A covariant description of nucleon [and nuclear] spin structure and TMDs

Ian Cloët (University of Washington)

Collaborators Wolfgang Bentz A (Tokai University) (Ac

Anthony Thomas (Adelaide University)

8th Circum-Pan-Pacific Symposium On High Energy Spin Physics Cairns, June 2011

DIS on Nuclear Targets

- Why nuclear targets?
 - only targets with $J > \frac{1}{2}$ are nuclei
 - study QCD and nucleon structure at finite density
- Hadronic Tensor: in Bjorken limit & Callen-Gross ($F_2 = 2x F_1$)

• For
$$J = \frac{1}{2}$$
 target

$$W_{\mu\nu} = \left(g_{\mu\nu}\frac{p\cdot q}{q^2} + \frac{p_{\mu}p_{\nu}}{p\cdot q}\right)F_2(x,Q^2) + \frac{i\varepsilon_{\mu\nu\lambda\sigma}q^{\lambda}p^{\sigma}}{p\cdot q}g_1(x,Q^2)$$

• For arbitrary J: $-J \leq H \leq J$ [2J + 1 EM structure functions]

$$W_{\mu\nu}^{H} = \left(g_{\mu\nu}\frac{p\cdot q}{q^2} + \frac{p_{\mu}p_{\nu}}{p\cdot q}\right)F_{2A}^{H}(x_A, Q^2) + \frac{i\varepsilon_{\mu\nu\lambda\sigma}q^{\lambda}p^{\sigma}}{p\cdot q}g_{1A}^{H}(x_A, Q^2)$$

• Parton model expressions [2J+1] quark distributions]

$$g_{1A}^H(x_A) = \frac{1}{2} \sum\nolimits_{q} \, e_q^2 \left[\Delta q_A^H(x_A) + \Delta \overline{q}_A^H(x_A) \right]; \quad \text{parity} \implies g_{1A}^H = -g_{1A}^{-H}$$

Finite nuclei quark distributions

Definition of finite nuclei quark distributions

$$\Delta q_A^H(x_A) = \frac{P^+}{A} \int \frac{d\xi^-}{2\pi} e^{iP^+ x_A \xi^- / A} \langle A, P, H | \overline{\psi}_q(0) \gamma^+ \gamma_5 \psi_q(\xi^-) | A, P, H \rangle$$

Approximate using a modified convolution formalism

$$\Delta q_A^H(x_A) = \sum_{\alpha,\kappa,m} \int dy_A \int dx \,\,\delta(x_A - y_A \, x) \,\Delta f_{\alpha,\kappa,m}^{(H)}(y_A) \,\,\Delta q_{\alpha,\kappa}(x)$$

Finite nuclei quark distributions

• Definition of finite nuclei quark distributions

$$\Delta q_A^H(x_A) = \frac{P^+}{A} \int \frac{d\xi^-}{2\pi} e^{iP^+ x_A \xi^- / A} \langle A, P, H | \overline{\psi}_q(0) \gamma^+ \gamma_5 \psi_q(\xi^-) | A, P, H \rangle$$

Approximate using a modified convolution formalism

$$\Delta q_A^H(x_A) = \sum_{\alpha,\kappa,m} \int dy_A \int dx \,\,\delta(x_A - y_A \, x) \,\Delta f_{\alpha,\kappa,m}^{(H)}(y_A) \,\,\Delta q_{\alpha,\kappa}(x)$$

• Convolution formalism diagrammatically:

Convolution Formalism: implications

Assume all spin is carried by the valence nucleons

• If
$$A \gtrsim 8$$
 and for example if: $J = \frac{3}{2} \implies F_{2A}^{3/2} \simeq F_{2A}^{1/2}$

- Basically a model independent result within the convolution formalism
- Introduce multipole quark distributions

$$\Delta q^{(K)}(x) \equiv \sum_{H} (-1)^{J-H} \sqrt{2K+1} \begin{pmatrix} J & J & K \\ H & -H & 0 \end{pmatrix} \Delta q^{H}(x), \quad K = 1, 3, \dots, 2J$$

