a) and (b) as compared to
the usual qq′ → qq′ without gluon attachments, we resort to the method developed in [14, 15, 25]. We obtain the
color factors CI (CFc) for initial (final)-state interaction

CI = − 1
2N2

c

, CFc = − 1
4N2

c

, (10)

while the color factors for unpolarized cross section is given by

Cu =
N2

c − 1
4N2

c
. (11)

In other words, the Sivers function in qq′ → qq′ should be the one as shown in Fig. 4, which comes from the sum of the
ISIs and FSIs with the corresponding color factors CI and CFc respectively. Thus by comparing the imaginary part
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For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[
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−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to
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the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
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For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to
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in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
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For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
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Process Dependence example SIDIS and DY

CI

CF

Collins PLB 02
BHW NPB 02

Factorize w/ leading 1 gluon exchange get GI & phase



“Generalized Universality” Fund. Prediction of  QCD Factorization
T-Odd Effects From Color Gauge Inv. via Wilson Line

• Leading twist Gauge Invariant Distribution Functions

Boer, Mulders: NPB 2000, & Pijlman (BPM) NPB 2003, Belitsky Ji Yuan NPB 2003

dσ = LµνWµν ⇒

∆

. . .
Φ

Φ̄

. . .
Φ

SIDIS Hadronic Tensor Drell-Yan Hadronic Tensor
(ξ−, 0, ξ⊥)

ξ− Φ[+] futurepointing

ξT (ξ−, 0, ξ⊥)

ξ−

ξT

Φ[−] pastpointing

Process Dependence Collins PLB 02, Brodsky, Hwang, Schmidt NPB 02

P&T
Process Dependence Collins PLB 02, Brodsky, Hwang, Schmidt NPB 02

f⊥
1TSIDIS

(x, kT ) = −f⊥
1TDY

(x, kT )

Φ[+]∗(x, pT ) = iγ1γ3Φ[−](x, pT )iγ1γ3

∆[+]∗(x, pT ) "= iγ1γ3∆[−](x, pT )iγ1γ3

Gauge link for TMDs

ξ−

ξT

Φij(x, pT ) =
∫

dξ−d2ξT

8π3
eip·ξ〈P |ψ̄j(0)U[0,ξ]ψi(ξ)|P 〉

∣∣∣∣
ξ+=0

ξ−

ξT

ξ−

ξT

!"#"!

#$%&&'()*

!!+,-+.)/$-*0

U[+]

U[−]

U[!]U[+]

1+0%2%$)&+-,.%$0

"#$%#&'()*+,-./'(012+$34'(05"(678(9:;<(

Gauge link for TMDs

ξ−

ξT

Φij(x, pT ) =
∫

dξ−d2ξT

8π3
eip·ξ〈P |ψ̄j(0)U[0,ξ]ψi(ξ)|P 〉

∣∣∣∣
ξ+=0

ξ−

ξT

ξ−

ξT

!"#"!

#$%&&'()*

!!+,-+.)/$-*0

U[+]

U[−]

U[!]U[+]

1+0%2%$)&+-,.%$0

"#$%#&'()*+,-./'(012+$34'(05"(678(9:;<(

Gauge link for TMDs

ξ−

ξT

Φij(x, pT ) =
∫

dξ−d2ξT

8π3
eip·ξ〈P |ψ̄j(0)U[0,ξ]ψi(ξ)|P 〉

∣∣∣∣
ξ+=0

ξ−

ξT

ξ−

ξT

!"#"!

#$%&&'()*

!!+,-+.)/$-*0

U[+]

U[−]

U[!]U[+]

1+0%2%$)&+-,.%$0

"#$%#&'()*+,-./'(012+$34'(05"(678(9:;<(

Gauge link for TMDs

ξ−

ξT

Φij(x, pT ) =
∫

dξ−d2ξT

8π3
eip·ξ〈P |ψ̄j(0)U[0,ξ]ψi(ξ)|P 〉

∣∣∣∣
ξ+=0

ξ−

ξT

ξ−

ξT

!"#"!

#$%&&'()*

!!+,-+.)/$-*0

U[+]

U[−]

U[!]U[+]

1+0%2%$)&+-,.%$0

"#$%#&'()*+,-./'(012+$34'(05"(678(9:;<(

EIC  conjunction with DY exp. E906-Fermi, RHIC II, Compass,  JPARC  

Process Dependence,  Collins PLB 02, Brodsky et al. NPB 02, Boer Mulders Pijlman Bomhoff 03, 04 ...

f⊥1T sidis
(x, kT ) = −f⊥1T DY

(x, kT ) pT ∼ kT <<
√

Q2

SIDIS DY



∆σpp↑→γX ∼ ∆fa ⊗ fb ⊗∆σ̂

Consider direct Photon in GPM  

Get Sivers function for this process to use in GPM

3

and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆Nfab→c

a/A (xa, kaT )
1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (5)

in which a process-dependent Sivers function denoted as ∆Nfab→c
a/A (xa, kaT ) is used rather than that from SIDIS

∆NfSIDIS
a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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FIG. 2: Sivers function in SIDIS process in the first non-trivial order (one-gluon exchange).
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Formula: Two partonic channel contribute to direct photon production:
• qg → γq:

HU
qg→γq =

1

Nc
e2

q

[

−

t̂

ŝ
−

ŝ

t̂

]

(1)

HInc

qg→γq = −

Nc

N2
c − 1

e2

q

[

−

t̂

ŝ
−

ŝ

t̂

]

(2)

• qq̄ → γg:

HU
qq̄→γg =

N2
c − 1

N2
c

e2

q

[

t̂

û
+

û

t̂

]

(3)

HInc

qq̄→γg =
1

N2
c

e2

q

[

t̂

û
+

û

t̂

]

(4)

ISI drives result
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c
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+
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1. The latest one: Sivers function from [2], along with DSS fragmentation function [3].

It is important to realize that this set of Sivers function gives too small asymmtry for RHIC energy. It even gives wrong

xF behavior. As most experiments observed so far, AN gets bigger when xF increases. However, this set of Sivers

function gives opposite trend.

The predictions using GPM are given by the dashed blue curves in Fig. 1. Our new prediction by including the

process-dependence are given by the solid red curves. As we can see, particularly for direct photon, GPM predicts

positive AN , while our new approach predicts negative AN .
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Figure 1: AN for inclusive particle production as a function of xF : p
↑p → γ + X (left) and p↑p → π0 + X (right). We use GRV98 LO parton

distribution function [1], the latest Sivers function from [2], and DSS fragmentation function [3].

