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• Lecture 1: Introduction to Lattice QCD

• Lecture 2: Spectroscopy and related issues

• Lecture 3: Hadronic matrix elements on the lattice, Nucleon form factors

• Lecture 4: Moments of parton distribution functions and generalised parton 
distribution functions
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• Seen need for non-perturbative methods

• Strong coupling constant large at low-energies

• Quarks confined inside hadrons

• Perturbation theory no longer useful

• Need a nonperturbative method

• Lattice QCD 

Why Lattice?



• A lattice regularisation provides a non-perturbative tool for calculating quantities 
such as the hadron spectrum, form factors, ...

• Also used to address issues like the mechanism for confinement and chiral 
symmetry breaking 

• Discretise space-time into a 4-dimensional grid

• LGT can be simulated on a computer using methods similar to Statistical 
Mechanics

• Can tune input parameters (e.g. quark masses)

• Make predictions on the dependence of quantities on these parameters

•       Make contact with Chiral Perturbation Theory

Why Lattice?



The Lattice

• Discretise space-time with lattice spacing a 
volume L3xT

• Quark fields reside on sites

• Gauge fields on the links

• Approximate the QCD path integral by Monte 
Carlo methods

• Use a big computer
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The Lattice
The Basics

Ken Wilson (1974)

• Work in Euclidean space

•  Given a lattice spacing, a, define the set of available 
space-time points to be restricted to the hypercubic 
lattice

• If we have a finite lattice we usually introduce 
periodic boundary conditions ie formulate theory on 
the 4-torus
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The Lattice
The Basics

• It is not possible to consider infinitesimal distances 
on the lattice

•  replace derivatives by finite difference operators

• and integrals with sums

• As might be expected, when we introduce a 
minimum distance a, the corresponding 
generator of translations, momentum, is also 
affected

• Each component of 4-momentum is now 
restricted to the Brillouin zone
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The Lattice
The Basics

{

• On a periodic lattice with spatial volume L3, quark 
fields satisfy

• so we see that momenta are discretised in units of 

• For typical lattices, smallest non-zero momentum 
~400-500 MeV

• Poor momentum resolution

• Can affect phenomenological observables e.g. form 
factors
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• When constructing a lattice action, the most important feature to consider is local 
gauge symmetry 

• Under gauge transformation             quark and gauge fields transform as

• Quarks

• Gauge

• Invariant quantities:

• Include gauge fields in derivative

• Trace of closed loops gauge invariant, e.g. Plaquette 

The Lattice
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Lattice Gauge Action

• Rewrite Plaquette

• Stokes’ Theorem implies

• where       is the non-abelian field strength tensor

• The Wilson Gauge Action
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Lattice Gauge Action

• Wilson gauge action differs from the continuum action at             and

• Remove a2 errors via Symanzik improvement scheme

• Use 1x2 and 2x1 Rectangular Loops, e.g.

• to remove              errors gives the tree-level improved Symanzik gluon action

• more generally, can include parallelogram (or “chair”) diagrams with

O(a2) O(g2a2)

O(a2)

SImp = �

8
<

:c0
X

Plaq

1

3
ReTr(1� UPlaq) + c1

X

Rect

1

3
ReTr(1� URect)

9
=

;

c0 + 8c1 + 8c2 = 1
Iwasaki: c1 = −0.331, c2=0
DBW2: c1 = −1.4069, c2=0

R1⇥2
µ⌫ = 1� 4

6
g2a4TrF 2

µ⌫ � 4

72
g2a6Tr

�
Fµ⌫(4@

2
µ + @2

⌫)Fµ⌫

�
� . . .