•
$$J = \frac{3}{2} \longrightarrow \Delta q^{(0)} = \frac{1}{\sqrt{5}} \left[3 \Delta q^{\frac{3}{2}} + \Delta q^{\frac{1}{2}} \right] \quad \Delta q^{(2)} = \frac{1}{\sqrt{5}} \left[\Delta q^{\frac{3}{2}} - 3 \Delta q^{\frac{1}{2}} \right]$$

Higher multipoles encapsulate difference between helicity distributions

Some multipole quark distributions results

Large K > 1 multipole PDFs would be very surprising

 \rightarrow large off-shell effects &/or non-nucleon components, etc

New Sum Rules

• Sum rules for multipole quark distributions

$$\int dx \, x^{n-1} \, q^{(K)}(x) = 0, \quad K, n \text{ even}, \quad 2 \leq n < K,$$
$$\int dx \, x^{n-1} \, \Delta q^{(K)}(x) = 0, \quad K, n \text{ odd}, \quad 1 \leq n < K.$$

• Examples:

$$J = \frac{3}{2} \implies \left\langle \Delta q^{(3)}(x) \right\rangle = 0$$

$$J = 2 \implies \left\langle \Delta q^{(3)}(x) \right\rangle = \left\langle q^{(4)}(x) \right\rangle = 0$$

$$J = \frac{5}{2} \implies \left\langle \Delta q^{(3)}(x) \right\rangle = \left\langle q^{(4)}(x) \right\rangle = \left\langle \Delta q^{(5)}(x) \right\rangle = \left\langle x^2 \Delta q^{(5)}(x) \right\rangle = 0$$

• Sum rules place tight constraints on multipole PDFs

Jaffe and Manohar, *DIS from arbitrary spin targets*, Nucl. Phys. B **321**, 343 (1989).

Nambu–Jona-Lasinio Model

Interpreted as low energy chiral effective theory of QCD

000000

 $\frac{Z(k^2)}{k^2}$

- Investigate the role of quark degrees of freedom
- NJL has same flavour symmetries as QCD
- Lagrangian:

$$_{NJL} = \overline{\psi}_q \left(i \partial \!\!\!/ - m_q \right) \psi_q + G \left(\overline{\psi}_q \, \Gamma \, \psi_q \right)^2$$

Gap Equation & Mass Generation

Mass is generated via interaction with vacuum

- Dynamically generated quark masses
- $\iff \langle \overline{\psi}\psi\rangle \neq 0$
- Proper-time regularization: Λ_{IR} and Λ_{UV}

→ $Z(p^2 = M^2) = 0$ \implies No free quarks \implies Confinement

Nucleon in the NJL model

- Nucleon approximated as quark-diquark bound state
- Use relativistic Faddeev approach:

Nucleon quark distributions

$$q(x) = p^{+} \int \frac{d\xi^{-}}{2\pi} e^{i x p^{+} \xi^{-}} \langle p, s | \overline{\psi}_{q}(0) \gamma^{+} \psi_{q}(\xi^{-}) | p, s \rangle_{c}, \quad \Delta q(x) = \langle \gamma^{+} \gamma_{5} \rangle$$

Associated with a Feynman diagram calculation

Results: proton quark distributions

Covariant, correct support, satisfies baryon and momentum sum rules

$$\int dx \, \left[q(x) - \bar{q}(x)\right] = N_q, \qquad \int dx \, x \left[u(x) + d(x) + \ldots\right] = 1$$

• Satisfies positivity constraints and Soffer bound $|\Delta q(x)|, \ |\Delta_T q(x)| \leq q(x), \qquad q(x) + \Delta q(x) \geq 2 |\Delta_T q(x)|$

Martin, Roberts, Stirling and Thorne, Phys. Lett. B 531, 216 (2002).