2. The old one: Sivers function from [4], along with Kretzer fragmentation function [5].

It is important to realize that this set of Sivers function has only u and d Sivers function, all others have been set to

zero. It could generate large asymmetry if one uses GPM, as shown in the dashed blue curves in Fig. 2. In fact, the

predictions are consistent with RHIC data.

As we can see, the predictions by taking the process dependence of the Sivers function into account somehow

predict almost vanishing small AN for π
0, though the nice sign change in the direct photon production is still there.
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Figure 2: AN for inclusive particle production as a function of xF : p
↑p → γ + X (left) and p↑p → π0 + X (right). We use GRV98 LO parton

distribution function [1], the old Sivers function from [4], and Kretzer fragmentation function [5].

To understand what’s going on, one could trace back to the hard parts. It is good to realize that for the inclusive
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• Crucial point: Sivers function in inclusive single 
particle production contains both ISI and FSI 

• consider channel   

Different color factors different 
processes ...

qq′ → qq′
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qq′ → qq′One gluon exchange approx for ISI and FSI

4

On the other hand, for DY process, the initial-state interaction (as in Fig. 1(right)) leads to

v̄(pb)(−ig)γ−T a −i(p/b + k/)
(pb + k)2 + iε

≈ v̄(pb)
[

g

−k+ − iε
T a

]
, (7)

which has the same real part and opposite imaginary part compared to SIDIS process. This leads to the fact that the
spin-averaged TMD PDFs are the same, while the Sivers function will be opposite in SIDIS and DY processes. This
conclusion can be generalized to all order, and has been proven to be true using parity and time-reversal invariant
arguments [6, 8].
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FIG. 3: Initial- and final-state interactions in qq′ → qq′: (a) initial-state interaction, (b) final-state interaction, (c) and (d) the
final-state interactions for the unobserved particle.

Now let us turn to the case for inclusive single particle production in hadronic collisions, in which 2 → 2 partonic
scattering is the leading order contribution, where both initial- and final-state interactions contribute. We will
start with a simple example: qq′ → qq′. Here the initial-quark q is from the polarized nucleon, and the final-quark q
fragments to the final-state hadron. The one-gluon exchange approximation for the initial- and final-state interactions
are shown in Fig. 3. Under the eikonal approximation, for initial-state interaction Fig. 3(a),

i(p/b + k/)
(pb + k)2 + iε

(−ig)γ−T aū(pb) =
[

−g

−k+ − iε
T a

]
ū(pb), (8)

Likewise, for the final-state interaction Fig. 3(b), we have
[

g

−k+ + iε
T a

]
. (9)

Thus both interactions contribute to the phase −iπδ(k+), which is the same as in the SIDIS process as in Eq. (6).
However, they will have different color flow. To extract the extra color factors for Fig. 3(a) and (b) as compared to
the usual qq′ → qq′ without gluon attachments, we resort to the method developed in [14, 15, 25]. We obtain the
color factors CI (CFc) for initial (final)-state interaction

CI = − 1
2N2

c

, CFc = − 1
4N2

c

, (10)

while the color factors for unpolarized cross section is given by

Cu =
N2

c − 1
4N2

c
. (11)

In other words, the Sivers function in qq′ → qq′ should be the one as shown in Fig. 4, which comes from the sum of the
ISIs and FSIs with the corresponding color factors CI and CFc respectively. Thus by comparing the imaginary part
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scattering is the leading order contribution, where both initial- and final-state interactions contribute. We will
start with a simple example: qq′ → qq′. Here the initial-quark q is from the polarized nucleon, and the final-quark q
fragments to the final-state hadron. The one-gluon exchange approximation for the initial- and final-state interactions
are shown in Fig. 3. Under the eikonal approximation, for initial-state interaction Fig. 3(a),

i(p/b + k/)
(pb + k)2 + iε

(−ig)γ−T aū(pb) =
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Likewise, for the final-state interaction Fig. 3(b), we have
[

g

−k+ + iε
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]
. (9)

Thus both interactions contribute to the phase −iπδ(k+), which is the same as in the SIDIS process as in Eq. (6).
However, they will have different color flow. To extract the extra color factors for Fig. 3(a) and (b) as compared to
the usual qq′ → qq′ without gluon attachments, we resort to the method developed in [14, 15, 25]. We obtain the
color factors CI (CFc) for initial (final)-state interaction

CI = − 1
2N2

c

, CFc = − 1
4N2

c

, (10)

while the color factors for unpolarized cross section is given by

Cu =
N2

c − 1
4N2

c
. (11)

In other words, the Sivers function in qq′ → qq′ should be the one as shown in Fig. 4, which comes from the sum of the
ISIs and FSIs with the corresponding color factors CI and CFc respectively. Thus by comparing the imaginary part
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On the other hand, for DY process, the initial-state interaction (as in Fig. 1(right)) leads to

v̄(pb)(−ig)γ−T a −i(p/b + k/)
(pb + k)2 + iε

≈ v̄(pb)
[

g

−k+ − iε
T a

]
, (7)

which has the same real part and opposite imaginary part compared to SIDIS process. This leads to the fact that the
spin-averaged TMD PDFs are the same, while the Sivers function will be opposite in SIDIS and DY processes. This
conclusion can be generalized to all order, and has been proven to be true using parity and time-reversal invariant
arguments [6, 8].
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[

−g

−k+ − iε
T a

]
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Collins Soper NPB 1981, Collins Metz PRL 2004, Ji, Ma, Yuan PRD 2005,  also Bacchetta Boer Diehl Mulders JHEP 2008

CS NPB 81,CSS NPB 1985 Collins Hautman PLB 00, Ji Ma Yuan PRD 05, 
Cherednikov Karanikas Stefanis  NPB 10, Collins Oxford Press 2011, 

Abyat & Rogers arXiv: 2011

•Extra divergences at one loop and higher
•Various strategies to address them 
•Extra variables needed to regulate divergences 
•Modifies convolution integral by introduction soft factor
•Will show cancels in certain weighted asymmetriesHard

TMD Soft FF

C
[
H;wfSD

]
≡ xBH(Q2, µ2, ρ)

∑

a

e2
a

∫
d2pT d2KT d2"T δ(2)

(
zpT + KT + "T − Ph⊥

)
w

(
pT ,−KT

z

)

×fa(x, p2
T , µ2, xζ, ρ) S("2T , µ2, ρ) Da(z,K2

T , µ2, ζ̂/z, ρ)

P

Ph

q

p

k

S

∆

Φ

Beyond “tree level” factorization



Comments on Soft factor

αs

• Collective effect of soft gluons not associated with 
distribution or fragmentation function-factorizes

• Considered to be universal in hard processes              
(Collins & Metz PRL 04, Ji, Ma, Yuan, PRD 05)

