Longitudinal spin results from COMPASS

PacSpin 2011 - Cairns

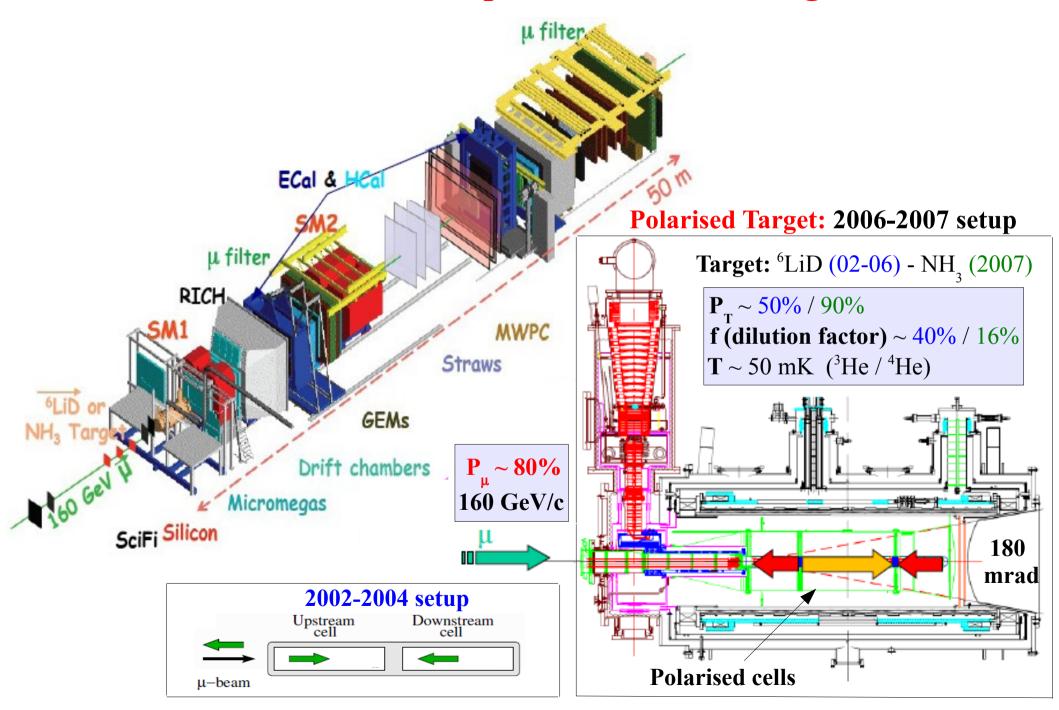
Celso Franco (LIP – Lisboa) on behalf of the COMPASS collaboration

Outline

Longitudinally polarised DIS:

- $A_1^{d/p}$, $g_1^{d/p}$, first moments of g_1^d and the Bjorken sum rule
- Semi-inclusive asymmetries and flavour separation
- Gluon polarisation in LO:
 - Open Charm
 - High-p_T hadron pairs
- Gluon polarisation in NLO: \rightarrow NEW
 - Open Charm

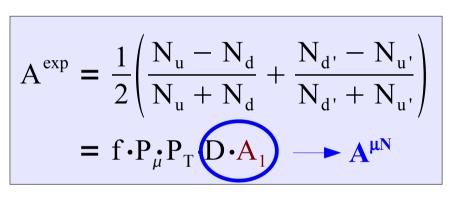
The COMPASS spectrometer and target



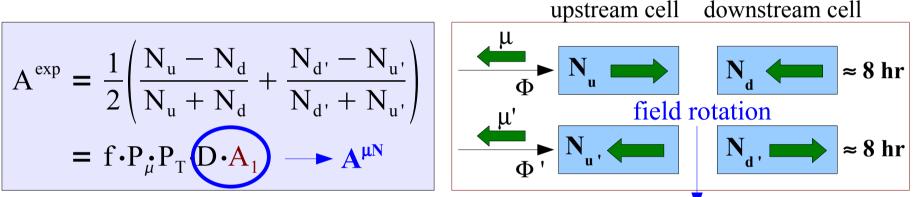
Inclusive asymmetries and spin structure functions

Asymmetry measurement:
$$A_1^{N} := \frac{\Delta \sigma_{y*N}}{\sigma_{y*N}} = \frac{\left(\sigma_{y*N}^{\rightleftarrows} - \sigma_{y*N}^{\rightleftarrows}\right)}{\sigma_{y*N}^{\text{unpol}}}$$

The number of reconstructed events inside each spin configuration, N_t (t = u, d, u', d'), can be used to extract the γ^* -deuteron / proton (A_1^d/A_1^p) asymmetries:



 $D = \underline{Depolarisation factor}$

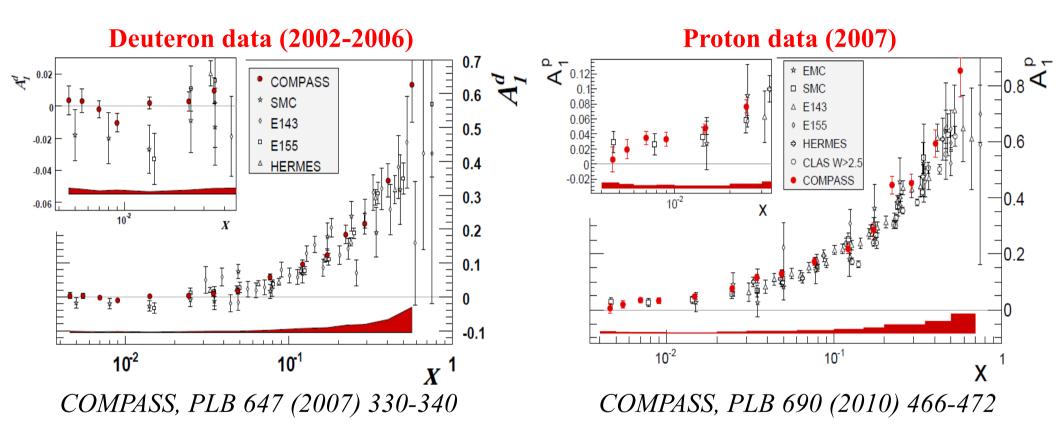


equal acceptance for both cells

Weighting each event with $\omega = (f P_{\parallel} D)$:

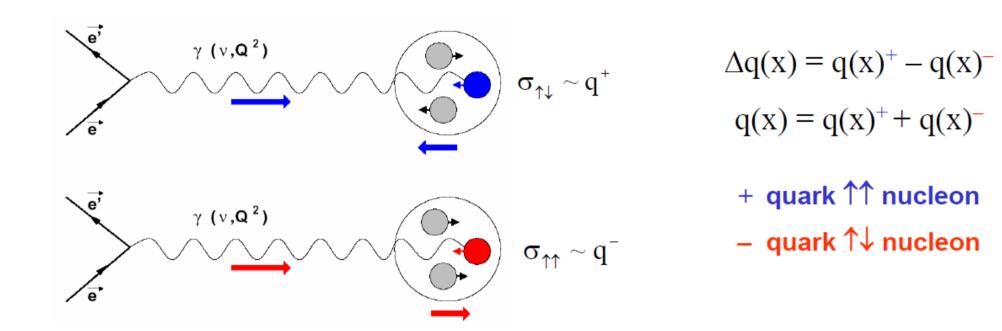
$$A_{1} = \frac{1}{P_{T}} \times \frac{1}{2} \left(\frac{\sum_{u} \omega - \sum_{d} \omega}{\sum_{u} \omega + \sum_{d} \omega} + \frac{\sum_{d'} \omega - \sum_{u'} \omega}{\sum_{d'} \omega + \sum_{u'} \omega} \right) \text{ with statistical gain: } \frac{\langle \omega^{2} \rangle}{\langle \omega \rangle^{2}}$$

