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Recap
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● NJL Lagrangian has the form

LNJL = L0 + LI = ψ
(

i /∂ −m
)

ψ +
∑

α
Gα

(

ψ Γα ψ
)2

● Solution to the gap equation gives quark propagator

−1
=

−1
+

S0(k) = [/k −m+ iε]
−1 DCSB−→ S(k) = [/k −M + iε]

−1

● Meson masses are obtained as poles in the two-body T -matrix

T = K + T K

✦ Bethe-Salpeter Equation

✦ for the pion we obtain: T (q)iαβ,γδ = (γ5τi)αβ
−2i Gπ

1+2Gπ Ππ(q2)
(γ5τi)γδ



Chiral Partners
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● If chiral symmetry was NOT dynamically broken in nature expect mass

degenerate chiral partners, e.g., mσ ≃ mπ & ma1
≃ mρ

● The ρ and a1 are the lowest lying vector (JP = 1−) and axial-vector

(JP = 1+) q̄q bound states: mexp’t
ρ ≃ 770MeV & mexp’t

a1 ≃ 1260MeV

● Solving the NJL BSE gives the following pole conditions:

1 + 2GρΠρ(q
2 = m2

ρ) = 0 & 1 + 2GρΠa1(q
2 = m2

a1) = 0

✦ where Πa1(q
2) =M2 I(q2) + Πρ(q

2)

● If m = 0 and there is NO DCSB (M = 0) would have: mρ = ma1

● In nature and NJL, DCSB splits chiral partner masses

✦ NJL gives: mρ ≡ 770MeV & ma1
≃ 1098MeV

✦ good agreement with the Weinberg sum rule result: ma1
≃

√
2mρ

● NJL BSE pole conditions for π and σ =⇒ m2
σ ≃ m2

π + 4M2



Homogeneous Bethe-Salpeter vertex functions
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T = K + T K =⇒ Γ = Γ K

● Near a bound state pole of mass m a two-body T -matrix behaves as

T (p, k) → iΓ(p, k) Γ̄(p, k)

p2 −m2
where p = p1 + p2, k = p1 − p2

● Γ(p, k) is the homogeneous Bethe-Salpeter vertex & describes relative

motion of the quark and anti-quark while they form the bound state

● Expanding the pion T -matrix about the pole gives

T = γ5τi
−2iGπ

1+2Gπ Ππ(q2)
γ5τi → i gπqq

q2−m2
π
(γ5τi)(γ5τi) =⇒ Γπ =

√
gπqq γ5τi

✦ gπqq is effective pion-quark coupling constant

● Bethe-Salpeter vertex needed for calculations e.g. fπ

i fπ q
µ δij =

∫

d4k
(2π)4

Tr
[

1
2 γ

µγ5τj S(k) Γ
i
π S(k − q)

] µα α′

β β′q q



Baryons in the QFT
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● Baryons are 3-quark bound states – with the proton (uud) and neutron

(udd) being the most important examples

● In quantum field theory physical baryons appear as poles in six-point

Green functions

✦ recall that two-body bound states appear as poles in four-point Green

functions, where solutions are obtained by solving Bethe-Salpeter equation

● The analogue of the Bethe-Salpeter equation for 3-quark bound states is

called the Faddeev equation

● Faddeev kernel usually only contains two-body interactions

✦ this is an approximation which is yet to be explored and could have important

consequences for QCD

● Diagrammatically the homogeneous Faddeev equation is given by



Baryons in the QFT (2)
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● Problem is rendered tractable by making the quark-diquark approximation

● This is a linear matrix equation, whose solution gives the “baryon

wavefunction” – strictly the Poincaré covariant Faddeev amplitude

● Include scalar (JP = 0+, T = 0) and axial-vector (JP = 1+, T = 1) diquarks

✦ in the non-relativistic limit parity dictates that pseudoscalar and vector diquarks

must be in a ℓ = 1 state and are therefore suppressed in the nucleon

✦ for the negative parity N∗(1535) the opposite is true

● The nucleon wavefunction contains S, P and D wave correlations

● Equation has discrete solutions at p2 = m2
i – nucleon, Roper, etc



What is a Diquark
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● A diquark is a correlated (interacting) quark-quark state