Lattice Quark Action

• The continuum Dirac operator

• is discretised by:

• Replacing the derivative with a discrete difference, and

• Including gauge links which
Encode the gluon field,      , and
Maintain gauge invariance
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Lattice Quark Action

• The continuum Dirac action is recovered in the limit a       0 by Taylor expanding the 
links and                 in powers of the lattice spacing a

• Hence we arrive at the simplest (“naive”) lattice fermion action

 (x+ aµ̂)

1

2a
 ̄(x)�µ

⇥
(1 + iagAµ(x+

aµ̂

2
) + . . .)( (x) + a 

0(x) + . . .)�

(1� iagAµ(x� aµ̂

2
) + . . .)( (x)� a 

0(x) + . . .)
⇤

=  ̄(x)�µ(@µ +O(a2)) (x) + ig ̄(x)�µ
⇥
Aµ +O(a2)

⇤
 (x)

S

N

= m

q

X

x

 ̄(x) (x)

+
1

2a

X

x

 ̄(x)�
µ


U

µ

(x) (x+ aµ̂)� U

†
µ

(x� aµ̂) (x� aµ̂)

�



Naive Quark Action

• While preserving chiral symmetry, encounters the fermion - doubling problem

•        only couples sites that are separated by 2a

• In one dimension, coupling sites spaced by 2a means that even sites are coupled 
only to even sites, and odd to odd

• This is equivalent to having two lattice fermion fields             and

• This situation is not ameliorated by taking the continuum limit

• While we discretised a theory with only one fermion species, when we extrapolate 
back to the continuum our results are contaminated by additional fermions (2d - 1 in 
d dimensions)

rµ
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Naive Quark Action

• This doubling problem is demonstrated in momentum space. 

• The momentum space representation of      is        

• this function has only one zero, at

• However in momentum space                                   

• which has 16 zeros within the Brillouin zone,
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Wilson Quark Action

• Wilson introduced an irrelevant (energy) dimension - five operator (the so-called 
Wilson term) to fix this problem

• where

•     couples sites that are only one lattice spacing apart

• In momentum space                                                 , which clearly has only a zero at

• Rescaling quark fields,                        ,the Wilson action is (in terms of            )
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Wilson Quark Action
• In the continuum limit we find

• where                                and             at finite lattice spacing

• By lifting the mass of the unwanted doublers with a second derivative, we have

• introduced         discretisation errors        bad scaling

• broken chiral symmetry at 

• The scaling properties of this Wilson action at finite a can be improved by 
introducing any number of irrelevant operators of increasing dimension which vanish 
in the continuum limit

• In this manner, one can improve fermion actions at finite a by combining operators to 
eliminate         and perhaps           errors etc
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Clover Quark Action

• The Wilson term adds an         error. How can we remove that?

• The are 5 basic dimension-5 operators

• Only the first is needed: Clover term
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No Go Theorem

• The Nielsen-Ninomiya No-Go theorem states that it is not possible to find a lattice 
Dirac operator Da that simultaneously satisfies the following four conditions:

• Correct continuum limit: In the limit                         , where      is the covariant 
derivative in the continuum, giving rise to a single fermion species of zero or finite  
mass

• No doublers: All other modes of Da are of order 1/a, i.e., all other fermion species 
decouple in the continuum limit (grow infinitely heavy)

• Locality: Da is local, i.e., the matrix elements Dxy decay exponentially as |x-y| grows 
large

• Chirality: Da does not explicitly break chiral symmetry, i.e., 

a ! 0, Da !6D Dµ

Da�5 + �5Da = 0



Ginsbarg-Wilson Relation

• Ginsparg and Wilson proposed a lattice deformed version of chiral symmetry

• Lattice Dirac operators that satisfy this are called Lattice Chiral Fermions

• Neuberger’s Overlap operator is an example of such a lattice Dirac operator

• Only one group (JLQCD) seriously tackling real (dynamical) overlap simulations

�5D⇤ +D⇤�5 = 2aD⇤�5D⇤

Very computationally demanding!!



Other Fermion Actions

• Domain Wall: [RBC/UKQCD]

• Both chiral and flavour symmetric at finite a

• Computationally expensive

• Residual chiral symmetry breaking mres 

• (Improved) Staggered Fermions: [MILC & HPQCD]

• Good chiral properties

• Efficient access to light quark masses / large volumes

• Small discretisation errors

• Remnant doubling problem

• Each fermion flavour comes in four “tastes” (“fourth-root trick”)



Other Fermion Actions

• Twisted Mass [European Twisted Mass Collaboration]

• Automatic         improvement at maximal twist

• Breaks flavour symmetry

• Fat-Link (Clover) Fermions (FLIC, SLIC, SLiNC, HEX) [CSSM, WMB, QCDSF, HSC,...]