Inclusive asymmetries $A_1^{d/p}$: $Q^2 > 1 (GeV/c)^2$



- Good agreement between all experimental points
- Significant improvement of precision in the low x region: compatible with zero for x < 0.01
- No negative trend for A₁^d

Interpretation of A_1 in terms of structure functions

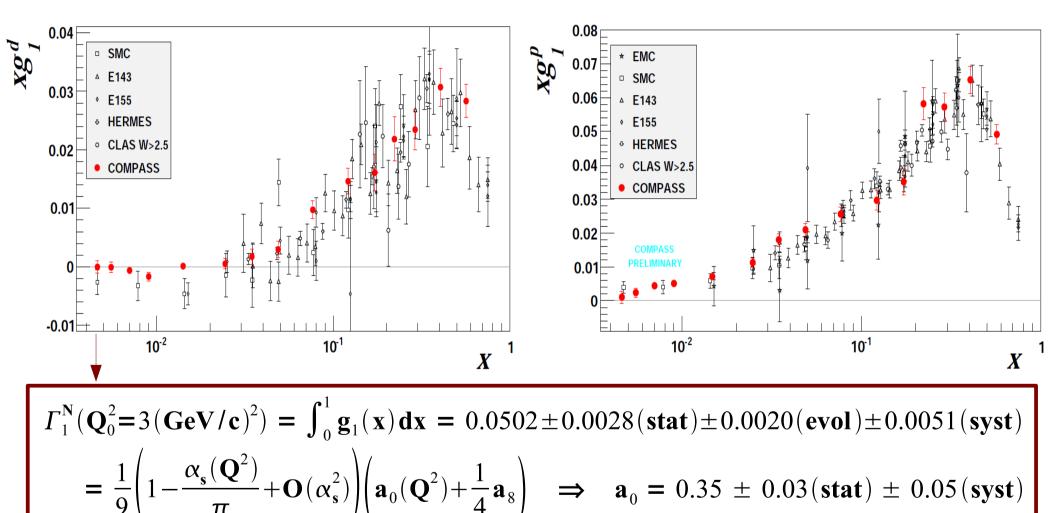


$$A_1(x,Q^2) = \frac{\sigma_{\uparrow\downarrow} - \sigma_{\uparrow\uparrow}}{\sigma_{\uparrow\downarrow} + \sigma_{\uparrow\uparrow}} \approx \frac{\sum_q e_q^2 \Delta q(x,Q^2)}{\sum_q e_q^2 q(x,Q^2)} = \frac{g_1(x,Q^2)}{F_1(x,Q^2)} = \frac{g_1(x,Q^2)}{F_2(x,Q^2)}$$

• g_1 (polarised structure function) is obtained from the asymmetry A_1 using:

 $F_2 \rightarrow \underline{SMC \ parameterisation}$ and $R = \sigma^L/\sigma^T \rightarrow \underline{SLAC \ parameterisation}$

COMPASS results for $g_1^{d/p}$ and first moments of g_1^d



$$\Delta \Sigma^{\overline{\text{MS}}} = 0.33 \pm 0.03(\text{stat}) \pm 0.05(\text{syst}) \quad (\Delta \Sigma^{\overline{\text{MS}}} = \mathbf{a}_0 \ @ \mathbf{Q}^2 \to \infty)$$
$$(\Delta \mathbf{s} + \Delta \overline{\mathbf{s}}) = \frac{1}{3}(\Delta \Sigma^{\overline{\text{MS}}} - \mathbf{a}_8) = -0.08 \pm 0.01(\text{stat}) \pm 0.02(\text{syst})$$

Bjorken sum rule

• According to the Bjorken sum rule the first moment of the non-singlet spin structure function, g_1^{NS} , is proportional to the ratio of axial and vector coupling constants g_A/g_V :

$$\int_{0}^{1} g_{1}^{NS}(x, Q^{2}) dx = \frac{1}{6} \left| \frac{g_{A}}{g_{B}} \right| C_{1}^{NS}(Q^{2})$$

$$= 2g_{1}^{p} - 2g_{1}^{d} / (1 - 1.5\omega_{D})$$

$$xg_{1}^{NS}(x)$$

$$0.08$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.04$$

$$0.02$$

$$0.04$$

$$0.04$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

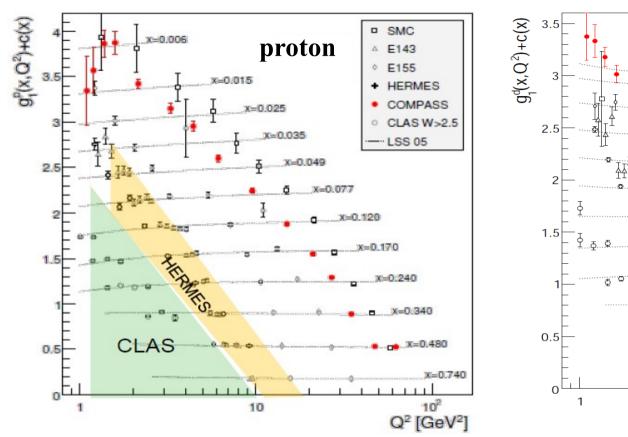
$$0.00$$

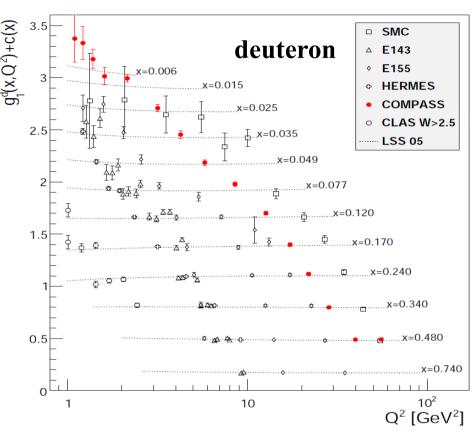
$$0.00$$

• QCD fit of COMPASS data using $\Delta q^{NS} = |g_A/g_V| x^{\alpha} (1-x)^{\beta}$:

$$\left| \frac{\mathbf{g_A}}{\mathbf{g_V}} \right| = 1.28 \pm 0.07(\text{stat}) \pm 0.10(\text{sys})$$
 (PDG value: $|g_A/g_V| = 1.269 \pm 0.003$)

Q^2 dependence of $g_1(x, Q^2)$ for DGLAP evolution

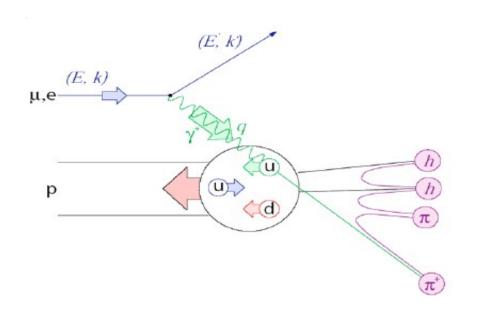




- The kinematic range is still limited (compared to the unpolarised F₂)
 - ► additional data from colliders is required!
- $(\Delta u + \Delta \bar{u})$ and $(\Delta d + \Delta \bar{d})$ are well constrained by the data (LSS PRD 80 2009)
- Δ s comes out negative and Δ g is small (<0.5) \longrightarrow Still with large uncertainties

Semi-inclusive asymmetries and flavour separation

Extraction of the quark helicity distributions from SIDIS



- The outgoing hadron tags the quark flavour
- Required: fragmentation function of a quark q to a hadron h: $D_q^h(z, Q^2)$ $z = E_h/(E_\mu - E'_\mu)$