• At tree level (zeroth order       ) unity-parton model

• Absent tree level pheno analyses of experimental data 
(e.g. Anselmino et al PRD 05 & 07, Efremov et al PRD 07) 

• Potentially, results of  analyses can be difficult to 
compare at different energies issue for EIC

• Correct description of energy scale dependence of cross 
section and asymmetries in TMD picture, soft factor 
must be included (see Collins Oxford Press 2011, &  Abyat & Rogers arXive: 1101.5057)   

• However, possible to consider observables  where it 
cancels e.g. weighted asymmetries 



Structure Function

3

B. Transverse momentum dependent distributions at tree level

Based on QCD factorization arguments for the reaction at large momentum transfer Q ! ΛQCD at tree level
(zeroth order in αS) [4, 6], the hadronic tensor appearing in the cross section can be further decomposed into a hard
reaction and soft parts. The latter include the transverse momentum dependent parton distribution functions (TMDs),
here generically denoted f , and transverse momentum dependent fragmentation functions, generically denoted D. At
leading order in αs, the structure functions FF

XY can then be written as convolutions of distribution and fragmentation
functions [6]:

C
[
wfD

]
≡ xB

∑

a

e2a

∫
d2pT d2kT δ(2)

(
pT − kT − P h⊥/z

)
w(pT ,kT ) f

a(x, p2T )D
a(z, z2k2T )

= xB

∑

a

e2a

∫
d2pT d2KT δ(2)

(
zpT +KT − P h⊥

)
w

(
pT ,−

KT

z

)
fa(x, p2T )D

a(z,K2
T ) . (6)

where ea is the electric charge of quark flavor a, where w is an appropriate weighting function, and whereKT ≡ −kT z.
For example,

F sin(φh−φS)
UT,T = C

[
−(ĥ·pT /M)f⊥

1T D1

]
× (1 +O(αs)) , (7)

with ĥ ≡ P h⊥/|P h⊥|. Here the TMD f⊥
1T is the Sivers function and the D1 is the unpolarized fragmentation function.

C. The soft factor

The formalism becomes more complicated once diagrams beyond leading order in αs are taken into account. Various
strategies have been proposed to address extra divergences that appear at one loop level and higher order [16–18].
Improvement of these frameworks for transverse momentum dependent factorization and establishment of the complete
proofs of the corresponding factorization theorems, is still an active field of research, see, e.g. [19]. The proposed
strategies require the introduction of new variables that act as regularization scales, and, most importantly for this
work, modify the convolution integral Eq. (6) by introducing a so called soft factor S coming from soft-gluon radiation.
In the following, we are going to show that this soft factor cancels in certain weighted asymmetries. We will show that
this cancellation happens quite generally, independent of the particular formalism used1. However, for definiteness,
we choose here the “JMY” framework of Refs. [18, 22], which is essentially based on the ideas of Collins and Soper
for the factorization of e+e− scattering [16]. The convolution Eq. (6) becomes in this framework

C
[
H;wf SD

]
≡ xB H(Q2, µ2, ρ)

∑

a

e2a

∫
d2pT d2KT d2!T δ(2)

(
zpT +KT + !T − P h⊥

)
w

(
pT ,−

KT

z

)

×fa(x,p2
T , µ

2, xζ, ρ)S(!2T , µ
2, ρ)Da(z,K2

T , µ
2, ζ̂/z, ρ), (8)

Here µ is a UV renormalization scale, and ζ, ζ̂ and ρ are rapidity cutoff parameters that are described in more detail
in Ref. [22] and section III below.

Our example Eq. (7) now reads 2

F sin(φh−φS)
UT,T = C

[
Hsin(φh−φS)

UT,T ; −(ĥ·pT /M) f⊥
1T S+D1

]
. (9)

where S+ is the soft factor for SIDIS, see Ref. [22] and section III below. At leading order in αs one has [22]

S+(%2T , µ
2, ρ) = 1, Hsin(φh−φS)

UT,T (Q2, µ2, ρ) = 1, and we recover Eq. 6. The above description applies in the kinematic

region |P h⊥|/z % Q2. In general, at large |P h⊥|/z ∼ Q a term (generically called Y ) should be added that takes care

1 In the b-space formulation beyond leading order, the cancellation of the soft factor is accompanied by a similar cancellation of the
Sudakov factor [20, 21], which is introduced to resum large logarithms and which may include parts of the soft factor depending on the
choice of factorization scale.

2 F
sin(φh−φS)
UT,T corresponds to F

(1)
UT in Eq. (15) of Ref. [22] up to a factor xB . Note that the Sivers function f⊥

1T is denoted qT in that
reference, and the unpolarized fragmentation function D1 is called q̂. Our pT corresponds to their kT and our KT corresponds to their
pT .

3

B. Transverse momentum dependent distributions at tree level

Based on QCD factorization arguments for the reaction at large momentum transfer Q ! ΛQCD at tree level
(zeroth order in αS) [4, 6], the hadronic tensor appearing in the cross section can be further decomposed into a hard
reaction and soft parts. The latter include the transverse momentum dependent parton distribution functions (TMDs),
here generically denoted f , and transverse momentum dependent fragmentation functions, generically denoted D. At
leading order in αs, the structure functions FF

XY can then be written as convolutions of distribution and fragmentation
functions [6]:

C
[
wfD

]
≡ xB

∑

a

e2a

∫
d2pT d2kT δ(2)

(
pT − kT − P h⊥/z

)
w(pT ,kT ) f

a(x, p2T )D
a(z, z2k2T )

= xB

∑

a

e2a

∫
d2pT d2KT δ(2)

(
zpT +KT − P h⊥

)
w

(
pT ,−

KT

z

)
fa(x, p2T )D

a(z,K2
T ) . (6)

where ea is the electric charge of quark flavor a, where w is an appropriate weighting function, and whereKT ≡ −kT z.
For example,

F sin(φh−φS)
UT,T = C

[
−(ĥ·pT /M)f⊥

1T D1

]
× (1 +O(αs)) , (7)

with ĥ ≡ P h⊥/|P h⊥|. Here the TMD f⊥
1T is the Sivers function and the D1 is the unpolarized fragmentation function.

