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QCD Hadron Spectrum

Excellent agreement between different collaborations/lattice formulations

Plot from A. Kronfeld [1203.1204]
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Spectroscopy
• Rich spectrum of particles observed in experiment

• Some deviate from standard quark model predictions

• Other “missing states” are yet to be observed

• Can we understand the full hadron spectrum from QCD?
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Lattice 2012 - spectroscopy overview

the light meson spectrum - experiments
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Experiments
• Many experiments dedicated to study meson and baryon spectroscopy

• GlueX and CLAS12 [Jefferson Lab]

• Compass [CERN]

• BES III [Beijing]

Lattice 2012 - spectroscopy overview
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relatively simple models of hadrons:

bound states of constituent quarks and antiquarks “the quark model”

I=0, S=0 : η,φ,ω,fJ ...

I=1, S=0 : π,ρ,b1,aJ ...

I=½,S=±1 : K,K* ...

I�1, |S|�1

empirical meson 
flavour systematics
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PDG summary
(take with a pinch of salt)Jo Dudek [Lattice 2012]



Spectroscopy
• Recall: Masses (energies) are extracted from (Euclidean) time-dependence of 

lattice correlators

• In general, works well for ground states (for large enough t, fit a single 
exponential)

• Extracting excited states from multi-exponential fits difficult

• Try to optimise     to isolate state of interest. i.e. make 

• large for state, n, of interest as small for other states
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Operators
• Hadrons are extended objects ~1fm

• Using propagators computed from a point source perhaps only have small 
overlap with states of interest

• Gauge-invariant Gaussian smearing starts with a point source 

• and proceeds by the iterative scheme

• Repeating N times gives the resulting fermion source
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Example Effective Masses

Improved overlap with 
ground states



Extracting Excited States
• Different operators/smearing have differing overlap strengths with a variety of 

states of interest

• Set up a Generalised Eigenvalue Problem to cleanly isolate individual states

• E.g., express (p=0) baryon 2pt function as a sum over states 

• Look for a linear combination           that cleanly isolates state     with overlap      
at time t0 

• which leads to
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Extracting Excited States
• Multiplying on the left by [Gij(t0)]-1 gives the generalised eigenvalue equation

• with eigenvalues

• and similarly

• We can diagonalise the correlation matrix

• allowing fits at earlier times
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Figure 1: Plot of aEstat
1 (t, t0 = 4a) against t/a as obtained from the GEVP for a 3×3 and

a 4×4 system, and from the effective mass plot of two correlators with different amounts
of Gaussian smearing (22 and 90 iterations, respectively). The improved convergence
of the GEVP solutions can be seen clearly.

2 The Generalized Eigenvalue Problem

2.1 The basic idea

We start from a matrix of Euclidean space correlation functions

Cij(t) = 〈Oi(t)O
∗
j (0)〉 =

∞
∑

n=1

e−Entψniψ
∗
nj , i, j = 1, . . . , N (2.1)

ψni ≡ (ψn)i = 〈0|Ôi|n〉 En < En+1 .

Note that we have assumed non-degenerate energy levels. Space-time could be contin-
uous, but in practice applications will be for discretized field theories. In that case,
we assume that either the theory has a hermitian, positive transfer matrix as for the
standard Wilson gauge theory [21,22], or we consider t, t0 large enough and the lattice
spacing, a, small enough such that the correlation functions are well represented by a
spectral representation and complex energy contributions are irrelevant [23,24]. States
|n〉 with 〈m|n〉 = δmn are eigenstates of the Hamiltonian (logarithm of the transfer
matrix) and all energies, En, have the vacuum energy subtracted. Oj(t) are fields on
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Extracting Excited States
• Multiplying on the left by [Gij(t0)]-1 gives the generalised eigenvalue equation

• with eigenvalues

• and similarly

• We can diagonalise the correlation matrix

• allowing fits at earlier times

• and cleanly isolate excited states

S. Mahbub:1011.0480

D. B. Leinweber

is interesting to examine the stability of the masses to different choices of bases to ascertain whether
one has reliably isolated single eigenstates of QCD. The relevant issues are: (i) whether or not the
operators are sufficiently far from collinear that numerical errors do not prevent diagonalisation of
the correlation matrix and, (ii) whether or not the states of interest have significant overlap with
the subspace spanned by our chosen sets of operators. Since our correlation matrix diagonalisation
succeeded, except at large Euclidean times where statistical errors dominate, we conclude that our
operators are sufficiently far from collinear.