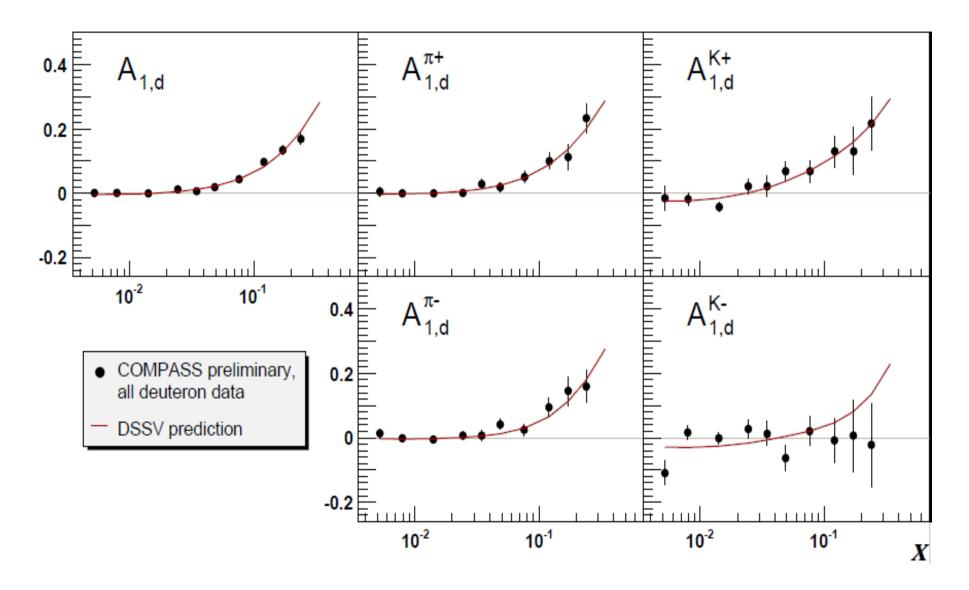
$$z = E_h/(E_\mu - E'_\mu)$$

The semi-inclusive asymmetries have the following interpretation (in LO):

$$A_1^{h \, (p/d)}(x,z,Q^2) \approx \frac{\sum_q e_q^2 \Delta \, q(x,Q^2) D_q^h(z,Q^2)}{\sum_q e_q^2 q(x,Q^2) D_q^h(z,Q^2)}$$

- Inputs needed for the extraction of $\Delta q(x, Q^2)$:
 - Unpolarised PDFs ($q(x, Q^2)$) $\rightarrow MRST04$
 - $D_a^h(z, Q^2) \rightarrow \underline{DSS \ parameterisation}$

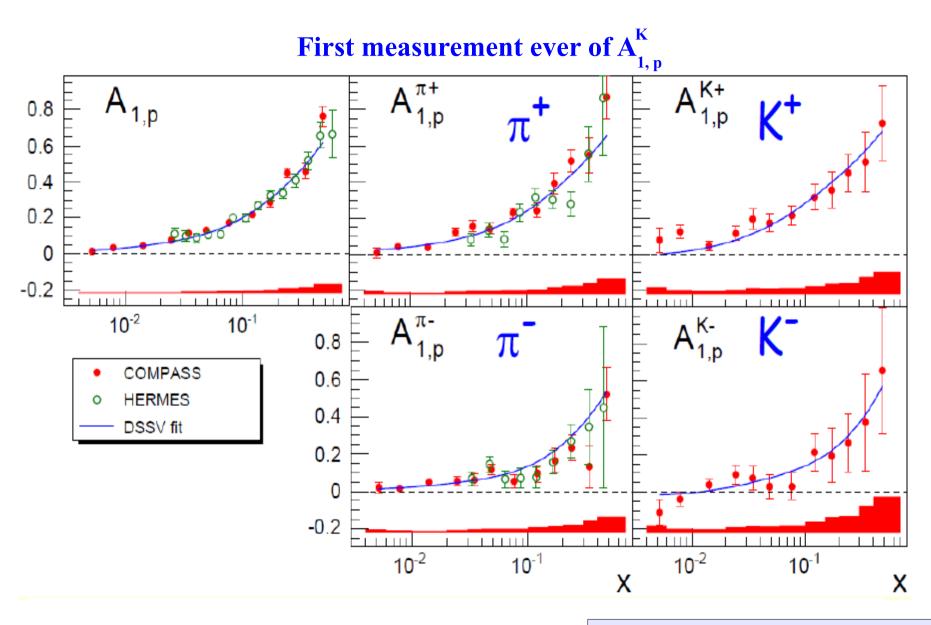
Inclusive and semi-inclusive spin asymmetries: Deuteron data



• From these asymmetries one can extract:

 $\Delta u + \Delta d$, $\Delta \overline{u} + \Delta \overline{d}$ and $\Delta s = \Delta \overline{s}$

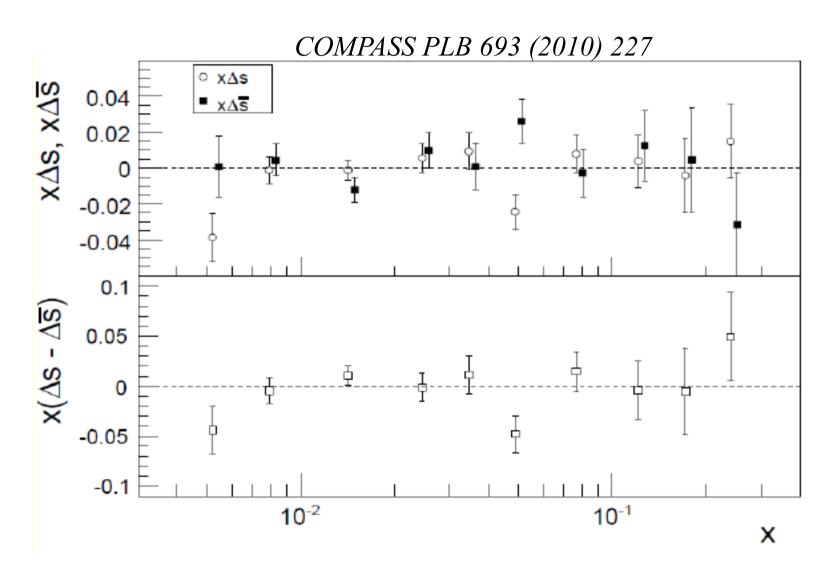
Inclusive and semi-inclusive spin asymmetries: Proton data



• Using $A_{1,p}^h$ and $A_{1,d}^h$, we can separately extract:

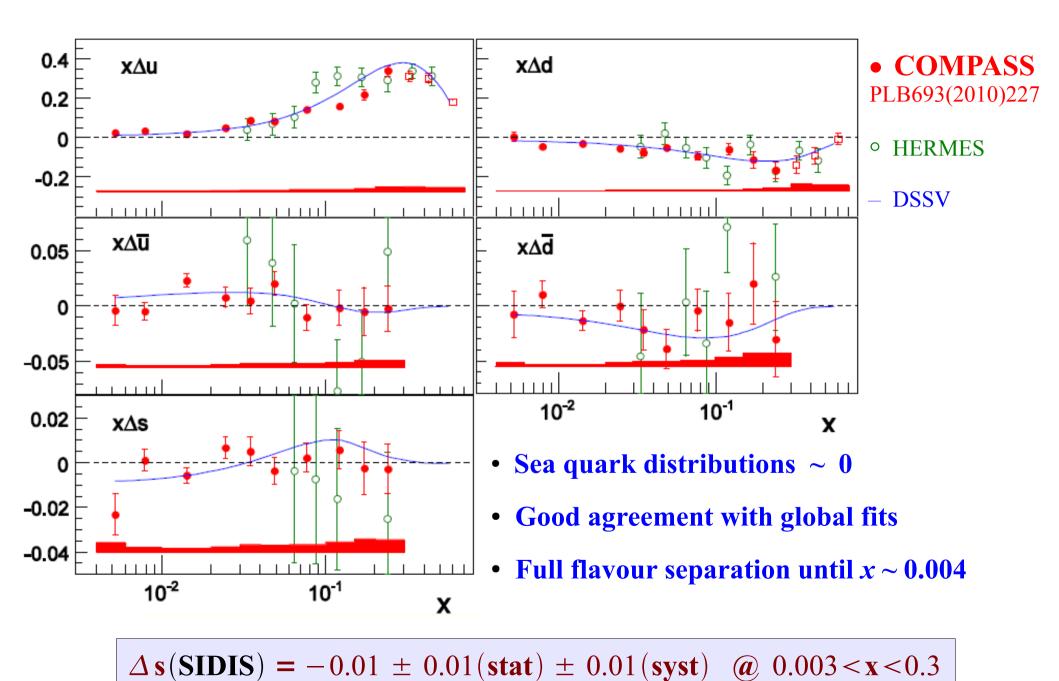
 Δu , Δd , $\Delta \overline{u}$, $\Delta \overline{d}$, Δs and $\Delta \overline{s}$