C. The soft factor

The formalism becomes more complicated once diagrams beyond leading order in αs are taken into account. Various
strategies have been proposed to address extra divergences that appear at one loop level and higher order [16–18].
Improvement of these frameworks for transverse momentum dependent factorization and establishment of the complete
proofs of the corresponding factorization theorems, is still an active field of research, see, e.g. [19]. The proposed
strategies require the introduction of new variables that act as regularization scales, and, most importantly for this
work, modify the convolution integral Eq. (6) by introducing a so called soft factor S coming from soft-gluon radiation.
In the following, we are going to show that this soft factor cancels in certain weighted asymmetries. We will show that
this cancellation happens quite generally, independent of the particular formalism used1. However, for definiteness,
we choose here the “JMY” framework of Refs. [18, 22], which is essentially based on the ideas of Collins and Soper
for the factorization of e+e− scattering [16]. The convolution Eq. (6) becomes in this framework

C
[
H;wf SD

]
≡ xB H(Q2, µ2, ρ)

∑

a

e2a

∫
d2pT d2KT d2!T δ(2)

(
zpT +KT + !T − P h⊥

)
w

(
pT ,−

KT

z

)

×fa(x,p2
T , µ

2, xζ, ρ)S(!2T , µ
2, ρ)Da(z,K2

T , µ
2, ζ̂/z, ρ), (8)

Here µ is a UV renormalization scale, and ζ, ζ̂ and ρ are rapidity cutoff parameters that are described in more detail
in Ref. [22] and section III below.

Our example Eq. (7) now reads 2

F sin(φh−φS)
UT,T = C

[
Hsin(φh−φS)

UT,T ; −(ĥ·pT /M) f⊥
1T S+D1

]
. (9)

where S+ is the soft factor for SIDIS, see Ref. [22] and section III below. At leading order in αs one has [22]

S+(%2T , µ
2, ρ) = 1, Hsin(φh−φS)

UT,T (Q2, µ2, ρ) = 1, and we recover Eq. 6. The above description applies in the kinematic

region |P h⊥|/z % Q2. In general, at large |P h⊥|/z ∼ Q a term (generically called Y ) should be added that takes care

1 In the b-space formulation beyond leading order, the cancellation of the soft factor is accompanied by a similar cancellation of the
Sudakov factor [20, 21], which is introduced to resum large logarithms and which may include parts of the soft factor depending on the
choice of factorization scale.

2 F
sin(φh−φS)
UT,T corresponds to F

(1)
UT in Eq. (15) of Ref. [22] up to a factor xB . Note that the Sivers function f⊥

1T is denoted qT in that
reference, and the unpolarized fragmentation function D1 is called q̂. Our pT corresponds to their kT and our KT corresponds to their
pT .

Momentum conv. becomes

or, 

F sin(φh−φS)
UT,T = xB Hsin(φh−φS)

UT,T

∑

a

e2a

×
∫

d2pT d2KT d2lT δ
(2)

(
zpT +KT + lT − Ph⊥

)

×pT cos(φh − φp)

M
f⊥ a
1T (x, p2T )S(l

2
T )D

a(z,K2
T )
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A. The SIDIS cross section and asymmetries

The lepton-hadron cross section can be expressed in a model-independent way by a set of structure functions
[3, 6, 14, 15], which in the notation of Ref. [6] is:

dσ

dxB dy dψ dzh dφh dP 2
h⊥

=
α2

xByQ2

y2

2 (1− ε)

(
1 +

γ2

2xB

){
FUU,T + εFUU,L +

√
2 ε(1 + ε) cosφh F

cosφh

UU

+ ε cos(2φh)F
cos 2φh

UU + λe

√
2 ε(1− ε) sinφh F

sinφh

LU

+ S‖

[
√
2 ε(1 + ε) sinφh F

sinφh

UL + ε sin(2φh)F
sin 2φh

UL

]

+ S‖λe

[
√
1− ε2 FLL +

√
2 ε(1− ε) cosφh F

cosφh

LL

]

+ |S⊥|
[
sin(φh − φS)

(
F sin(φh−φS)
UT,T + εF sin(φh−φS)

UT,L

)

+ ε sin(φh + φS)F
sin(φh+φS)
UT + ε sin(3φh − φS)F

sin(3φh−φS)
UT

+
√

2 ε(1 + ε) sinφS F sinφS

UT +
√
2 ε(1 + ε) sin(2φh − φS)F

sin(2φh−φS)
UT

]

+ |S⊥|λe

[
√

1− ε2 cos(φh − φS)F
cos(φh−φS)
LT +

√
2 ε(1− ε) cosφS F cosφS

LT

+
√
2 ε(1− ε) cos(2φh − φS)F

cos(2φh−φS)
LT

]}
, (1)

where in DIS kinematics dψ ≈ dφS and variables are defined as

xB =
Q2

2P · q , y =
P · q
P · l , zh =

P ·Ph

P · q , γ =
2Mx

Q
, ε =

1− y − 1
4 γ

2y2

1− y + 1
2 y

2 + 1
4 γ

2y2
. (2)

For our purposes, we may assume x ≈ xB , z ≈ zh and γ ≈ 0. Individual structure functions can be projected from
the cross section using, e.g., spin asymmetries, which we introduce generically as

AF
XY ≡ 2

∫
dφh dφS F(φh,φS)

(
dσ↑ − dσ↓)

∫
dφhdφS (dσ↑ + dσ↓)

, (3)

Here the labels X,Y represent the polarization, “un” (U), longitudinally (L) and transversely (T ) of the beam and
target, respectively. The angles φS and φh specify the directions of the hadron spin polarization and the transverse
hadron momentum, respectively, relative to the lepton scattering plane. The cross sections dσ↑ and dσ↓ correspond
to opposite spin polarization of the incident lepton / target hadron. 〈TODO: be a bit more specific?〉 The weighting
function F is a sine (or cosine) of a linear combination of the polarization angles, e.g., F(φh,φS) = sin(φh−φS). The
combination dσ↑ − dσ↓ in the numerator projects out the structure functions FF

XY in Eq. 1, while the combination
dσ↑ + dσ↓ in the denominator corresponds to the unpolarized structure function FUU,T :

dσ↑ + dσ↓ =
α2

sx2
By

2

(
1 + (1− y)2

)
FUU,T . (4)

Weighted asymmetries are introduced in a similar way:

AW
XY = 2

∫
d|P h⊥| |P h⊥| dφh dφS W(|P h⊥|,φh,φS)

(
dσ↑ − dσ↓)

∫
d|P h⊥| |P h⊥| dφh dφS (dσ↑ + dσ↓)

, (5)

where the weighting function W now can also contain different powers of |P h⊥|, e.g., W(|P h⊥|,φh,φS) =
|P h⊥|
zM sin(φh − φS), see Ref. [5].

Weighted asymmetries  

Disentangle in model independent way cross section in 
terms of moments of TMDs

Kotzinian, Mulders PLB 97,  Boer, Mulders PRD 98 

WSivers =
|P h⊥|

M
sin(φh − φS)

A
|P h⊥|
zhM sin(φh−φs)

UT = −2
∑

a e2
a f⊥(1)

1T (x) Da(0)
1 (z)

∑
a e2

a fa(0)
1 (x) Da(0)

1 (z)

e.g.