● Diquark interactions occur in colour 3̄ or colour 6 channels – only the

colour 3̄ can exist inside a colour singlet nucleon

● Diquarks are analogous to mesons – colour singlet q̄q bound states

● Because diquarks are coloured they should not appear as physical states

in QCD ⇐⇒ confinement

● However in the NJL model and also the rainbow ladder approximation to

QCDs DSE, diquarks do appear as poles in the qq scattering (t) matrix

● Lattice QCD also sees evidence for diquarks

● I. Wetzorke, F. Karsch, hep-lat/0008008

● (3̄03̄) implies scalar diquark:

(flavour-3̄, spin-0, colour-3̄)

● (603̄) implies axial-vector diquark:

(flavour-6, spin-0, colour-3̄)



Diquarks in the NJL model
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● To describe diquarks in the NJL model one usually rewrites the q̄q
interaction Lagrangian into a qq interaction Lagrangian

(

ψ̄ Γψ
)2 →

(

ψ̄Ω ψ̄T
) (

ψT Ω̄ψ
)

✦ Ω has quantum numbers if

interaction channel

Γ Γ Ω Ω

● NJL qq Lagrangian in the scalar and axial-vector diquark channels reads

LI = Gs

[

ψ γ5C τ2 β
A ψ

T
][

ψT C−1 γ5 τ2 β
A′

ψ
]

+Ga

[

ψ γµC τiτ2 β
A ψ

T
][

ψT C−1 γµ τ2τj β
A′

ψ
]

+ . . . .

✦ the first term is the scalar diquark channel (JP = 0+, T = 0)

✦ τ2 couples isospin of two quarks to T = 0, Cγ5 couples spin to J = 0,

βA =
√

3
2 λ

A (A = 2, 5, 7) couples quarks to colour 3̄

✦ the second the axial-vector diquark channel (JP = 1+, T = 1)



NJL diquark T -matrices
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● Bethe-Salpeter equation for qq scattering matrix reads

T (q)αβ,γδ = Kαβ,γδ +
1

2

∫

d4k

(2π)4
Kαβ,ελ S(k)εε′ S(q − k)λλ′ T (q)ε′λ′,γδ,

γ

δ

q

α

β

=

γ

δ

α

β

+

γ

δ

ε′

λ′

α

β

ε

λ

✦ note symmetry factor of 1
2 (c.f. q̄q BSE)

● The Feynman rules for the interaction kernels are

Ks = 4iGs(γ5 C τ2 βA)
αβ
(C−1 γ5 τ2 βA)

γδ
Ka = 4iGa(γµ C τiτ2 β

A)
αβ
(C−1 γµ τ2τi β

A)
γδ

● The solution to the BSE is of the form: T (q)αβ,γδ = τ(q2) ΩαβΩ̄γδ

τs(q
2) = 4iGs

1+2Gs Πs(q2)
τµνa (q) = 4 iGa

1+2Ga Πa(q2)

[

gµν + 2GaΠa(q
2)
qµqν

q2

]

✦ these reduced t-matrices are the diquark propagators



NJL Faddeev Equation
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● To describe nucleon Faddeev

equation kernel must be projected

onto colour singlet, spin one-half,

isospin one-half & positive parity
p

=
p

● Make the “static approximation” to quark exchange kernel: S(p) → − 1
M

● Homogeneous Faddeev amplitude with static approximation does not

depend of relative momentum between the quark and diquark

● The Faddeev equation and vertex have the form

ΓN (p, s) = K(p) ΓN (p, s)