Comparison of Δs with $\Delta \overline{s}$



 $\Delta s - \Delta \bar{s}$ is compatible with $0 \rightarrow \Delta s = \Delta \bar{s}$ is assumed in the subsequent analysis

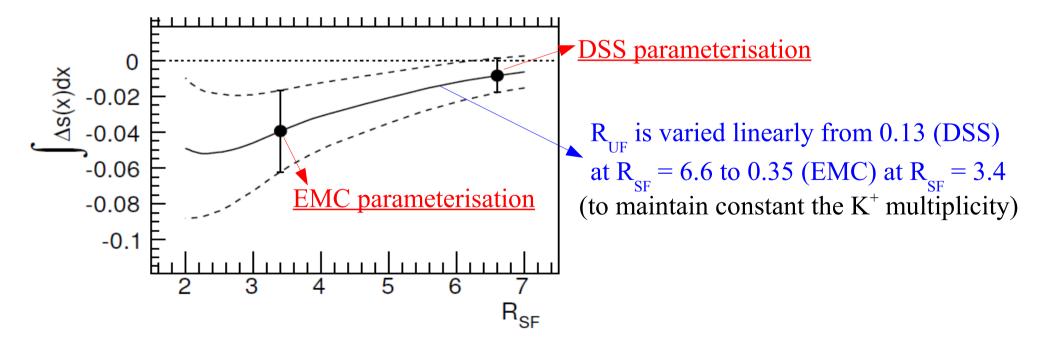
Quark helicities from SIDIS ($Q^2 = 3 (GeV/c)^2$ and x < 0.3)



Δs dependence on FFs

• The relation between the semi-inclusive asymmetries and Δs depends only on the following ratios:

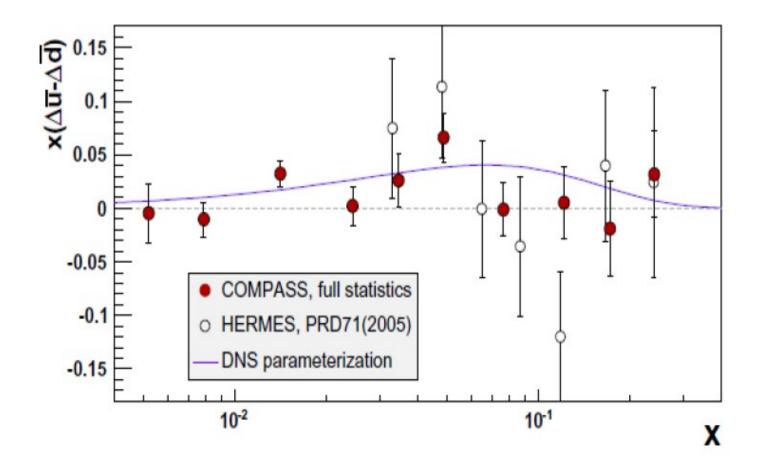
$$\mathbf{R}_{\text{UF}} = \frac{\int_{0.2}^{0.85} \mathbf{D}_{\mathbf{d}}^{\text{K}^{+}}(\mathbf{z}) \, d\mathbf{z}}{\int_{0.2}^{0.85} \mathbf{D}_{\mathbf{u}}^{\text{K}^{+}}(\mathbf{z}) \, d\mathbf{z}}, \quad \mathbf{R}_{\text{SF}} = \frac{\int_{0.2}^{0.85} \mathbf{D}_{\bar{\mathbf{s}}}^{\text{K}^{+}}(\mathbf{z}) \, d\mathbf{z}}{\int_{0.2}^{0.85} \mathbf{D}_{\mathbf{u}}^{\text{K}^{+}}(\mathbf{z}) \, d\mathbf{z}}$$



• Determination of R_{SF} from hadron multiplicities on the way

$\Delta \overline{\mathbf{u}} - \Delta \overline{\mathbf{d}}$: Flavour asymmetry?

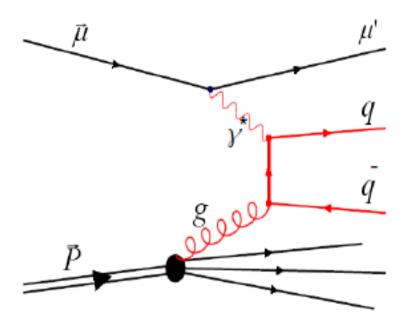
- The considerable asymmetry observed for $(\bar{\mathbf{u}} \bar{\mathbf{d}})$ is not verified in the polarised case :
 - $\Delta \bar{u} \Delta \bar{d}$ is slightly positive but compatible with zero!



Gluon Polarisation

Direct measurement of $\Delta G/G$ in LO

photon-gluon fusion process (PGF)



$$\mathbf{A}_{\gamma N}^{PGF} = \frac{\int \mathbf{d}\,\hat{\mathbf{s}}\,\Delta\,\sigma^{PGF}\Delta\,\mathbf{G}(\mathbf{x}_{G},\hat{\mathbf{s}})}{\int \mathbf{d}\,\hat{\mathbf{s}}\,\sigma^{PGF}\mathbf{G}(\mathbf{x}_{G},\hat{\mathbf{s}})}$$

$$\approx \langle \mathbf{a}_{LL}^{PGF} \rangle \frac{\Delta\,\mathbf{G}}{\mathbf{G}}$$
analysing power

There are two methods to tag this process:

Open Charm production

- $\gamma^* g \rightarrow c\overline{c} \Rightarrow reconstruct D^0 mesons$
- Hard scale: M_c²
- No intrinsic charm in COMPASS kinematics
- No physical background
- Weakly Monte Carlo dependent
- Low statistics

• High- p_{T} hadron pairs

- $\gamma * g \rightarrow q\overline{q} \Rightarrow \underline{reconstruct \ 2 \ jets \ or \ h^+h^-}$
- Hard scale: Q^2 or Σp_T^2 [$Q^2 > 1$ or $Q^2 < 1$ (GeV/c)²]
- High statistics
- Physical background
- Strongly Monte Carlo dependent

Open Charm

Open Charm analysis: Simultaneous extraction of $\Delta G/G$ and A^{bg}

• The relation between the number of reconstructed D^0 (for each target cell configuration) and $\Delta G/G$ is given by:

$$N_{t} = a \phi n(S+B) \left(1 + f P_{T} P_{\mu} \left[a_{LL} \frac{S}{S+B} \frac{\Delta G}{G} + D \frac{B}{S+B} A^{bg} \right] \right), \quad t = (u,d,u',d')$$
acceptance, muon flux, number of target nucleons