Undefined w/o regularization
to subtract infinite contribution at 

large transverse momentum Bacchetta et al. JHEP 08



• Propose generalize Bessel Weights-”BW”

• BW procedure has advantages

• Introduces a free parameter                   that 
is  Fourier conjugate to  

• Provides a regularization of infinite 
contributions at lg. transverse momentum 
when       is non-zero for moments

• Addtnl.  bonus soft factor eliminated from 
weighted asymmetries

• Possible to compare observables at different 
scales.... could be useful for an EIC 

Comments

P h⊥

BT [GeV−1]

B2
T



Advantages of Bessel Weighting

1.“Deconvolution”-SIDIS struct fnct simple products  “   “
2.  Soft Factor Cancels 
3.  Circumvents the problem of ill-defined       moments  
4.  Bessel Weight asymmetris sensitive to low           region

pT

P h⊥

w1 = 2J1(|P h⊥|BT )/zMBT

A
2J1(|P h⊥|BT )

zMBT
sin(φh−φs)

UT = −2
∑

a e2
a f̃⊥(1)a

1T (x, z2B2
T ) D̃a

1(z,B2
T )

∑
a e2

a f̃a
1 (x, z2B2

T ) D̃a
1(z,B2

T )
,

Where                           are Fourier Transf. of  TMDs/FFs
and finite

f̃1, f̃⊥(1)
1T , and D̃1

P



 1. “Deconvolution”-SIDIS structure functions simple products



 1. “Deconvolution”-SIDIS structure functions simple products

f̃(x, b2
T ) ≡

∫
d2pT eibT ·pT f(x,p2

T )

= 2π

∫
d|pT ||pT | J0(|bT ||pT |) fa(x,p2

T ) ,

f̃ (n)(x, b2
T ) ≡ n!

(
− 2

M2
∂b2

T

)n

f̃(x, b2
T )

=
2π n!
(M2)n

∫
d|pT ||pT |

(
|pT |
|bT |

)n

Jn(|bT ||pT |) f(x,p2
T ) ,

f̃ (n)(x, 0) =
∫

d2pT

(
p2

T

2M2

)n

f(x,p2
T ) ≡ f (n)(x)

b)  n.b. connection to        moments

 a) F.T. SIDIS cross section w/ following defintions

pT



Structure functions are  “products”      vs. “convolutions”P C
dσ

dxB dy dφS dzh dφh d|P h⊥|2
∝ α2

xBQ2

∫
d|bT |
(2π)

|bT | S̃(b2
T )

{
. . .

+J0(|bT ||P h⊥|)P[f̃1 D̃1]

+ |S⊥| sin(φh − φS) J1(|bT ||P h⊥|) P[f̃⊥(1)
1T D̃1]

+ε cos(2φh) J2(|bT ||P h⊥|)P[h̃⊥(1)
1 H̃⊥(1)

1 ]

+ . . . 15 more structure functions

  Products in terms of   “     moments “bT

}Soft factor is
• spin blind
• flavor blind
• factors in
• Universal

P

Ibildi,Ji,Ma,Yuan PRD 05

P[f̃⊥(1)
1T D̃(0)] ≡ xB (zM |bT |)

×
∑

a

e2
a f̃⊥a(1)

1T (x, z2b2
T ) D̃a(z, b2

T )



where α = 1, 2 ; β = −, 1, 2 and for completeness we wrote also twist-3 and twist-4 terms. For fragmentation correlator
we have the following expression:

∆̃ =
1
2
γ−∆[γ−] − 1

2
γ−γ5∆[γ−γ5] − 1

4
iσα−γ5∆[iσα−γ5] +

1
2
γβ∆[γβ] − 1

2
γβγ5∆[γβγ5] − 1

4
iσαβγ5∆[iσαβγ5] +

1
2
1∆[1] ,

(27)
where α = 1, 2 ; β = +, 1, 2 and for completeness we wrote also twist-3 and twist-4 terms.

Notice that, apart from Fourier transformed TMDs and TMD FFs

f̃(x, b2
T ) ≡

∫
d2pT eibT ·pT f(x,p2

T ) = 2π

∫
d|pT ||pT | J0(|bT ||pT |) fa(x,p2

T ) , (28)

D̃(z, b2
T ) ≡

∫
d2KT eibT ·KT D(z, K2

T ) = 2π

∫
d|KT ||KT | J0(|bT ||pT |) Da(x, K2

T ) , (29)

also their b2
T -derivatives appear, which we denote in the following as

f̃ (n)(x, b2
T ) ≡ n!

(
− 2

M2
∂b2

T

)n

f̃(x, b2
T ) =

2π n!
(M2)n

∫
d|pT ||pT |

(
|pT |
|bT |

)n

Jn(|bT ||pT |) f(x,p2
T ) ,

D̃(n)(z, b2
T ) ≡ n!

(
− 2

z2M2
∂b2

T

)n

D̃(z, b2
T ) =

2π n!
(zM2

h)n

∫
d|KT ||KT |

(
|KT |
|bT |

)n

Jn(|bT ||KT |) D(z, K2
T ) . (30)

The functions f̃ , D̃, f̃ (n) and D̃(n) are real valued. Taking the limit |bT | → 0 on the right hand side of Eqs. (30), we
obtain formally

f̃ (n)(x, 0) =
∫

d2pT

(
p2

T

2M2

)n

f(x,p2
T ) ≡ f (n)(x) ,

D̃(n)(z, 0) =
∫

d2KT

(
K2

T

2z2M2
h

)n

D(x,K2
T ) ≡ D(n)(z) (31)

f (n)(x) and D(n)(z) are refer to as moments of TMDs and TMD FFs. We thus find that the derivatives in bT -space
are directly related to moments of TMDs and TMD FFs. We now rewrite the SIDIS cross section of Ref. [? ] as a
Fourier decomposition in polar coordinates [? ]

dσ

dxB dy dφS dzh dφh |P h⊥|d|P h⊥|
=

α2

xByQ2

y2

(1 − ε)

(
1 +

γ2

2xB

) ∫
d|bT |
(2π)

|bT |
{

+ J0(|bT ||P h⊥|)PUU,T + εJ0(|bT ||P h⊥|)PUU,L +
√

2 ε(1 + ε) cosφh J1(|bT ||P h⊥|)Pcos φh

UU

+ ε cos(2φh)J2(|bT ||P h⊥|)Pcos(2φh)
UU + λe

√
2 ε(1 − ε) sinφh J1(|bT ||P h⊥|)Psin φh

LU

+ S‖

[
√

2 ε(1 + ε) sinφh J1(|bT ||P h⊥|)Psin φh
UL + ε sin(2φh)J2(|bT ||P h⊥|)Psin 2φh

UL

]