• Smear (smooth) gauge links appearing in irrelevant operators

• Excellent scaling (discretisation effects small)

• Efficient access to light quark mass regime

O(a)



Common Continuum Limit
CSSM [hep-lat/0110216]



• Start with the partition function in Euclidean space (               )

• QCD action:

• M - Dirac fermion matrix

•                                                      - field strength tensor

• Gauge fields represented by 

• Using the following identity for Grassmannian fields

• the fermion fields can be integrated out
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Path Integral

• Fermionic contribution to the action is now contained in detM and Z is now only an 
integral over background gauge configurations

• The QCD action can now be written

• where the sum in the last term is over quark flavours

• Quenched Approximation - detM=0  

• Neglect sea quark loops

• cheap

• No longer necessary
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Expectation Values of Observables

• Calculation of physical observables are obtained via expectation values

• After applying the lattice regularisation

• We must evaluate a multi-dimensional integral where for each point x we have to 
integrate over the available degrees of freedom

• The gauge field has eight degrees of freedom per link, and four links per site. So on a 
L4 lattice, integration space has dimension d=32L4 

• If we sample N points per dimension to evaluate the integral, then the complexity of 
the functional integral is O(Nd) - impossible!

• However, the weighting of e-S[U] in the integrand above means we are only interested 
in a small portion of the available configuration space (that with small action), as the 
remainder is exponentially suppressed

hOi = 1

Z

Z
DAD ̄D O[A,  ̄, ] e�S[A, ̄, ]

hOi = 1

Z
Z Y

x2L

4Y

µ=1

dU

µ

(x)O[U ]e�S[U ]



Expectation Values of Observables

• A statistical technique that takes advantage of this situation is importance sampling

• Given a set of N representative bosonic field configurations Ui distributed according 
to e-S[U] , the functional integral

• will be approximated by

• with statistical errors that decrease as 

• So, to calculate observables on the lattice, we first generate a set of gauge field 
configurations randomly chosen with probability e-S[U]

• Then evaluate the desired quantity on each of these configurations and calculate the 
ensemble average

Importance Sampling
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Expectation Values of Observables

•    can be any given combination of operators expressed in terms of time-ordered 
products of gauge and quark fields

• Using Wick's Theorem for contracting fields, it is possible to re-express quark fields 
in terms of quark propagators, removing any dependence on the quark fields as 
dynamical variables

• Quark propagator is calculated by inverting the Dirac operator on any given 
background field

• which gives the amplitude for the propagation of a quark from site x with spin-colour 
i,a to site-spin-colour y,j,b and can be computed from

• Use your favourite matrix inverter

• Eg. Conjugate Gradient
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Expectation Values of Observables
• Consider the momentum-space two-point function (t > 0)

• let                                          ,  which has a large coupling to the pion

• 2-point function 

•       creates a state with quantum numbers of the pion from the vacuum

• evolution via QCD Hamiltonian to 

• annihilation of this state by      back to the vacuum

• insert complete set of states, n, with quantum numbers of the pion, with momentum, 
p’
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Expectation Values of Observables

• We can make use of translational invariance to write

Example
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e

�i ~̂P ·~xOf (0)e
i ~̂P ·~x

e
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Expectation Values of Observables

• At                            and masses are extracted

• If    has overlap with more than one state, then as a result of exponential damping, 
the ground (lowest mass) state can be isolated by examining the large t behaviour of

• where

• (Anti-)Periodic time-boundary conditions:

•

Example
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Wick Contractions

• We are going to make use of Wick’s Theorem to contract quark fields to make 
propagators:

• E.g. consider four quark field insertions

• two quark-antiquark contractions

• giving propagator combinations

• minus-sign from fermion anti-commutation

• More quark fields                    more complicated correlation functions 

h i ̄j k ̄li

h i ̄j k ̄lih i ̄j k ̄li

SijSkl � SjkSil



Expectation Values of Observables
Example

• Now consider all the possible Wick contractions of the two fermion fields

• The correlation function can now be written in terms of a product of two quark 
propagators, SF 