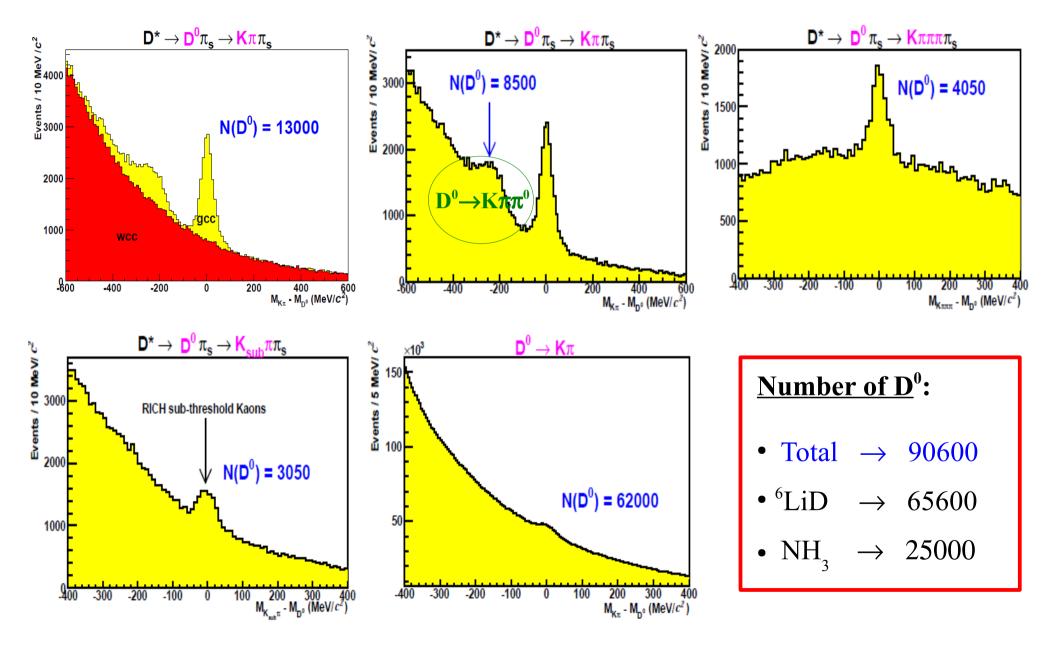
Open Charm event probability

• Each equation is weighted with a signal weight $\omega_S = f P_{\mu} a_{LL} S/(S+B)$ and also with a background weight $\omega_B = f P_{\mu} D B/(S+B)$:

<u>8 equations with 7 unknowns</u>: $\Delta G/G$, $A^{bg} + 5$ independent $\alpha = (a \phi n)$ factors

The system is solved by a χ^2 minimisation

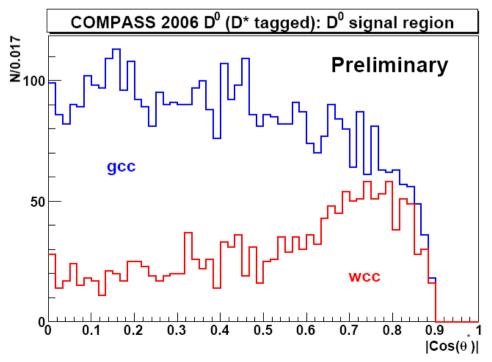
D⁰ invariant mass spectra: All samples (2002-2007 data)

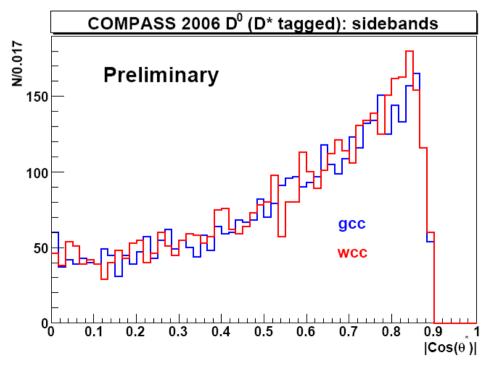


Neural Network qualification of events

- Two real data samples (with the same cuts applied) are compared by a Neural Network (using some kinematic variables as a learning vector):
 - Signal model \rightarrow gcc = $\mathbf{K}^+\pi^-\pi_s^- + \mathbf{K}^-\pi^+\pi_s^+$ (D^0 spectrum: signal + background)
 - Background model \rightarrow wcc = $\mathbf{K}^+ \pi^+ \pi_s^- + \mathbf{K}^- \pi^- \pi_s^+$ (no D^0 is allowed)
- If the background model is good enough: The Neural Network is able to distinguish the signal from the combinatorial background on a event by event basis (inside gcc)

Example of a good learning variable





S/(S+B): Obtaining final probabilities for a D^0 candidate

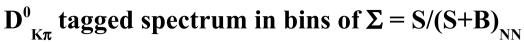
Events with small S/(S+B)_{NN}

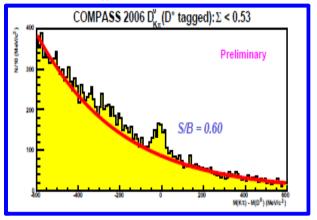
Mostly combinatorial background is selected

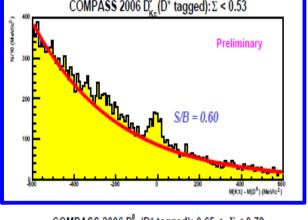
S/(S+B) is obtained from a fit inside this bins (correcting with the NN parameterisation)

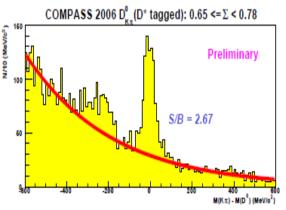
Events with large S/(S+B)_{NN}

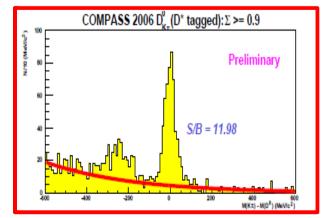
Mostly Open Charm events are selected

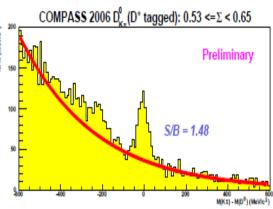


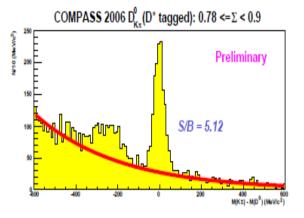












$$\delta \left(\frac{\Delta \mathbf{G}}{\mathbf{G}} \right) \sim \frac{1}{\mathbf{FOM}}$$

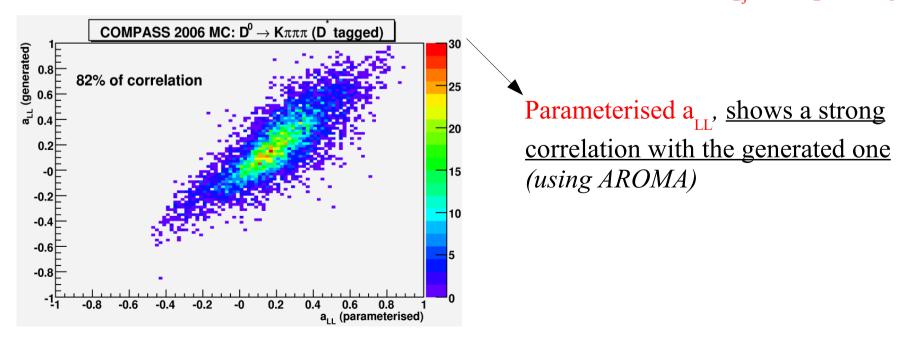
Analysing power (muon-gluon asymmetry a_{1.1})

• a_{II} is <u>dependent on the full knowledge of the partonic kinematics</u>:

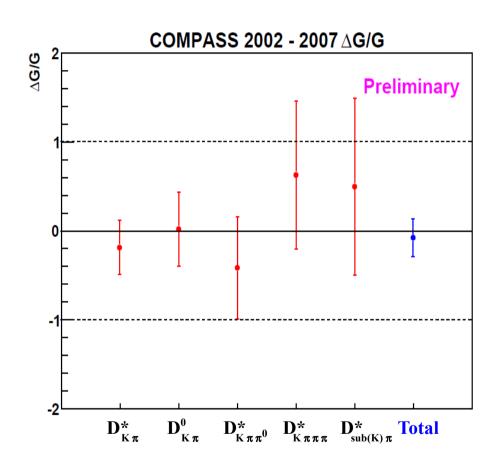
$$a_{LL} = \frac{\Delta \sigma^{PGF}}{\sigma_{PGF}}(y, Q^2, x_g, z_C, \phi)$$

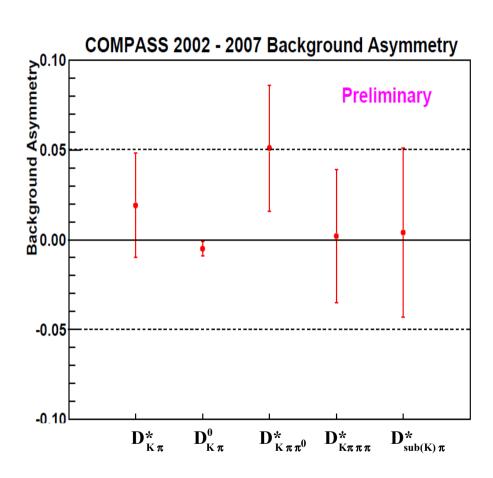
Can't be experimentally obtained: only one charmed meson is reconstructed

• a_{LL} is obtained from Monte-Carlo (in LO), to serve as input for a Neural Network parameterisation on some reconstructed kinematical variables: y, x_{Bi} , Q^2 , z_D and p_T



Open Charm results in LO





$$\frac{\Delta \mathbf{G}}{\mathbf{G}} = -0.08 \pm 0.21(\mathbf{stat}) \pm 0.08(\mathbf{syst}) \quad @<\mathbf{x_g}> = 0.11^{+0.11}_{-0.05}, <\mu^2> = 13 (\mathbf{GeV/c})^2$$

$High-p_{T}$ hadron pairs

High- $p_{\rm T}$ asymmetries (2002-2006): Q² > 1 (GeV/c)²

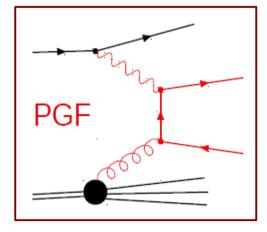
Two samples are considered:

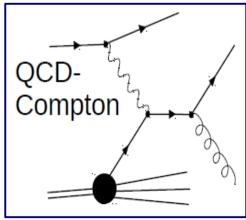
Inclusive asymmetry

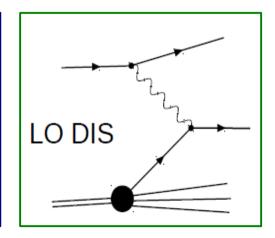
$$\mathbf{A}_{1}^{\mathbf{d}}(\mathbf{x}) = \frac{\Delta \mathbf{G}}{\mathbf{G}}(\mathbf{x}_{\mathbf{g}}) \left(\mathbf{a}_{\mathbf{LL}}^{\mathbf{PGF,inc}} \frac{\sigma^{\mathbf{PGF,inc}}}{\sigma^{\mathbf{Tot,inc}}} \right) + \mathbf{A}_{1}^{\mathbf{LO}}(\mathbf{x}_{\mathbf{C}}) \left(\mathbf{a}_{\mathbf{LL}}^{\mathbf{C,inc}} \frac{\sigma^{\mathbf{C,inc}}}{\sigma^{\mathbf{Tot,inc}}} \right) + \mathbf{A}_{1}^{\mathbf{LO}}(\mathbf{x}_{\mathbf{Bj}}) \left(\mathbf{D} \frac{\sigma^{\mathbf{LO,inc}}}{\sigma^{\mathbf{Tot,inc}}} \right) + \mathbf{A}_{1}^{\mathbf{LO}}(\mathbf{x}_{\mathbf{Bj}}) \left(\mathbf{D} \frac{\sigma^{\mathbf{LO,inc}}}{\sigma^{\mathbf{Tot,inc}}} \right) \right)$$

$$\mathbf{A}_{\mathbf{LL}}^{\mathbf{2h}}(\mathbf{x}) = \left(\frac{\mathbf{A}^{\mathbf{exp}}}{\mathbf{f} \mathbf{P}_{\mu} \mathbf{P}_{\mathbf{T}}} \right) = \frac{\Delta \mathbf{G}}{\mathbf{G}}(\mathbf{x}_{\mathbf{g}}) \left(\mathbf{a}_{\mathbf{LL}}^{\mathbf{PGF}} \frac{\sigma^{\mathbf{PGF}}}{\sigma^{\mathbf{Tot}}} \right) + \mathbf{A}_{1}^{\mathbf{LO}}(\mathbf{x}_{\mathbf{C}}) \left(\mathbf{a}_{\mathbf{LL}}^{\mathbf{C}} \frac{\sigma^{\mathbf{C}}}{\sigma^{\mathbf{Tot}}} \right) + \mathbf{A}_{1}^{\mathbf{LO}}(\mathbf{x}_{\mathbf{Bj}}) \left(\mathbf{D} \frac{\sigma^{\mathbf{LO,inc}}}{\sigma^{\mathbf{Tot,inc}}} \right)$$

high- $p_{\rm T}$ hadron pairs $(p_{\rm T1}/p_{\rm T2} > 0.7/0.4~{\rm GeV/c}) \Rightarrow \underline{\text{enhancement of the PGF contribution}}$







Extraction of $\Delta G/G$ from high- p_T : $Q^2 > 1 (GeV/c)^2$

• The gluon polarisation is determined from two asymmetry samples: the two highp_T hadrons and the inclusive data samples. The final formula is:

$$\frac{\Delta G}{G}(x_g) = \frac{1}{\beta} \left[A_{LL}^{2h}(x) + A_{corr} \right] \quad A_{corr} = -\left(A_1(x_{Bj}) D \frac{R_{LO}}{R_{LO}^{inc}} - A_1(x_C) \beta_1 + A_1(x_C') \beta_2 \right]$$

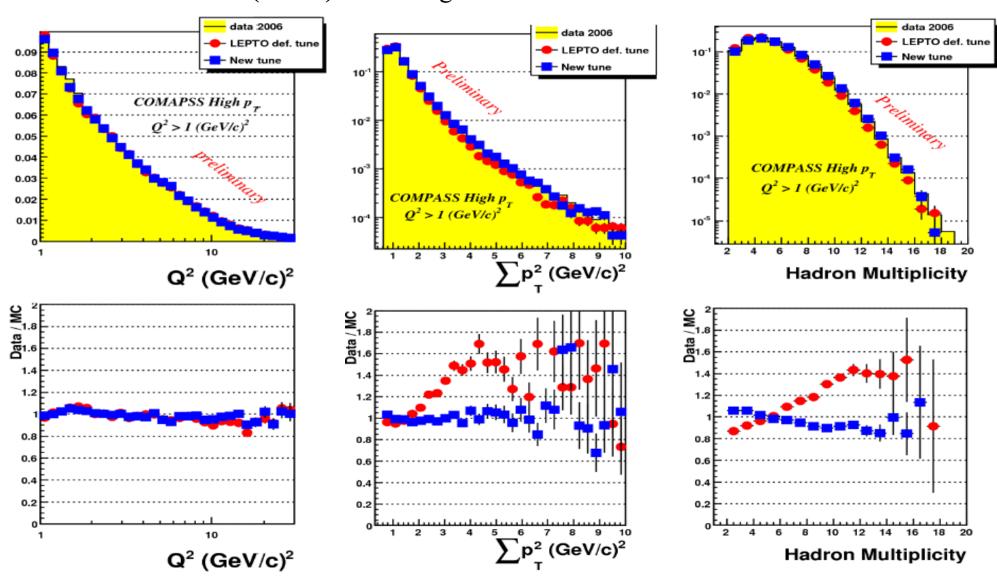
$$\beta = a_{LL}^{PGF} R_{PGF} - a_{LL}^{PGF,inc} R_{PGF}^{incl} \frac{R_{LO}}{R_{LO}^{inc}} - a_{LL}^{PGF,incl} \frac{R_C R_{PGF}^{inc}}{R_{LO}^{inc}} \frac{a_{LL}^C}{D}$$