+ S‖λe

[
√

1 − ε2 J0(|bT ||P h⊥|)PLL +
√

2 ε(1 − ε) cosφh J1(|bT ||P h⊥|)Pcos φh
LL

]

+ |S⊥|
[

sin(φh − φS)J1(|bT ||P h⊥|)
(
Psin(φh−φS)

UT,T + εPsin(φh−φS)
UT,L

)

+ ε sin(φh + φS)J1(|bT ||P h⊥|)Psin(φh+φS)
UT + ε sin(3φh − φS)J3(|bT ||P h⊥|)Psin(3φh−φS)

UT

+
√

2 ε(1 + ε) sinφS J1(|bT ||P h⊥|)Psin φS

UT +
√

2 ε(1 + ε) sin(2φh − φS)J2(|bT ||P h⊥|)Psin(2φh−φS)
UT

]

+ |S⊥|λe

[
√

1 − ε2 cos(φh − φS)J1(|bT ||P h⊥|)Pcos(φh−φS)
LT +

√
2 ε(1− ε) cosφS J0(|bT ||P h⊥|)Pcos φS

LT

+
√

2 ε(1− ε) cos(2φh − φS)J2(|bT ||P h⊥|)Pcos(2φh−φS)
LT

]}

Full Cross Section expansion in Bessel functions

truncates at J3



Projecting w/ basis functions 

Internal note for the CLAS proposals:
Fourier transformed cross section

L. Gamberg,1, ∗ B.U. Musch,2, † and A. Prokudin2, ‡

1Division of Science, Penn State University-Berks Reading, Pennsylvania 19083, USA
2Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606

(Dated: June 6, 2011)

PACS numbers:

TMDs and transverse momentum dependent fragmentation functions enter the SIDIS cross section in a convolution
with respect to transverse momentum. In order to extract TMDs, it is therefore advantageous to project the differential
cross section onto Fourier modes [1]. The result is a product of TMDs and fragmentation functions in Fourier space.
The Fourier transform of a generic TMD f and a generic fragmentation function D is defined as

f̃(x, b2
T ) ≡

∫
d2pT eibT ·pT f(x,p2

T ) = 2π
∫

d|pT ||pT | J0(|bT ||pT |) fa(x,p2
T ) , (1)

D̃(z, b2
T ) ≡

∫
d2KT eibT ·KT D(z,K2

T ) = 2π
∫

d|KT ||KT | J0(|bT ||pT |) Da(z, K2
T ) , (2)

where J0 is a Bessel function. We also need to introduce b2
T -derivatives of the Fourier transformed distributions:

f̃ (n)(x, b2
T ) ≡ n!

(
− 2

M2
∂b2

T

)n

f̃(x, b2
T ) =

2π n!
(M2)n

∫
d|pT ||pT |

(
|pT |
|bT |

)n

Jn(|bT ||pT |) f(x,p2
T ) ,

D̃(n)(z, b2
T ) ≡ n!

(
− 2

z2M2
h

∂b2
T

)n

D̃(z, b2
T ) =

2π n!
(z2M2

h)n

∫
d|KT ||KT |

(
|KT |
|bT |

)n

Jn(|bT ||KT |) D(z,K2
T ) . (3)

At this point, we note that we can formally make contact to pT -moments of TMDs f (n)(x) and fragmentation functions
D(n)(z) by taking the limit |bT |→ 0 on the right hand side of Eqs. (3):

f̃ (n)(x, 0) =
∫

d2pT

(
p2

T

2M2

)n

f(x,p2
T ) ≡ f (n)(x) ,

D̃(n)(z, 0) =
∫

d2KT

(
K2

T

2z2M2
h

)n

D(x,K2
T ) ≡ D(n)(z) . (4)

With these definitions, we can identify the Fourier-modes of the cross section as products of the f̃ (n) and D̃(n). At
leading twist and tree-level, we find in the φh-independent channel

∫ 2π

0

dφS

2π

∫ 2π

0
dφh

∫ ∞

0
d|P h⊥| |P h⊥|J0(|P h⊥||bT |)

[
dσ

dxB dy dφS dzh dφh |P h⊥|d|P h⊥|

]

=
α2

yQ2

y2

(1− ε)

(
1 +

γ2

2xB

) ∑

a

e2
a

{
f̃a(0)
1 (x, z2b2

T ) + S‖λe

√
1− ε2 g̃(0)a

1 (x, z2b2
T )

}
D̃(0)a

1 (z, b2
T ) ,

where ea is the electric charge of a quark of flavor a. The unpolarized contribution from f1 can be isolated from that
of g1 by averaging over the helicity of the electron λe. The above transformation depends on the external parameter
BT ≡ |bT |. Choosing different values of this parameter allows us to scan the transverse momentum dependence of the
distributions in Fourier space.

∗Electronic address: lpg10@psu.edu
†Electronic address: bmusch@jlab.org
‡Electronic address: prokudin@jlab.org

Jn(|Ph⊥||b⊥|){sin, cos}(mφ± nφs)
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〈 Here are the paragraphs specific to the different CLAS proposals : 〉

• A similar integration allows us to project out information on the transversity function h1:

∫ 2π

0

dφS

2π

∫ 2π

0
dφh sin(φh + φS)

∫ ∞

0
d|P h⊥| |P h⊥| 2J1(|P h⊥||bT |)

zMh|bT |

[
dσ

dxB dy dφS dzh dφh |P h⊥|d|P h⊥|

]

=
α2

yQ2

y2

(1 − ε)

(
1 +

γ2

2xB

)
|S⊥| ε

∑

a

e2
a h̃(1)a

1 (x, z2b2
T ) H̃⊥(1)a

1 (z, b2
T ) . (5)

• A similar integration allows us to project out information on the Sivers function f⊥1T :

∫ 2π

0

dφS

2π

∫ 2π

0
dφh sin(φh − φS)

∫ ∞

0
d|P h⊥| |P h⊥| −2J1(|P h⊥||bT |)

zM |bT |

[
dσ

dxB dy dφS dzh dφh |P h⊥|d|P h⊥|

]

=
α2

yQ2

y2

(1 − ε)

(
1 +

γ2

2xB

)
|S⊥|

∑

a

e2
a f̃⊥(1)a

1T (x, z2b2
T ) D̃(0)a

1 (z, b2
T ) . (6)

• A similar integration allows us to project out information on the worm gear function g⊥1T :

∫ 2π

0

dφS

2π

∫ 2π

0
dφh cos(φh − φS)

∫ ∞

0
d|P h⊥| |P h⊥| 2J1(|P h⊥||bT |)

zM |bT |

[
dσ

dxB dy dφS dzh dφh |P h⊥|d|P h⊥|

]

=
α2

yQ2

y2

(1 − ε)

(
1 +

γ2

2xB

)
|S⊥|λe

√
1 − ε2

∑

a

e2
a g̃(1)a

1T (x, z2b2
T ) D̃(0)a

1 (z, b2
T ) . (7)

• A similar integration allows us to project out information on the worm gear function h⊥1L:

∫ 2π

0

dφS

2π

∫ 2π

0
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and .....