• For flavour non-singlets (a≠b) and using

• where the trace is only over the colour indices, and on each configuration the 
fermion propagator is computed by inverting the fermion matrix numerically
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Resampling Techniques
• Two methods used: Jackknife and Bootstrap

• Jackknife:

• Consider N measurements with a fit to the full dataset giving fit parameters

• Remove the first, leaving a set of N-1 resampled measurements. Fitting this set 
gives parameters 

• Repeat resampling of N-1 resampled measurements, this time removing second, 
then third, etc measurements, giving fit parameters

• A Jackknife estimate of the errors in your fit parameters      are then↵
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Resampling Techniques
• Two methods used: Jackknife and Bootstrap

• Bootstrap:

• Consider N measurements with a fit to the full dataset giving fit parameters

• Create a new dataset by randomly selecting N datapoints with replacement 
(some points can occur more than once) from the original dataset

• Determine fit parameters      on this new dataset

• Repeat M times, each time with a different random set, giving fit parameters

• A Bootstrap estimate of the errors in your fit parameters      are then↵
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Speed of a Lattice Calculation
Costs of Dynamical Fermions

Studies of algorithms for (improved)
Wilson fermions suggest
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Speed of a Lattice Calculation
Costs of Dynamical Fermions

Studies of algorithms for (improved)
Wilson fermions suggest

cost ∝
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The Power of Computers
• Progress in Lattice QCD aligned with the dramatic increase in supercomputing 

power

• From Top 500 list (http://www.top500.org)

• June 2002: Earth Simulator,  36 TFlops

• June 2012: Sequoia (BG/Q), 16 PFlops

• Lattice code performance on BG/Q:

• 3.07 Petaflop/s sustained on half of Sequoia

• 32% of peak for highly optimised routines (BAGEL - Peter Boyle, Edinburgh)

Time for something a little bigger!

http://www.top500.org
http://www.top500.org
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The Lattice Landscape

Hadron spectrum Christian Hoelbling
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Figure 1: The landscape of recent dynamical fermion simulations projected to the L vs. M
p

plane.
Unless otherwise noted, all ensembles are Nf = 2 + 1. The borders of the shaded regions are placed
where the expected relative error of the pion mass is 1%, 0.3% resp. 0.1% according to [61]. Data
points are taken from the following references: ETMC’09(2) [74], ETMC’10(2+1+1) [6], MILC’10 [18],
QCDSF’10(2) [75], QCDSF-UKQCD’10 [15], WMB’10 [11, 12], PACS-CS’09 [23, 76], RBC-UKQCD’10
[7, 77], JLQCD/TWQCD’09 [78], HSC’10 [70] and BGR’10(2) [71]. All ensembles are from Nf = 2+ 1
simulations except explicitly noted otherwise. For staggered ensembles, the Goldstone pion mass is plotted.

Fixing the global topological charge in QCD is a restriction that becomes irrelevant in the
infinite volume limit. For this reason fixing the topological charge in lattice QCD calculations may
be viewed as introducing an additional third type of finite volume corrections [72, 73].

2. Ensemble overview

In order to assess currently available lattice ensembles with respect to the three main sources
of systematic error discussed in the previous section, it is instructive to look at their position in
a landscape with respect to the four quantities: light and strange quark masses (physical point),
lattice spacing (continuum) and volume. Because light and strange quark masses are scheme and
scale dependent quantities, it is easier to use the quantities M

p

and
q

2M2
K �M

p

instead that are
proportional to the square root of the sum of light quark masses resp. the strange quark mass to
leading order.