- β_1 and β_2 are factors depending on a_{LL}^{i} and R_i
- Each event is weighted with $\omega = f D P_{\mu} \beta \rightarrow \text{statistical improvement!}$
- The following parameters are obtained from Monte Carlo, and then they are parameterised event-by-event by a Neural Network (to allow for their use in data):

$$R_{PGF}$$
, R_{C} , R_{LO} , R_{PGF}^{inc} , R_{C}^{inc} , R_{LO}^{inc} , a_{LL}^{PGF} , a_{LL}^{C} , a_{LL}^{LO} , $a_{LL}^{PGF, inc}$, $a_{LL}^{C, inc}$ and $a_{LL}^{LO, inc}$

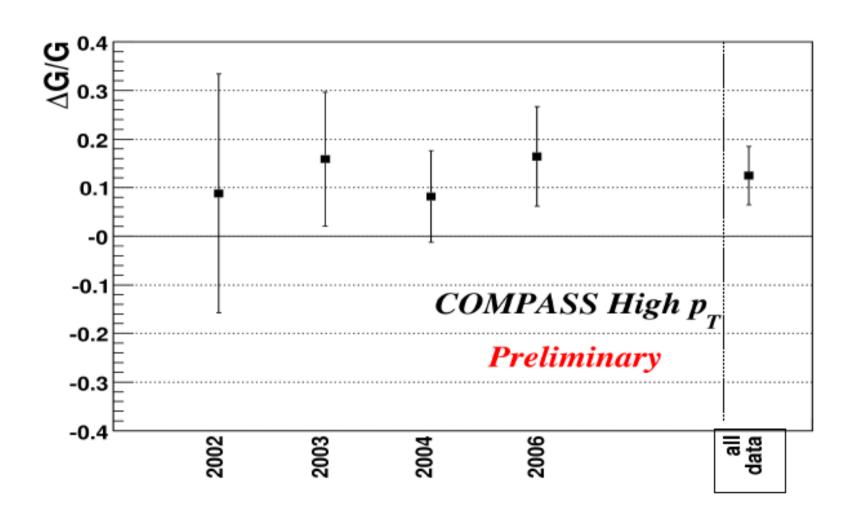
Data vs Monte Carlo: Comparison of Q² and hadron variables

Monte Carlo (PS on): LEPTO generator with PDFs from MSTW2008LO

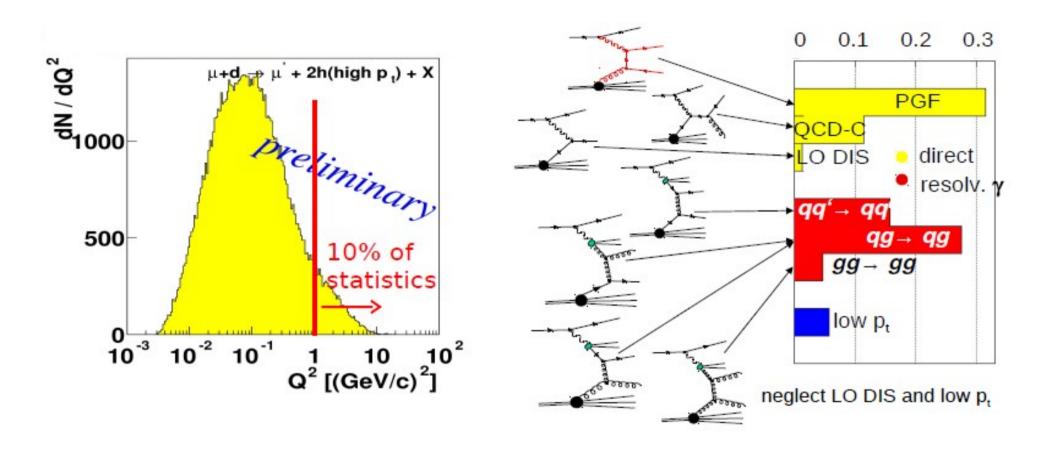


The impact of this tunning is included in the systematic error

High- $p_{\rm T}$ results: $Q^2 > 1 (\text{GeV/c})^2$



High- $p_{\rm T}$ analysis: $Q^2 < 1 (\text{GeV/c})^2$



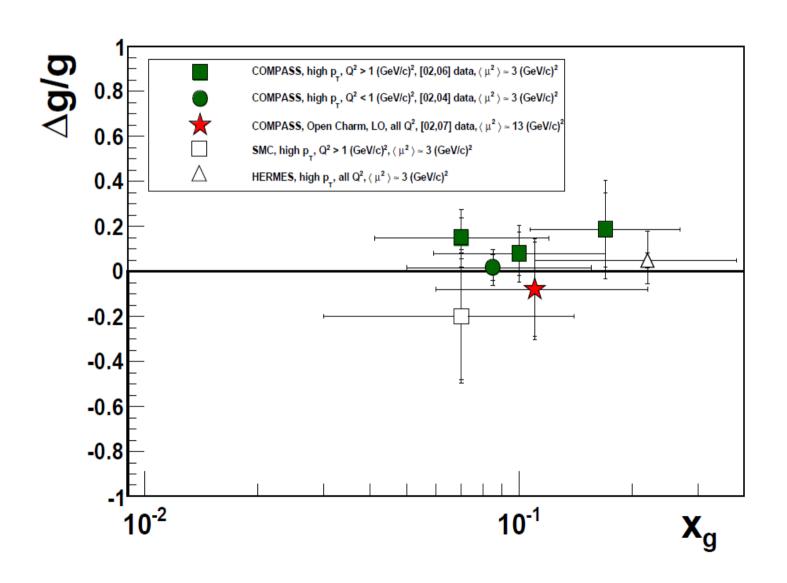
2002-2004 Preliminary:

 $\Delta G/G = 0.016 \pm 0.058 \text{ (stat)} \pm 0.055 \text{ (syst)}$

2002-2003 Published:

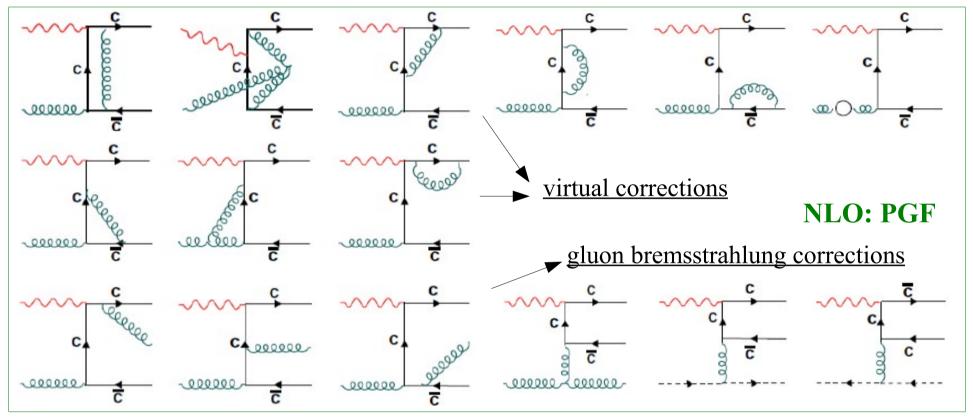
 $\Delta G/G = 0.024 \pm 0.089 \text{ (stat)} \pm 0.057 \text{ (syst)} \rightarrow Phys. Lett. B 633 (2006) 25 - 32$