Basis numbers 4, 7, 9 and 10 contain higher smearing-sweep counts of 400 and 800, which
results in a significant enhancement of errors for the second and third excited states. It is noted that
the sources with sweep counts of 400, 800 and 1600 are very challenging as the smearing radii for
these sources are close to the wall source. The poor signal-to-noise ratio for these sources make
the correlation matrix analysis more challenging and the eigenvalue analysis becomes unsuccessful
for a large number of variational parameters (t0,!t). Therefore, the sources 400, 800 and 1600 are
undesirable to work with.

Figure 2: (Color online). Masses of the nucleon, N 1
2
+ states, from the projected correlation functions as

shown in Eq. (2.7). Each set of ground (g.s) and excited (e.s) states masses correspond to the diagonalization
of the correlation matrix for each set of variational parameters t0 (shown in major tick marks) and!t (shown
in minor tick marks). Figure corresponds to kud = 0.13754 and for the 3rd basis.

The agreement among the three lowest lying eigenstates is remarkable and verifies that our
approach successfully isolates true eigenstates [6, 14].

Basis number 3 has good diversity including both lower and higher smearings which is neces-
sary for the extraction of masses over the entire heavy to light quark mass range. As a result, basis
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FIG. 4: (Color online). Masses of the low-lying positive-parity
states of the nucleon. Physical values are plotted at the far
left. Lattice results for the Roper (filled triangles) reveal sig-
nificant chiral curvature towards the physical mass.

FIG. 5: (Color online). A comparison of the low-lying
positive-parity spectrum of dynamical QCD (full symbols)
and quenched QCD results (open symbols) from Ref. [26].

ment, significant differences are observed for the Roper
in the light quark mass regime. Once again, this empha-
sizes the role of dynamical fermion loops in creating the
mesonic dressings of the Roper.
This investigation is the first to illustrate the manner

in which the Roper resonance of Nature manifests itself
in today’s best numerical simulations of QCD. The quark
mass dependence of the state revealed herein substanti-
ates the essential role of dynamical fermions and their
associated non-trivial light-mesonic dressings of baryons,
which give rise to significant chiral non-analytic curva-
ture in the Roper mass in the chiral regime.
This research was undertaken on the NCI National

Facility in Canberra, Australia, which is supported by
the Australian Commonwealth Government. We also ac-
knowledge eResearch SA for generous grants of super-
computing time. This research is supported by the Aus-
tralian Research Council.
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Spectroscopy
• Meson states allowed by the quark model

• States with P=(-1)J but CP=-1 forbidden

• The are exotic states: not just a qq pair

• Need to consider a large basis of operators to isolate higher spin states and 
access exotic quantum numbers

• E.g.

• Solve Generalised Eigenvalue Problem to isolate individual states

-
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The Excited Hadron Spectrum

• Includes high spin and light exotic states

• Most states identically flavour mixed strange-light mixing
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FIG. 4: Isoscalar meson spectrum labeled by JPC . The box height indicates the one sigma statistical uncertainty above and
below the central value. The light-strange content of each state (cos2 α, sin2 α) is given by the fraction of (black, green) and
the mixing angle for identified pairs is also shown. Horizontal square braces with ellipses indicate that additional states were
extracted in this JPC but were not robust. Grey boxes indicate the positions of isovector meson states extracted on the same
lattice (taken from [9]). The mass scale is set using the procedure outlined in [9, 12]. Pink boxes indicate the position of
glueballs in the quark-less Yang-Mills theory [6].
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The Excited Hadron Spectrum
Baryons [Edwards et al. 1212.5236]
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FIG. 7: The lowest negative-parity states that are flavor-octet
are shown for m⇡ = 391 MeV.

IV. SUMMARY

This work presents results for baryons based on lattice
QCD using the 163⇥128 anisotropic lattices that were
developed in Ref. [6]. Excited state spectra are calculated
for baryons that can be formed from u, d and s quarks,
namely the N , �, ⇤, ⌃, ⌅ and ⌦ families of baryons, for
two pion masses, 391 MeV, 524 MeV, and at the SU(3)F -
symmetric point corresponding to a pion mass of 702
MeV.