M. Hirai, S. Kumano and N. Saito, Phys. Rev. D 69, 054021 (2004).

Why is Transversity Interesting?

$$\Delta_T q(x) = \textcircled{\bullet} + - \textcircled{\bullet}$$

• Quarks in eigenstates of $\gamma^{\perp} \gamma_5$

• Tensor charge [c.f. Bjorken sum rule for g_A]

$$g_T = \int dx \left[\Delta_T u(x) - \Delta_T d(x) \right]$$

- In non-relativistic limit: $\Delta_T q(x) = \Delta q(x)$
 - therefore $\Delta_T q(x)$ is a measure of relativistic effects
- Helicity conservation \implies no mixing between $\Delta_T q \& \Delta_T g$
- For $J \leq \frac{1}{2}$ we have $\Delta_T g(x) = 0$
- Therefore for the nucleon $\Delta_T q(x)$ is valence quark dominated
- Transversity moment \neq spin quarks in transverse direction [c.f. $g_T(x)$]

$\Delta_T u_v(x)$ and $\Delta_T d_v(x)$ distributions

- Predict small relativistic corrections
- Empirical analysis potentially found large relativistic corrections
 - M. Anselmino *et. al.*, Phys. Rev. D **75**, 054032 (2007).
- Large effects difficult to support with quark mass $\sim 0.4 \, \text{GeV}$
 - maybe running quark mass is needed

Transversity: Reanalysis

- M. Anselmino et al, Nucl. Phys. Proc. Suppl. 191, 98 (2009)
- Our results are now in better agreement updated distributions
- Concept of constituent quark models safe ... for now

Transversity Moments

• M. Anselmino *et al*, Nucl. Phys. Proc. Suppl. **191**, 98 (2009)

At model scale we find tensor charge

 $g_T = 1.28$ compared with $g_A = 1.267$

Including Anti-quarks

• Gottfried Sum Rule: NMC 1994: $S_G = 0.258 \pm 0.017 [Q^2 = 4 \,\text{GeV}^2]$

$$S_G = \int_0^1 \frac{dx}{x} \left[F_{2p}(x) - F_{2n}(x) \right] = \frac{1}{3} - \frac{2}{3} \int_0^1 dx \left[\bar{d}(x) - \bar{u}(x) \right]$$

• We find: $S_G = \frac{1}{3} - \frac{4}{9} (1 - Z_q) = 0.252$ $[Z_q = 0.817]$

Spin Sum in NJL Model

• Nucleon angular momentum must satisfy: $J = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_q + J_g$

 $\Delta \Sigma = 0.33 \pm 0.03 (stat.) \pm 0.05 (syst.)$ [COMPASS & HERMES]

• Result from Faddeev calculation: $\Delta \Sigma = 0.66$

• Correction from pion cloud: $\Delta \Sigma = 0.79 \times 0.66 = 0.52$

• Bare operator $\gamma^{\mu}\gamma_5$ gets renormalized: $\Delta\Sigma = 0.91 \times 0.52 = 0.47$

TMDs in the NJL model

$$\Delta f_{sq}(x) = \overline{\Gamma}_N(p) \int \frac{d^4k}{(2\pi)^4} \,\delta\left(x - \frac{k^+}{p^+}\right) \,S(k)\,\gamma^+\gamma_5\,S(k)\,\tau_s(p-k)\,\Gamma_N(p)$$

• For TMDs simply do not integrate over \vec{k}_{\perp} – have so far $q(x, \vec{k}_{\perp}^2)$

p_T dependence

$$\left\langle p_T \right\rangle (x) = \frac{\int d\vec{k}_\perp k_\perp q(x, k_\perp^2)}{\int d\vec{k}_\perp q(x, k_\perp^2)}$$

$$\left\langle p_T^2 \right\rangle(x) = \frac{\int d\vec{k}_\perp \, k_\perp^2 \, q(x, k_\perp^2)}{\int d\vec{k}_\perp \, q(x, k_\perp^2)}$$

• For the average p_T we find

$$\langle p_T \rangle_u = 0.36 \,\mathrm{GeV} \qquad \langle p_T \rangle_d = 0.37 \,\mathrm{GeV}$$

