Studies of Spin-Orbit Correlations at JLab

M. Aghasyan, H. Avakian (for the CLAS Collaboration) June 21, 2011 PacSPIN 2011, Cairns, QLD, Australia

Outline

- Physics motivation
- Unpolarized and longitudinally polarized target data.
 - Single Spin asymmetries
 - Double Spin asymmetries
- Studies of A_{LU} from dihadrons
- Summary

SIDIS kinematical plane and observables

SIDIS cross section

Transverse Momentum Dependent (TMD) Distributions

 $d\sigma^h \propto \sum f^{H o q}(x, \mathbf{k_T}) \otimes \mathrm{d}\sigma_q(y) \otimes D^{q o h}(z, \mathbf{p_\perp})$

Transverse Momentum Distributions (TMDs) of partons describe the distribution of quarks and gluons in a nucleon with respect to x and the intrinsic transverse momentum k_T carried by the quarks

Nucleon TMDs

 $d\sigma^h \propto \sum f^{H \to q}(x, \mathbf{k}_T) \otimes \mathbf{d}\sigma_q(y) \otimes D^{q \to h}(z, \mathbf{p}_\perp)$

leading twist TMDs

Experimental configuration

Pol. NH_3^{\rightarrow} , ND_3^{\rightarrow} targets $< P_H > =0.75-0.8$, $< P_D > =0.3$ Longitudinal polarization

Experimental configuration for **unpolarized/long.polarized** target

 $ep \rightarrow e'\pi X$

M. Aghasyan PacSPIN 2011, Cairns

SIDIS kinematic coverage with IC

Scattering of 5.9 GeV electrons off unpolarized and polarized proton and deuteron targets

DIS kinematics,
Q²>1 GeV², W²>4 GeV², M_x²>2 GeV²

CLAS provides a wide kinematical coverage

M. Aghasyan PacSPIN 2011, Cairns

M. Aghasyan PacSPIN 2011, Cairns

10

Longitudinally polarized NH3 target E05-113

Avakian PRL105 (2010)

CLAS and HERMES g1 are consistent.

Kotzinian-Mulders Asymmetries

The sin2 φ moment of the π^+ at large x_B is dominated by *u*-quarks, therefore with additional input from other experiments can provide a first glimpse of twist 2 h_{1L}^{\perp} function

quark

L

g1 🗭

 $\mathbf{T} \left| \mathbf{f}_{\mathrm{IT}}^{\perp} \bullet \bullet \bullet \right| \mathbf{g}_{\mathrm{IT}}^{\perp} \bullet \bullet \bullet \bullet \bullet$

Т

h[⊥] (•) - (•)

U

U f1 🔶

n

u

C I

е

o n

Different width of TMDs of quarks with different flavor and polarizations

$$R = \frac{k_{\perp} width \, dist(g_1)}{k_{\perp} width \, dist(f_1)} \qquad \begin{array}{c} --- R = 0.40 \\ \dots R = 0.68 \\ --- R = 1.0 \end{array} \qquad f_1 = 0.25 \, \text{GeV}^2$$

- Data shows slight preference for R<1
- New experiment with 10 times more data will study the P_T -dependence for different quark helicities and flavors **for bins in x**

New data

statistical errors and allows <u>more than one dimensional</u> extraction of A_{UL} an A_{LL} .

Beam Spin Asymmetry of π^0

First time: A_{LU} two dimensional mapping for 0.4<z<0.7

Т

 f_T, f_T^{\perp}

 $\mathbf{g_T}, g_7$

 $h_T, e_T, h_T^{\perp}, e_T^{\perp}$

Beam Spin Asymmetry of π^0

First time: A_{LU} two dimensional mapping for 0.4<z<0.7

Beam Spin Asymmetry of π^0

For fixed P_T x dependence is flat. M. Aghasyan PacSPIN 2011, Cairns

Beam Spin asymmetry of π^0

E01-113 experiment results on A_{LU} extends the x_B range and improves uncertainties.

Models and Data

L. Gamberg- private communication

HT-distributions in SIDIS

Factorization of higher twists in SIDIS not proved To study HT pdfs with dihadron SIDIS (replace H_1^{\perp} with Interference FF PRD69 (2004))

Exclusive $\pi^0\pi^+$ on proton

M_x(ep->eπ⁺π⁰ x) GeV

Any asymmetry extraction should be done for each x_B, y , z, P_T bin!

Strong single pion A_{LU} dependence vs mass of two pions

Or strong single pion A_{LU} dependence

vs $x_B/P_T/z$ of single pions?

Summary

- ALU of π^0 in multidimensional bins.
- ALU, AUL and ALL of $\pi^{0/+/-}$ in multidimensional bins is coming.
- The data consistent with factorization (no x /z-dependence observed in single and double spin asymmetry measurements).
- Measured asymmetries (<sinφ>, <sin2φ>, ...), provide access to new transverse momentum dependent distribution and fragmentation functions.
- Measured spin and azimuthal asymmetries are in agreement with theory predictions and measurements at higher energies.
- Measurements of azimuthal dependences of double and single spin asymmetries in SIDIS indicate that there are significant correlations between spin and transverse distribution of quarks.
- Sizable higher twist asymmetries measured in SIDIS indicate the quark-gluon correlations may be significant at moderate Q².

Exclusive $\pi^+\pi^0 A_{LU}$ for any π^0

HERMES BSA

Phys.Lett.B648:164-170,2007. e-Print: **hep-ex/0612059**

FIG. 2: Beam SSA as a function of ϕ for π^+ electroproduction at mid-z range. The solid curve represents a sin ϕ fit, and the dashed one includes also the sin 2ϕ harmonic. Only statistical errors are shown.

FIG. 4: Top panel: amplitude $A_{LU}^{\sin\phi}$ for π^+ mesons originating from ρ^0 meson decays, obtained with Monte Carlo (band) and data (full circles). The open cross displays the asymmetry for the ρ^0 itself (Monte Carlo). Bottom panel: the fraction of pions in the SIDIS sample originating from VM decays.

What about $\rho^+ > \pi^+ \pi^0$? According to MC VM contribution is less than 5%. What do I have in data?

FIG. 5: Dependence of $\widetilde{A}_{LU}^{\sin\phi}$ on z, x and $P_{h\perp}$ for charged pions. The contribution from VM decays has been determined from a Monte-Carlo simulation and subsequently subtracted from the asymmetries. The measurement of the x and $P_{h\perp}$ dependences is made separately for low (0.2 < z < 0.5) and middle (0.5 < z < 0.8) z-ranges (indicated by open and full circles, respectively). The error band indicates the uncertainties from PYTHIA and RHOMC.