The interpolating operators used incorporate covariant
derivatives in combinations that correspond to angular-
momentum quantum numbers L = 0, 1 and 2. The an-
gular momenta are combined with quark spins to build
operators that transform according to good total angu-
lar momentum, J , in the continuum. As noted in earlier
works, approximate rotational symmetry is realized at
the scale of hadrons, enabling us to identify reliably the
spins in the spectrum up to J = 7

2 from calculations at
a single lattice spacing.

The operators we have employed are classified accord-
ing to the irreducible representations of SU(3)F flavor.
At the pion masses used, the SU(3)F symmetry is broken
only weakly and states in the spectra can be identified
as being created predominantly by operators of definite
flavor symmetry 8F , 10F or 1F.

We find bands of states with alternating parities and
increasing energies. Each state has a well-defined spin
and generally a dominant flavor content can be identi-
fied. The number of non-hybrid states of each spin and
flavor in the lowest-energy bands is in agreement with the

FIG. 8: The lowest negative-parity states that are flavor-
singlet (beige) and decuplet (yellow) are shown for m⇡ = 391
MeV.

expectations based on weakly broken SU(6)⌦O(3) sym-
metry. These states correspond to the quantum numbers
of the quark model.
Chromo-magnetic operators are used to identify states

that have strong hybrid content. Usually these states
are at higher masses, about 0.7m⌦, or more, above the
lowest non-hybrid states. There is reasonable agreement
between the number of positive-parity states with strong
hybrid content and the expectations of Table IV that are
based on non-relativistic quark spins, although a few of
the expected states are not found at the lowest pion mass.
With the inclusion into our basis of multi-hadron oper-

ators, which couple e�ciently onto multi-hadron scatter-
ing states, we expect to find an increased number of levels
in the spectrum. As demonstrated in Ref. [16], using the
technique of moving frames where the total momentum of
the system is nonzero, the increased number of levels al-
lows for the extensive mapping of the energy dependence
of scattering amplitudes, and hence, the determination of
resonances. The prospect of determining the properties
of resonances provides a strong motivation for continued
work on the spectra of baryons.

Acknowledgments
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must be flat at the symmetric point, and furthermore that the combinations
(M∆++ + M∆− + MΩ) and (M∆+ + M∆0 + MΣ∗+ + MΣ∗− + MΞ∗0 + MΞ∗−) will
also be flat. Technically these symmetrical combinations are in the A1 singlet
representation of the permutation group S3. This is the symmetry group of an
equilateral triangle, C3v. This group has 3 irreducible representations, [6], two
different singlets, A1 and A2 and a doublet E, with elements E+, E−. Some de-
tails of this group and its representations are given in Appendix A, while Table 1
gives a summary of the transformations.

A1 E A2

Op E+ E−

Identity + + + +
u ↔ d + + − −
u ↔ s + mix −
d ↔ s + mix −

u → d → s → u + mix +
u → s → d → u + mix +

Table 1: A simplified table showing how the group operations of S3 act in the different
representations: + refers to unchanged; − to reflection.

We list some of these invariant mass combinations in Table 2. The per-
mutation group S3 yields a lot of useful relationships, but cannot capture the
entire structure. For example, there is no way to make a connection between the
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Resonances

• Many states are actually resonances          

• If quarks are light enough, state can decay strongly

• e.g. 

• How can we be sure that the state we measure is the true resonance state 
and not some superposition of states?

• [see Ross’ talk yesterday]

• Include two particle operators into your simulations

⇢ ! ⇡⇡ �++ ! p⇡+Lüscher

Map out volume-dependence of energy levels
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Two Particle States

• Example

• If you are below threshold (particle can decay), need to consider two 
particle system