• Old weights are asymptotic form of Bessel

|P h⊥|n → Jn(|P h⊥|BT ) n!
(

2
BT

)n

≡ J BT
n (|P h⊥|)

γ + q → 3/2− (−3/2) = 3

γ + P → 3/2− (−3/2) = 3

• Spin orbit correlations???

• Twisted quarks 

    (? angular momentum w/ intrinsic helicity ?) 

      Ivanov 2011 on twisted photons spin orbit

Comments



•  Various strategies developed to take into account extra  
divergences that appear at 1 loop and beyond
• Requires introduction of variables that act as regularization 
scales--TMD evolution (PRE-DIS wkshp http://conferences.jlab.org/QCDEvolution/index.html 
• Soft factor coming from gluon radiation can be absorbed in 
definition of TMDs or can appear in structure functions
Ji, Ma, Yuan PRD 05 , Collins 2011 Oxford Press, Abyet , Rogers

• With both definitions we show it cancels in weighted 
asymmetries   Boer, LG, Musch,Prokudin (in preparation)

Hard

TMD Soft FF

C
[
H;wfSD

]
≡ xBH(Q2, µ2, ρ)

∑

a

e2
a

∫
d2pT d2KT d2"T δ(2)

(
zpT + KT + "T − Ph⊥

)
w

(
pT ,−KT

z

)

×fa(x, p2
T , µ2, xζ, ρ) S("2T , µ2, ρ) Da(z,K2

T , µ2, ζ̂/z, ρ)

2. Bessel Weighting & cancellation of soft factor 



J BT
1 (|P hT |)

zM
=

2 J1(|P hT |BT )
zMBT

A
JBT

1 (|P hT |)
zM sin(φh−φs)

UT (BT ) =

−2
S̃(B2

T ) Hsin(φh−φS)
UT,T (Q2)

∑
a e2

a f̃⊥(1)a
1T (x, z2B2

T ) D̃a
1(z,B2

T )

S̃(B2
T ) HUU,T (Q2)

∑
a e2

a f̃a
1 (x, z2B2

T ) D̃a
1(z,B2

T )

A
JBT

1 (|P hT |)
zM sin(φh−φS)

UT (BT ) =

2
∫
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JBT
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zM sin(φh − φS)

(
dσ↑ − dσ↓

)
∫

d|P h⊥| |P h⊥| dφh dφS J BT
0 (|P hT |) (dσ↑ + dσ↓)

Bessel weighting-projecting out Sivers 
using orthogonality of Bessel Fncts.

2. Bessel Weighting & cancellation of soft factor 
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Sivers asymmetry with full dependences
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BT→0
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Traditional weighted asymmetry recovered but UV divergent

3. Circumvents the problem of ill-defined       moments pT

undefined w/o 
regularization Bacchetta et al. JHEP 08
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2 Π

BT
min
"PhT
max

P h⊥

  4. More sensitive to low           region

      can serve as a lever arm to enhance the low 
description and possibly dampen lg. momentum tail of 
cross section. We can use it to scan the cross section

BT P h⊥

P h⊥

2 J1(|P hT |BT )
zMBT

σ illustration



• Propose generalize Bessel Weights

• New theoretical weighting procedure w/ 
advantages

• Introduces a free parameter                   that 
is  Fourier conjugate to  

• Provides a regularization of infinite 
contributions at lg. transverse momentum 
when       is non-zero

• Addtnl.  bonus soft factor eliminated from 
weighted asymmetries

• Possible to compare observables at different 
scales.... could be useful for an EIC 

Conclusions

P h⊥

BT [GeV−1]

B2
T
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unpolarized quark density in a transversely polarized nucleon

ρTU (x,pT ,ST ) = f1(x,p2
T )− εijpiSj

M
f⊥1T (x,p2

T ) =
∫

dp− Φ[γ+]

〈py〉TU ≡
∫

dx
∫

d2pT py ρTU (x,pT ,ST = (1, 0))∫
dx

∫
d2pT ρTU (x,pT ,ST = (1, 0))

= M

∫
dx f⊥(1)

1T (x)
∫

dx f (0)
1 (x)

px

p
y

〈py〉TU := average quark momentum in
transverse y-direction
measured in a proton polarized
in transverse x-direction.

”dipole moment”, “shift”

attention divergences from high-pT -tails!

⇒ “generalized” average transverse momentum shift

〈py〉TU (BT ) ≡ M

∫
dx f̃⊥(1)

1T (x,B2
T )

∫
dx f̃ (0)

1 (x,B2
T )

= !!!!!!S̃(−B2
T , . . .) Ã12B(−B2

T , 0, 0, ζ̂, µ)

!!!!!!S̃(−B2
T , . . .) Ã2B(−B2

T , 0, 0, ζ̂, µ)

From talk of 
Berni Musch

Pre-DIS wkshp.

Generalized av. quark trans. momentum shift
Soft Factor cancels

〈py〉TU (BT ) ≡ M

∫
dxf̃⊥(1)

1T (x,B2
T )

∫
dxf̃ (0)

1 (x,B2
T )

=
S̃(B2

T , . . . )Ã12B(B2
T , 0, 0, ζ̃, µ)

S̃(B2
T , . . . )Ã2B(B2

T , 0, 0, ζ̃, µ)



paper for h?1 to estimate the azimuthal asymmetry Acos2!
UU

[cf. Eq. (41)], where

Acos2!
UU !

R
d! cos2!d"R

d!d"
(45)

and d! is shorthand notation for the phase space integra-

tion. In Fig. 6 we display the Acos2!
UU ðPTÞ in the range of

future JLab kinematics [73] (0:08< x< 0:7, 0:2< y<
0:9, 0:3< z < 0:8, Q2 > 1 GeV=c, and 1<E# <
9 GeV) and HERMES kinematics [1] (0:23< x< 0:4,
0:1< y < 0:85, 0:2< z < 0:7, with Q2 > 1 GeV=c and
4:5<E# < 13:5 GeV). In Fig. 7 we display the x and z
dependence in the range 0:5<PT < 1:5 GeV=c. It should
be noted that this asymmetry was measured at HERA by
ZEUS, but at very low x and very highQ2 [35], where other
QCD effects dominate. It was also measured at CERN by
EMC [74], but with low precision. Those data were ap-
proximated by Barone, Lu, and Ma [75] in a u-quark
dominating model for h?1 , with a Gaussian, algebraic
form and a Gaussian ansatz for the Collins function. Our
dynamical approach leads to different predictions for the
forthcoming JLab data.