• This compares with values derived from data

 $\langle p_T \rangle_{\text{Gauss}} (x) = 0.64 \,\text{GeV} \,[\text{EMC}]$

$$p_T \rangle_{\text{Gauss}} (x) = 0.56 \,\text{GeV} \,[\text{HERMES}]$$

H. Avakian, et al., Phy. Rev. D81, 074035 (2010)

The N^* (Roper) Resonance

- N^* manifests as second pole in Faddeev equation kernel
 - ♦ $M_N = 0.940 \,\text{GeV}$ and $M_{N^*} = 1.8 \,\text{GeV}$
 - Agrees very well with EBAC value for quark core mass
- Vertex function is given by eigenvector at pole: $p^2 = m_i^2$
- For our NJL model N, N^* vertex function has the simple form

$$\Gamma(p) = \begin{bmatrix} \alpha_1 \\ \alpha_2 \frac{p^{\mu}}{M} \gamma_5 + \alpha_3 \gamma^{\mu} \gamma_5 \end{bmatrix} u(p)$$

- For the nucleon: $\alpha_1 = 0.43$, $\alpha_2 = 0.024$, $\alpha_3 = -0.45$
- For the Roper: $\alpha_1 = 0.0011$, $\alpha_2 = 0.94$, $\alpha_3 = -0.051$
- N^* is completely dominated by the axial–vector diquark
- $\Delta \Sigma_N = 0.68 0.21 = 0.47, \qquad \Delta \Sigma_{N^*} = -0.02 + 0.01 \simeq 0.0$

Nuclear Matter

Finite density Lagrangian: add $\bar{q}q$ interaction in σ , ω , ρ channels

$$\mathcal{L} = \overline{\psi}_q \left(i \, \partial \!\!\!/ - M^* - V_q \right) \psi_q + \mathcal{L}'_I$$

• Fundamental physics: mean fields couple to the quarks in nucleons

$$S(k)^{-1} = k - M - i\varepsilon \quad \Rightarrow \quad S_q(k)^{-1} = k - M^* - V_q - i\varepsilon$$

• Hadronization + mean-field \implies effective potential that provides

$$V_{u(d)} = \omega_0 \pm \rho_0, \qquad \omega_0 = 6 G_{\omega} (\rho_p + \rho_n), \qquad \rho_0 = 2 G_{\rho} (\rho_p - \rho_n)$$

• $G_{\omega} \Leftrightarrow Z = N$ saturation & $G_{\rho} \Leftrightarrow$ symmetry energy

EMC ratio

$$R = \frac{F_{2A}}{F_{2A}^{\text{naive}}} = \frac{F_{2A}}{Z F_{2p} + N F_{2n}}$$

Polarized EMC ratio

$$R_s^H = \frac{g_{1A}^H}{g_{1A}^{H,\text{naive}}} = \frac{g_{1A}^H}{P_p^H \, g_{1p} + P_n^H \, g_{1n}}$$

- Spin-dependent cross-section is suppressed by 1/A
 - Must choose nuclei with $A \lesssim 27$
 - protons should carry most of the spin e.g. \implies ⁷Li, ¹¹B, ...
- Ideal nucleus is probably ⁷Li
 - From Quantum Monte–Carlo: $P_p^J = 0.86$ & $P_n^J = 0.04$
- Ratios equal 1 in non-relativistic and no-medium modification limit

EMC ratios

Is there medium modification

Is there medium modification

- Medium modification of nucleon has been switched off
- Relativistic effects remain
- Large splitting would be strong evidence for medium modification

Nuclear Spin Sum

Proton spin states	Δu	Δd	Σ	g_A
p	0.97	-0.30	0.67	1.267
7 Li	0.91	-0.29	0.62	1.19
^{11}B	0.88	-0.28	0.60	1.16
15 N	0.87	-0.28	0.59	1.15
27 Al	0.87	-0.28	0.59	1.15
Nuclear Matter	0.79	-0.26	0.53	1.05

- Angular momentum of nucleon: $J = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_q + J_g$
 - in medium $M^* < M$ and therefore quarks are more relativistic
 - Iower components of quark wavefunctions are enhanced
 - quark lower components usually have larger angular momentum
 - $\Delta q(x)$ very sensitive to lower components
- Conclusion: quark spin → orbital angular momentum in-medium