• Not only need                two-point function

• But also 

⇢ ! ⇡⇡

⇢ ! ⇢

⇡

⇡

⇢⇢

⇢
⇡

⇡
⇢

⇡

⇡

⇡

⇡

⇡
⇡

⇡
⇡

⇡
⇡

⇡
⇡



• Recall meson 2pt function

• For two-particle system

Two Particle States

h⌦|O(x)O†(0)|⌦i = �h⌦| ̄a(x)� b(x)  ̄b(0)�
†
 a(0)|⌦i

⇡+⇡� ! ⇡+⇡�

h⌦|d̄(x)�u(x)ū(x)�d(x) ū(0)�†
d(0)d̄(0)�†

u(0)|⌦i

⇡
⇡

⇡
⇡



• Recall meson 2pt function

• For two-particle system

Two Particle States

h⌦|O(x)O†(0)|⌦i = �h⌦| ̄a(x)� b(x)  ̄b(0)�
†
 a(0)|⌦i

⇡+⇡� ! ⇡+⇡�

h⌦|d̄(x)�u(x)ū(x)�d(x) ū(0)�†
d(0)d̄(0)�†
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⇡
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⇡
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• Recall meson 2pt function

• For two-particle system

Two Particle States
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• Recall meson 2pt function

• For two-particle system

Two Particle States

h⌦|O(x)O†(0)|⌦i = �h⌦| ̄a(x)� b(x)  ̄b(0)�
†
 a(0)|⌦i

⇡+⇡� ! ⇡+⇡�

h⌦|d̄(x)�u(x)ū(x)�d(x) ū(0)�†
d(0)d̄(0)�†

u(0)|⌦i

⇡

⇡

⇡

⇡

Requires “all-to-all” propagator
S(x, x)



Extracting Resonance
• Construct correlation matrix

• Diagonalise to extract two energy levels

✓
G⇢!⇢ G⇢!⇡⇡

G⇡⇡!⇢ G⇡⇡!⇡⇡

◆

✓
G1 0
0 G2

◆
E1, E2

Lüscher

Map out volume-dependence of energy levels
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Extracting Resonance
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FIG. 10. P -wave ⇡⇡ elastic scattering phase-shift, �1(Ecm), determined from solution of Eq. 7 applied to the finite-volume
spectra shown in Fig. 9 under the assumption that �`>1 = 0. Energy region plotted is from ⇡⇡ threshold to KK threshold.

atmR = 0.15226(34)(11)
2

4
1 �0.14 �0.09

1 0.32
1

3

5
g = 5.06(15)(2)

R/at = 16.6(52)(17)

�

2
/Ndof =

43.6
29�3 = 1.68,

which shows a slightly improved quality of fit, although
there is clearly some correlation between the coupling g

and the range R. The range expressed in physical units
R = R

at

atm⌦

mphys
⌦

⇡ 0.6 ± 0.2 fm would seem to be reason-

able on the usual hadronic scale. The resulting energy
dependence is shown by the red curve in Fig. 11 where
it is seen to approach 180� more rapidly than the simple
Breit-Wigner.

The particular form of the damping function is a
model-dependent choice and we can explore the sensi-
tivity by trying other parameterisations. For example a
gaussian form (previously considered in a quark model
study [35]),

�gau.
`=1 (Ecm) =

g

2

6⇡

p

3
cm

E

2
cm

e

�p2
cm/6�2

e

�p2
R/6�2 . (11)

Fitting the same dataset we obtain

atmR = 0.15224(34)(14)
2

4
1 �0.18 0.16

1 �0.47
1

3

5
g = 5.08(17)(3)

at� = 0.029(7)(3)

�

2
/Ndof =

43.5
29�3 = 1.67,

indicating that the particular functional form of the
damping appears to be relatively unimportant. In phys-

ical units, � = at� · mphys
⌦

atm⌦
⇡ 160(40)MeV. The energy

dependence is shown by an orange curve in Fig. 11 that
lies almost exactly on the red curve already described.
Another parameterisation that has been used to fit ex-

perimental phase-shift data is provided by Peláez and
Ynduráin (see Ref. [36] and their subsequent papers),

cot �1(Ecm) =
Ecm

2p3cm
(m2

R � E

2
cm)

⇥
"