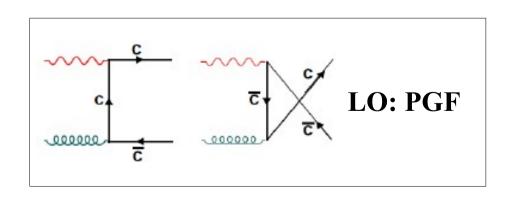
World measurements on $\Delta G/G$ in LO

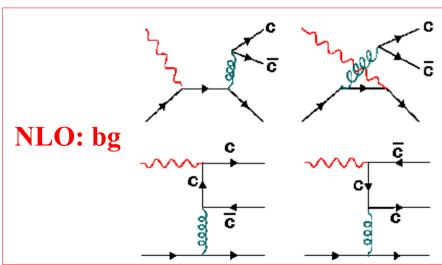


NLO results from Open Charm

NLO corrections to the analysing power $\langle a_{LL} \rangle$

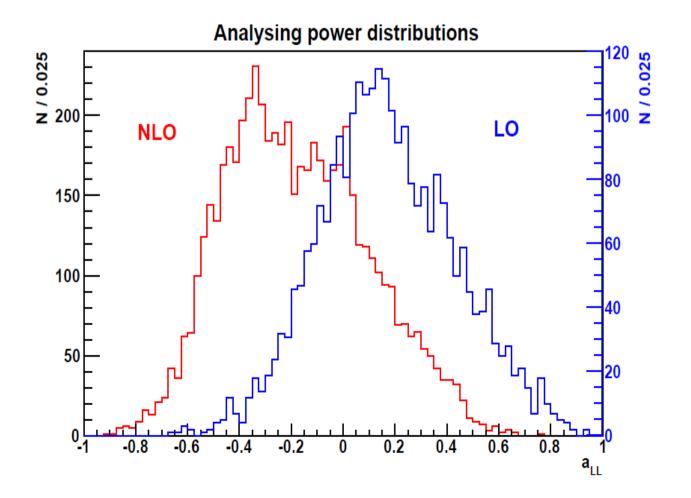






Comparison of $a_{LL}(LO)$ with $a_{LL}(NLO)$

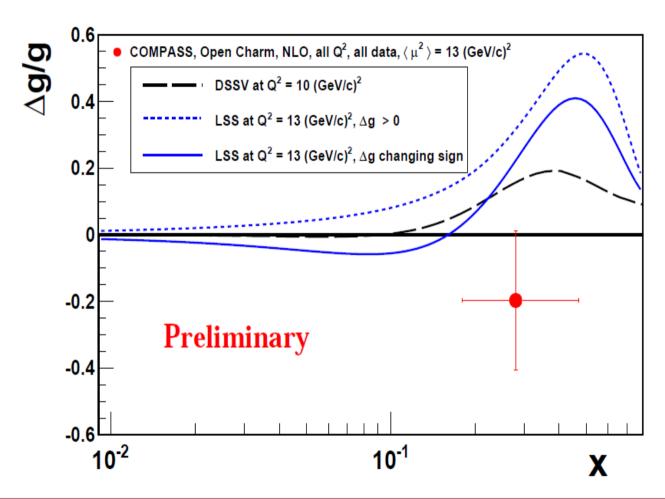
• The AROMA generator is used to simulate the fase space for the NLO (PS on) / LO (PS off) calculations of a_{LL}. The resulting D⁰ mesons are reconstructed in the COMPASS spectrometer like real events. The respective a_{LL} distributions are:



NLO results for
$$A_{\gamma N}^{PGF}$$
: $A_{\gamma N} = \left(\frac{a_{LL}^{PGF}(NLO)}{D} \frac{\Delta G}{G} + \frac{a_{LL}^{q}(NLO)}{D} A_{1}\right) \nearrow A_{cor}$

Bins		$D^0 \rightarrow K\pi$ samples			$D^0 \rightarrow K\pi\pi^0$ sample			$D^0 \rightarrow K\pi\pi\pi$ sample		
$p_{T}(D^{0})$ (GeV/c)	E (D ⁰) (GeV)	$\mathbf{A}_{_{\mathbf{\gamma}\mathbf{N}}}$	$a_{_{ m LL}}^{ m PGF}\!\!/\!{ m D}$	Acorr	$\mathbf{A}_{\mathbf{\gamma}_{\mathbf{N}}}$	$a_{\rm LL}^{ m PGF}/{ m D}$	Acorr	$\mathbf{A}_{\mathbf{\gamma} \mathbf{N}}$	a _{LL} ^{PGF} /D	A
[0, 0.3[[0, 30[-0.90±0.63	0.00	0.01	-0.63±1.29	-0.11	0.01	7.03±4.74	-0.09	0.01
	[30, 50[-0.19±0.48	-0.06	0.01	0.27±1,17	-0.08	0.01	-2.05±1.10	-0.08	0.01
	> 50	0.07±0.68	-0.12	0.02	-2.55±2.00	-0.11	0.02	0.17±1.83	-0.09	0.01
'	[0, 30[-0.18±0.37	-0.08	0.01	-0.24±0.80	-0.17	0.01	-0.59±1.74	-0.10	0.02
[0.3,0.7[[30, 50[0.10±0.26	-0.19	0.02	0.49±0.69	-0.23	0.02	1.00±0.54	-0.20	0.02
	> 50	-0.04±0.36	-0.22	0.02	-1.28±1.03	-0.18	0.02	-1.75±0.84	-0.21	0.02
	[0, 30[-0.42±0.44	-0.26	0.01	0.55±0.95	-0.29	0.02	2.91±2.61	-0.19	0.01
[0.7,1.0[[30, 50[-0.36±0.29	-0.29	0.01	-0.53±0.76	-0.32	0.02	1.42±0.57	-0.31	0.02
	> 50	1.49±0.42	-0.33	0.03	-0.17±1.00	-0.36	0.03	1.69±0.81	-0.32	0.03
	[0, 30[-0.30±0.35	-0.35	0.01	1.35±0.86	-0.40	0.02	-1.89±2.64	-0.36	0.02
[1.0,1.5]	[30, 50[0.13±0.23	-0.40	0.02	-0.11±0.51	-0.44	0.03	-0.45±0.51	-0.41	0.02
	> 50	-0.20±0.33	-0.43	0.03	-0.05±0.78	-0.42	0.04	1.06±0.66	-0.45	0.03
	[0, 30[0.38±0.49	-0.49	0.02	-0.19±1.14	-0.52	0.02	1.64±3.52	-0.49	0.03
> 1.5	[30, 50[-0.00±0.25	-0.53	0.03	-0.23±0.51	-0.50	0.04	0.44 ± 0.68	-0.54	0.03
	> 50	0.36±0.33	-0.53	0.04	0.26±0.90	-0.49	0.05	0.08±0.63	-0.54	0.05

$\Delta G/G$ result in NLO \rightarrow NEW



$$\frac{\Delta \mathbf{G}}{\mathbf{G}} = -0.20 \pm 0.21 \pm 0.08 \text{ (syst)}$$
 $@<\mathbf{x_g}> = 0.28^{+0.19}_{-0.10}, <\mu^2> = 13 (GeV/c)^2$

Preliminary: theoretical uncertainties still under study (a₁₁)

SPARES

Open Charm: Comparison of the $x_g(LO)$ and $x_g(NLO)$ distributions