Conclusion

- Illustrated the inclusion of quarks into a traditional description of nuclei
 - complementary approach to traditional nuclear physics
- NJL model is a useful tool to study nucleon and nuclear structure
 - covariant, confining, dynamical chiral symmetry breaking
- NJL gives a good description of Twist-2 PDFs
 - soon have results for twist 3 and 4 PDFs and TMDs
- EMC effect is interpreted as evidence for the medium modification of the bound nucleon wavefunction
 - will be tested in forthcoming experiments PV DIS, Drell-Yan
 - NuTeV anomaly
- Polarized structure functions of nuclei are potentially interesting
 - polarized EMC effect [quark spin converted $\rightarrow L_q$ in nuclei]

• Free Parameters:

 Λ_{IR} , Λ_{UV} , M_0 , G_{π} , G_s , G_a , G_{ω} and G_{ρ}

• Constraints:

• $f_{\pi} = 93 \text{ MeV}, m_{\pi} = 140 \text{ MeV}$ & $M_N = 940 \text{ MeV}$

• $\int_0^1 dx \; (\Delta u_v(x) - \Delta d_v(x)) = g_A = 1.267$

•
$$(\rho, E_B/A) = (0.16 \, \text{fm}^{-3}, -15.7 \, \text{MeV})$$

- ♦ $a_4 = 32 \, \mathrm{MeV}$
- $\Lambda_{IR} = 240 \text{ MeV}$
- We obtain [MeV]:

 - $M_0 = 400$, $M_s = 690$, $M_a = 990$, ...
- Can now study a very large array of observables:
 - e.g. meson and baryon: quark distributions, form factors, GPDs, finite temp. and density, neutron stars

Regularization

Proper-time regularization

$$\frac{1}{X^n} = \frac{1}{(n-1)!} \int_0^\infty d\tau \, \tau^{n-1} \, e^{-\tau \, X}$$
$$\longrightarrow \quad \frac{1}{(n-1)!} \int_{1/(\Lambda_{UV})^2}^{1/(\Lambda_{IR})^2} d\tau \, \tau^{n-1} \, e^{-\tau \, X}$$

- Λ_{IR} eliminates unphysical thresholds for the nucleon to decay into quarks: \rightarrow simulates confinement
 - D. Ebert, T. Feldmann and H. Reinhardt, Phys. Lett. B 388, 154 (1996).
- E.g.: Quark wave function renormalization

•
$$Z(k^2) = e^{-\Lambda_{UV}(k^2 - M^2)} - e^{-\Lambda_{IR}(k^2 - M^2)}$$

→
$$Z(k^2 = M^2) = 0$$
 \implies no free quarks

Needed for: nuclear matter saturation, Δ baryon, etc

W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001)

Results: Nuclear Matter

 $\rho_p + \rho_n =$ fixed – Differences arise from:

naive: different number protons and neutrons

• medium: p & n Fermi motion and $V_{u(d)}$ differ $\rightarrow u_p(x) \neq d_n(x), \ldots$

Off-Shell Effects

- For an off-shell nucleon, photon–nucleon vertex given by $\Gamma_{N}^{\mu}(p',p) = \sum_{\alpha,\beta=+,-} \Lambda^{\alpha}(p') \left[\gamma^{\mu} f_{1}^{\alpha\beta} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} f_{2}^{\alpha\beta} + q^{\mu} f_{3}^{\alpha\beta} \right] \Lambda^{\alpha}(p)$
- In-medium nucleon is off-shell, extremely difficult to quantify effects
 - However must understand to fully describe in-medium nucleon
- Simpler system: off-shell pion form factors
 - relax on-shell constraint $p'^2 = p^2 = m_\pi^2$
 - Very difficult to calculate in many approaches, e.g. Lattice QCD

$$= (p'+p)^{\mu} F_{\pi,1}(p'^2, p^2, Q^2) + (p'-p)^{\mu} F_{\pi,2}(p'^2, p^2, Q^2)$$

• For
$$p'^2 = p^2 = m_{\pi}^2$$
 we have $F_{\pi,1} \to F_{\pi}$ and $F_{\pi,2} = 0$