2m2
⇡

m

2
REcm

+B0 +B1
Ecm �p

s0 � E

2
cm

Ecm +
p

s0 � E

2
cm

#
,

which, while it appears cosmetically to be very di↵er-
ent to a Breit-Wigner, in fact has an energy depen-
dence which is rather similar, with the three parameters
mR, B0, B1 able to conspire to provide damping. The
additional parameter, s0, is not allowed to float, and fol-
lowing the proposers’ suggestion is set to 2m⇡ +m⇢, as
determined on this lattice, at

p
s0 = 0.29. Fitting yields

atmR = 0.15227(34)(12)
2

4
1 �0.06 �0.05

1 0.99
1

3

5
B0 = 2.71(77)(21)
B1 = 6.0(33)(9)

�

2
/Ndof =

43.7
29�3 = 1.68,

a reasonable description of the data. The extremely high
degree of correlation between B0 and B1 suggests that
they may not be the most natural way to parameterise
this amplitude. The energy dependence is plotted in
Fig. 11 using a green curve that lies almost exactly under
the orange and red curves already plotted.
We have presented the data and fits in units of

the inverse temporal lattice spacing thus far to avoid
ambiguities with how one sets the lattice scale. If

Dudek et al.[1212.0830]



Spectroscopy
• Light hadron spectrum is in good shape

• Significant advancement in the determination of excited states

• Now confronted with new challenges:

• Isospin breaking

• QED effects

• Resonances (See plenary talk by D. Mohler at Lattice 2012)

(See plenary talk by T. Izubuchi at Lattice 2012)



• To date, all Lattice simulations have been performed with degenerate up and 
down quark masses

• Progress by several collaborations in determining the                     effect on 
some observables

•                                                                             QCDSF (1206.3156):

•                                                                            Rome 123 (1110.6294):  

Isospin Breaking (md �mu)

Nf = 2, Nf = 2 + 1, Nf = 2 + 1 + 1

(md �mu)

Mn �Mp

Mn �Mp = 3.13(55)

M⌃� �M⌃+ = 8.10(136)

M⌅� �M⌅0 = 4.98(85)

md �mu(M̄S, 2GeV ) = 2.35(25)

FK+/F⇡+

FK/F⇡
� 1 = �0.0039(4)

Mn �Mp = 2.8(7)
Shanahan (’12)



QED Effects
• Many Lattice QCD results are achieving high precision

• QED effects may not be negligible and should be included

• Although in some cases, QED can be treated perturbatively, this is not 
always the case

• Currently two main methods employed:

• Quenched QED

• Dynamical QED via reweighting 

(See plenary talk by T. Izubuchi at Lattice 2012)

�f⇡, �fK ⇠ 1%, �(f⇡/fK) ⇠ 0.5%

QCD+QED Lattice simulation



QED Effects
(See plenary talk by T. Izubuchi at Lattice 2012)

• E.g. Quark masses from QCD+QED simulation    [PRD82, 094508  (2010)]

•  and for n-p:

• Combine with previous QCD result

 c.f. experiment: 1.2933321(4) MeV

Quark mass from QCD+QED simulation

[PRD82 (2010) 094508 [47pages]]

mu = 2.24 ± 0.10 ± 0.34 MeV

md = 4.65 ± 0.15 ± 0.32 MeV

ms = 97.6 ± 2.9 ± 5.5 MeV

md � mu = 2.411 ± 0.065 ± 0.476 MeV

mud = 3.44 ± 0.12 ± 0.22 MeV

mu/md = 0.4818 ± 0.0096 ± 0.0860

ms/mud = 28.31 ± 0.29 ± 1.77,

• MS at 2 GeV using NPR/SMOM scheme.

• Particular to QCD+QED, finite volume error is large: 14% and 2% for mu and md.

• This would be due to photon’s non-confining feature (vs gluon).

• Volume, a2, chiral extrapolation errors are being removed.

• Applications for Hadronic contribution to (g � 2)µ in progress.

Taku Izubuchi, Lattice 2012, Cairns, June 25, 2012 15

(Mn �Mp)
QED = �0.54(24)

(Mn �Mp) = 2.14(42) MeV



H,H � : �, K p, n, . . .

O : Vµ, Aµ, . . .

⇥H �|O|H⇤

Calculating Matrix Elements



Calculating Matrix Elements

h⇢(p0, s0)|Jµ(~q)|⇢(p, s)i =

� (✏0⇤ · ✏)PµG1(Q
2)� [(✏0⇤ · q)✏µ � (✏ · q)✏0⇤µ]G2(Q

2) + (✏ · q)(✏0⇤ · q) Pµ

(2m⇢)2
G3(Q

2)

h�(p0, s0)|Jµ(~q)|�(p, s)i =

ū↵(p
0, s0)