In figs. 2-3 three projections of this landscape are plotted. The first one, fig. 2, displays the
position of current ensembles in the

q
2M2

K �M
p

vs. M
p

plane. As one can see, the physical point
has already been reached. In fig. 1 the landscape is projected to the L vs. M

p

plane. One observes
that the bulk of current day lattice ensembles lies in a region where the pion mass is expected to be

6

• Leading sources of error:

• Unphysically large quark masses

• Finite Volume

[Hoebling (Lattice 2010) 1102.0410]
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• Unphysically large quark masses
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The Lattice Landscape [Hoebling (Lattice 2010) 1102.0410]
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Figure 3: The landscape of recent dynamical fermion simulations projected to the M
p

vs. a plane. The
cross marks the physical point while shaded areas with increasingly light shade indicate physically more
desirable regions of parameter space. Data points are taken from the following references: ETMC’09(2) [74],
ETMC’10(2+1+1) [6], MILC’10 [18], QCDSF’10(2) [75], QCDSF-UKQCD’10 [15], WMB’10 [11, 12],
PACS-CS’09 [23, 76], RBC-UKQCD’10 [7, 77], JLQCD/TWQCD’09 [78], HSC’10 [70] and BGR’10(2)
[71]. All ensembles are from Nf = 2 + 1 simulations except explicitly noted otherwise. For staggered
ensembles, the Goldstone pion mass is plotted.

quarks. The continuum extrapolation was performed using a constant which was demonstrated to
be sufficient at the given level of accuracy. Exponential finite volume corrections were taken into
account in the final fit form. Resonant state finite volume corrections were not performed but are
believed to be irrelevant in the region of parameter space covered by the simulations. Effects of
the twisted mass isospin breaking were observed to be negligible except in the case of the X where
they amounted to a 6% correction.

The current results on light hadron masses from the MILC collaboration are summarized in
[18]. For the baryon mass analysis ensembles at 3 of the currently available 6 lattice spacings a ⇠
0.06 fm, a ⇠ 0.09 fm and a ⇠ 0.12 fm are used. the smallest Goldstone pion mass is ⇠ 180 MeV
corresponding to an RMS pion mass of ⇠ 250 MeV. Both gauge and fermion (asqtad) actions
have O(asa2) scaling behavior and the continuum extrapolation is done linearly in this quantity.
Depending on the specific observable, chiral or polynomial fit forms are found to best describe the
data and the scale is set via r1. The final results, presented in [18] are in good agreement with the
observed hadron spectrum.

A subset of the MILC latices with a ⇠ 0.12 fm and a smallest pion mass of ⇠ 290 MeV has
been studied in [53] in a mixed action setup with domain wall valence quarks. Comparing different
chiral fit forms for the nucleon mass it was demonstrated that a simple linear fit in M

p

gives the
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plane. The cross marks the physical point while shaded areas with increasingly light shade indicate phys-
ically more desirable regions of parameter space. Data points are taken from the following references:
ETMC’10(2+1+1) [6], MILC’10 [18], QCDSF-UKQCD’10 [15], WMB’10 [11, 12], PACS-CS’09 [23, 76],
RBC-UKQCD’10 [7, 77], JLQCD/TWQCD’09 [78], HSC’10 [70] and All ensembles are from Nf = 2+ 1
simulations except explicitly noted otherwise. For staggered ensembles, the Goldstone pion mass is plotted.

affected by finite volume corrections by less than one per cent. Finally, fig. 3 displays a projection
to the M

p

vs. a plane. Also here one can see that present day simulations start populating the
interesting regime of physical or near physical pion masses at a range of relatively small lattice
spacings.

The important point is of course to have ensembles that simultaneously lie in the desirable
regions with respect to all coordinates of the landscape, i.e. that are at or close to the physical point
at large volumes and a range of relatively small lattice spacings.

3. Ground states

We begin our overview of calculations of the light hadron spectrum by results of the ETM
collaboration for Nf = 2 twisted mass fermions [13]. The ETM collaboration used Nf = 2 twisted
mass fermions at maximal renormalized twist on a tree level Symanzik improved gauge action.
Two lattice spacings (a ⇠ 0.07 fm and a ⇠ 0.09 fm) were used with pion masses in the range 270
to 500 MeV . The lattice spacing was set via the nucleon mass and chiral extrapolations were
performed with a variety of different ansätze. The valence strange quark mass is set by tuning the
Kaon mass to its physical value. The final result, displayed in fig. 4, employs O(p3) resp. NLO
SU(2) heavy barion cPT chiral extrapolation for baryons without resp. with a valence strange

7



QCD Hadron Spectrum

Excellent agreement between different collaborations/lattice formulations

Plot from A. Kronfeld [1203.1204]
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