B. Single-spin asymmetry Asinð2!Þ
UL in SIDIS

Since we have calculated the chiral-odd but T-even
parton distribution h?1L [cf. Eqs (12) and (13)], we use
this result together with the result of Ref. [71] for the
Collins function to give a prediction for the sinð2!Þ mo-
ment of the single-spin asymmetry AUL for a longitudinally
polarized target. In particular, we are able to take into
account the flavor dependence of the asymmetry. We adopt
a similar procedure for the azimuthal cosð2!Þ asymmetry

for treating the leading twist observable Asinð2!Þ
UL .

A decomposition into structure functions of the cross
section of semi-inclusive DIS for a longitudinally polar-
ized target reads (see e.g. [31])

d"UL

dxdydzd!hdP
2
h?

$ 2#$2

xyQ2 Sk½ð1& yÞ sinð2!hÞFsinð2!Þ
UL

þ ð2& yÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1& y

p
sinð!hÞFsin!

UL (;
(46)

where Sk is the projection of the spin vector on the direc-
tion of the virtual photon. In a partonic picture the structure

function Fsinð2!Þ
UL is a leading twist object (while Fsin!

UL is
subleading), and it is given by a convolution of the TMD
h?1L and the Collins function (cf. [31])

Fsinð2!Þ
UL ¼ C

"
& 2ĥ * kTĥ * pT & kT * pT

MMh
h?1LH

?
1

#
; (47)

where the explicit form of the convolution is given in
Eq. (42).
We insert our result for h?1L [Eqs. (12) and (13)] and the

result of Ref. [71] into Eq. (47) to compute the single-spin
asymmetry. This is the first calculation of this observable in

the spectator framework, whereas the part of Fsinð!Þ
UL de-

scribed by higher twist T-odd PDFs has been analyzed in
the diquark model in Refs. [25,26,28]. Similar phenome-

nology for Fsinð2!Þ
UL and Fsinð!Þ

UL has been performed in
Refs. [76,77] using the framework of the chiral quark
soliton model.
We display the results for the single-spin asymmetry

Asinð2!Þ
UL in Fig. 8 using the kinematics of the upcoming
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FIG. 6 (color online). Left panel: The cos2! asymmetry for #þ and #& as a function of PT at JLab 12 GeV kinematics. Right
panel: The cos2! asymmetry for #þ and #& as a function of PT for HERMES kinematics.
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and Sivers functions versus x for % ¼ 1:0.
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Fig. 6. The Sivers distribution functions for u, d and s flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our simul-
taneous fit of HERMES and COMPASS data (see text for de-
tails). On the left panel, the first moment x ∆Nf (1)(x), eq. (17),
is shown as a function of x for each flavour, as indicated. Simi-
larly, on the right panel, the Sivers distribution x ∆Nf(x, k⊥) is
shown as a function of k⊥ at a fixed value of x for each flavour,
as indicated. The highest and lowest dashed lines show the
positivity limits |∆Nf | = 2f .

Sivers distribution. In particular, we definitely find

∆Nfs̄/p↑ > 0 (18)

and confirm the previous findings for valence
flavours [2,7–9],

∆Nfu/p↑ > 0, ∆Nfd/p↑ < 0. (19)

There are simple reasons for the above results. The
Sivers distribution function for s̄ quarks turns out to
be definitely positive, due to the large positive value

of Asin(φh−φS)
UT for K+; notice that the value of Ns̄ sat-

urates the positivity bound |Nq| ≤ 1. Similarly, the
positive sign of ∆Nfu/p↑ is, essentially, driven by the
positive π+ and K+ SSAs and the opposite sign of
∆Nfd/p↑ by the small SSA measured by COMPASS
on a deuteron target. The u and d Sivers functions are
also predicted to be opposite in the large-Nc limit [29]
and in chiral models [30].
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Fig. 7. The Sivers distribution functions for u and d flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our present
fit (solid lines), are compared with those of our previous fit [2]
of SIDIS data (dashed lines), where π0 and kaon productions
were not considered and only valence quark contributions were
taken into account. This plot clearly shows that the Sivers func-
tions previously found are consistent, within the statistical un-
certainty bands, with the Sivers functions presently obtained.

– The Sivers functions for ū, d̄ and s quarks, instead,
turn out to have much larger uncertainties; even the
sign of the ū and s Sivers functions is not fixed by avail-
able data, while ∆Nfd̄/p↑ appears to be negative. This
could be consistent with a positive contribution from u
quarks, necessary to explain the large K+ asymmetry,
which is decreased, for π+, by a negative d̄ contribu-
tion. One might expect correlated Sivers functions for
s and s̄ quarks: we have actually checked that choosing
∆Nfs/p↑ = ±∆Nfs̄/p↑ slightly worsens the χ2

dof (from
1 up to about 1.1), but still leads to a reasonable fit.

– We notice that the Burkardt sum rule [31]

∑

a

∫

dxd2k⊥ k⊥ fa/p↑(x,k⊥) ≡
∑

a

〈ka
⊥〉 = 0, (20)

where, from eqs. (2) and (17),

〈ka
⊥〉 =

[

π

2

∫ 1

0
dx

∫ ∞

0
dk⊥ k2

⊥ ∆Nfa/p↑(x, k⊥)

]

(S×P̂ ) =

mp

∫ 1

0
dx ∆Nf (1)

q/p↑(x) (S×P̂ )≡〈ka
⊥〉 (S×P̂ ), (21)

is almost saturated by u and d quarks alone at Q2 =
2.4 (GeV/c)2:

〈ku
⊥〉 + 〈kd

⊥〉 = −17+37
−55 (MeV/c),

〈kū
⊥〉 + 〈kd̄

⊥〉 + 〈ks
⊥〉 + 〈ks̄

⊥〉 = −14+43
−66 (MeV/c).

(22)

The individual contributions for quarks are:

〈ku
⊥〉=96+60

−28 (MeV/c), 〈kd
⊥〉=−113+45

−51 (MeV/c),

〈kū
⊥〉=2+24

−11 (MeV/c), 〈kd̄
⊥〉=−28+20

−60 (MeV/c), (23)

〈ks
⊥〉=−4+11

−15 (MeV/c), 〈ks̄
⊥〉=17+30

−8 (MeV/c),
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