⇢
� g↵�

⇥
�µa1(Q

2) +
Pµ

2M�
a2(Q

2)
⇤
� q↵q�

(2M�)2
⇥
�µc1(Q

2) + d
Pµ

2M�
c2(Q

2)
⇤�

u�(p, s)

hN(p0, s0)|Jµ(~q)|N(p, s)i = ū(p0, s0)
h
�µF1(q

2) + i�µ⌫ q⌫
2m

F2(q
2)
i
u(p, s)

h⇡(p0)|Jµ(~q)|⇡(p)i = PµF⇡(q
2)

q2 = �Q2 = (p0 � p)2

Pµ = p0µ + pµ
Spin-0

Spin-1/2

Spin-1

Spin-3/2



G(t, ⌧, p, p0) =
X

~x2,~x1

e

�i~p

0·(~x2�~x1)
e

�i~p·~x1�
�↵

⌦
⌦
��
T

�
�

↵

(~x2, t)O(~x1, ⌧)�
�

(0)
� ��⌦

↵

Lattice 3pt Functions

• Create a state (with quantum numbers of the proton) at time t=0
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X
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��
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�
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↵

Lattice 3pt Functions

• Create a state (with quantum numbers of the proton) at time t=0

• Insert an operator,   , at some time O ⌧
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Lattice 3pt Functions

• Create a state (with quantum numbers of the proton) at time t=0

• Insert an operator,   , at some time 

• Annihilate state at final time t

O ⌧



G(t, ⌧, p, p0) =
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Lattice 3pt Functions

• Create a state (with quantum numbers of the proton) at time t=0

• Insert an operator,   , at some time 

• Annihilate state at final time t

O ⌧



• Insert complete set of states

• Make use of translational invariance

• Evolve to large Euclidean times to isolate ground state

Lattice 3pt Functions

I =
X

B,p,s

|B, p, sihB, p, s|

�(~x, t) = e

Ĥt
e

�i ~̂P ·~x
�(0)ei

~̂P ·~x
e

�Ĥt

I =
X

B0,p0,s0

|B0, p0, s0ihB0, p0, s0|

G(t, ⌧, ~p, ~p 0) =
X

B,B0

X

s,s0

e�EB0 (~p 0)(t�⌧)e�EB(~p)⌧��↵

⇥ ⌦
⌦
���↵(0)

��B0, p0, s0
↵⌦
B0, p0, s0

��O(~q)
��B, p, s

↵⌦
B, p, s

����(0)
��⌦

↵
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⌦
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G(t, ⌧, ~p, ~p 0) =
X
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e�E~p 0 (t�⌧)e�E~p⌧��↵

⌦
⌦
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↵⌦
N(p0, s0)

��O(~q)
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• Consider a pion 3pt function

• With interpolating operator

• And insert the local operator (quark bi-linear)

Lattice 3pt Functions pion

⇥(x) = d̄(x)�5u(x)

G(t, �, p, p⇤) =
⌃

⇧x2,⇧x1

e�i⇧p�·(⇧x2�⇧x1)e�i⇧p·⇧x1
⇤
�

⇧⇧T
�
⇥(⌦x2, t)O(⌦x1, �) ⇥†(0)

⇥ ⇧⇧�
⌅

q̄(x)Oq(x)
:  Combination of    

matrices and derivatives
O �

�d̄(x2)�5u(x2)ū(x1)Ou(x1)ū(0)�5d(0) u-quark



• Consider a pion 3pt function

• With interpolating operator

• And insert the local operator (quark bi-linear)

Lattice 3pt Functions pion

⇥(x) = d̄(x)�5u(x)

G(t, �, p, p⇤) =
⌃

⇧x2,⇧x1

e�i⇧p�·(⇧x2�⇧x1)e�i⇧p·⇧x1
⇤
�

⇧⇧T
�
⇥(⌦x2, t)O(⌦x1, �) ⇥†(0)

⇥ ⇧⇧�
⌅

q̄(x)Oq(x)
:  Combination of    

matrices and derivatives
O �

�d̄(x2)�5u(x2)ū(x1)Ou(x1)ū(0)�5d(0) u-quark



Lattice 3pt Functions

• all possible Wick contractions

�d̄a
⇥(x2)�5⇥⇤ua

⇤(x2)ūb
⌃(x1)�⌃⌅u

b
⌅(x1)ūc

⇧(0)�5⇧�dc
�(0)

pion
u-quark



Lattice 3pt Functions

• all possible Wick contractions

• connected

�d̄a
⇥(x2)�5⇥⇤ua

⇤(x2)ūb
⌃(x1)�⌃⌅u

b
⌅(x1)ūc

⇧(0)�5⇧�dc
�(0)

pion

Sca
d�⇥(0, x2)�5⇥⇤Sab

u⇤⌃(x2, x1)�⌃⌅S
bc
u⌅⇧(x1, 0)�5⇧�

u-quark



Lattice 3pt Functions

• all possible Wick contractions

• connected

• disconnected

�d̄a
⇥(x2)�5⇥⇤ua

⇤(x2)ūb
⌃(x1)�⌃⌅u

b
⌅(x1)ūc

⇧(0)�5⇧�dc
�(0)

Sca
d�⇥(0, x2)�5⇥⇤Sab

u⇤⌃(x2, x1)�⌃⌅S
bc
u⌅⇧(x1, 0)�5⇧�

�Sca
d�⇥(0, x2)�5⇥⇤Sac

u⇤⇧(x2, 0)�5⇧�Sbb
u⌅⌃(x1, x1)�⌃⌅

pion
u-quark



Lattice 3pt Functions

• all possible Wick contractions

• connected

• disconnected

�d̄a
⇥(x2)�5⇥⇤ua

⇤(x2)ūb
⌃(x1)�⌃⌅u

b
⌅(x1)ūc

⇧(0)�5⇧�dc
�(0)

Tr
�
Sd(0, x2)�5Su(x2, x1)�Su(x1, 0)�5

⇥

Tr
�
� Sd(0, x2)�5Su(x2, 0)�5

⇥
Tr

�
Su(x1, x1)�

⇥

pion
u-quark



Lattice 3pt Functions

• all possible Wick contractions

• connected

• disconnected

•   all-to-all propagators

�d̄a
⇥(x2)�5⇥⇤ua

⇤(x2)ūb
⌃(x1)�⌃⌅u

b
⌅(x1)ūc

⇧(0)�5⇧�dc
�(0)

S†(x, 0) = �5S(0, x)�5

Tr
�
� S†

d(x2, 0)Su(x2, 0)
⇥
Tr

�
Su(x1, x1)�

⇥

Tr
�
S†

d(x2, 0)Su(x2, x1)�Su(x1, 0)
⇥

�5-hermiticity

pion



• Use the following interpolating operator to create a proton

• And insert the local operator (quark bi-linear)

• Perform all possible (connected) Wick contractions u-quark (4 terms)

proton
G�(t, � ; ⌦p⇤, ⌦p) =

⌃

⌥x2,⌥x1

e�i⌥p�·(⌥x2�⌥x1)e�i⌥p·⌥x1 �⇥�

⇤
⇥

⇧⇧T
�
⇥�(t, ⌦x2)O(�, ⌦x1) ⇥⇥(0)

⇥ ⇧⇧⇥
⌅

⇤�(x) = ⇥abc
�
uTa(x) C�5 db(x)

⇥
uc

�(x)

⇥abc⇥a�b�c� �
uTa(x2) C�5 db(x2)

⇥
uc

�(x2)ū(x1)Ou(x1)ūc�
(0)

⇤
d̄b�

(0)C�5ū
Ta�

(0)
⌅

Lattice 3pt Functions

q̄(x)Oq(x) :  Combination of    
matrices and derivatives

�O



• Use the following interpolating operator to create a proton

• And insert the local operator (quark bi-linear)
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(0)

⇤
d̄b�

(0)C�5ū
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Lattice 3pt Functions
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• Use the following interpolating operator to create a proton

• And insert the local operator (quark bi-linear)

• Perform all possible (connected) Wick contractions u-quark (4 terms)
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• Use the following interpolating operator to create a proton

• And insert the local operator (quark bi-linear)

• Perform all possible (connected) Wick contractions u-quark (4 terms)
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• Use the following interpolating operator to create a proton

• And insert the local operator (quark bi-linear)

• Perform all possible (connected) Wick contractions
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• Pictorially:

• u-quark

• d-quark

• s-quark 

• quark-line disconnected contributions drop out in isovector quantities (u-d) if 
isospin is exact (mu=md)

protonLattice 3pt Functions