ΓN (p, s) =
√

−ZN
MN

p0

[

α1

α2
pµ

MN
γ5 + α3 γ

µγ5

]

uN (p, s)

✦ K(p) is the Faddeev kernel

● Faddeev equation describes the continual recombination of the three

quarks into quark-diquark configurations



NJL Faddeev Equation (2)
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p
=

p

p

p − k

k

p

α α′

β β′

● The kernel of this NJL Faddeev eq – ΓN (p, s) = K(p) ΓN (p, s) – is

[

Γs

Γµ
a

]

=
3

M

[

ΠNs

√
3γαγ5Π

αβ
Na√

3γ5γ
µΠNs −γαγµΠαβ

Na

]

[

Γs

Γa,β

]
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● First solution is the nucleon

MN = 940MeV

● Second solution is 1st excited

state of the nucleon ⇐⇒ Roper

MRoper = 1670MeV



Nucleon Static Properties

frontpage table of contents appendices 12 / 32

● If the proton was a point particle its electromagnetic properties would be

characterized by two observables

charge: ep = +1 & magnetic moment (µp)

● In 1933 Otto Stern measured the proton magnetic moment and found that

it differed from one ⇐⇒ anomalous magnetic moment

Dirac: µp =
ep ~

2MP
Stern: µp = (1 + 1.79)

ep ~

2MP

✦ this was strong evidence that the proton was not a point particle

✦ later of course quarks were discovered at SLAC in 1968 via deep

inelastic experiments

● In 1943 Otto Stern would receive the Nobel Prize in part for this discovery



Nucleon electromagnetic form factors
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● The electromagnetic structure of the nucleon is best determined by

electron elastic scattering

● The electron makes a good probe because its interaction with the

electromagnetic current is very well understood

✦ the electron anomalous magnetic moment is known experimentally to 1 part in

a trillion a = 0.00115965218085(76)

✦ theory agrees almost perfectly with experiment

● The interaction of the electromagnetic with the nucleon is characterized

by two form factors

〈Jµ〉 = u(p′)
[

γµ F1(Q
2) + iσµνqν

2M F2(Q
2)
]

u(p)

Dirac Pauli

dσ

dΩ
=
σMott

1 + τ

[

G2
E(Q

2) +
τ

ε
G2

M (Q2)
]

; τ = Q2

4M2

ℓ

q

k

k′

pN
p′

N

θ

● Sachs form factors: GE = F1 − Q2

4M2 F2, GM = F1 + F2



Physical Interpretation of Form Factors
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● GE(0) = F1(0) = charge, GM (0) = F1(0) + F2(0) = magnetic moment

● Textbooks teach that in the Breit frame – ~p ′ = −~p – Sachs form factors can be

interpreted as 3-d Fourier transforms of the charge and magnetization densities

ρ
(r
)

r

G
E
(Q

2
)

Q2

● Deviation from a constant provides information on target structure

ρ
(r
)

r

G
E
(Q

2
)

Q2



Physical Interpretation of Form Factors (2)
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● There maybe problems with the interpretation of the Sachs form factors

as 3-d Fourier transforms of charge and magnetization densities

✦ non-relativistically Sachs form factors are FTs of rest frame densities; initial

and final states are essentially the same (M → ∞).

✦ in relativistic QFT initial and final states are different – as p′ 6= p – therefore a

density cannot be defined; states are not easily related by Lorentz boosts

✦ also infinite number of Breit frames, one for each Q2

● New interpretation: form factors provide information on the IMF transverse

densities – transverse structure invariant under z-direction boosts

✦ transverse charge densities are given by 2-d Fourier transforms of the Dirac

and Pauli form factors

● Neutron negative central charge

density contradicts pion cloud picture

n p n

π−



Experimental Status
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● Proton form factors were first measured by Hofstadter et al. in 1953

✦ deviation from constant gives information on nucleon structure e.g. radii

● Many new things are still being learnt about nucleon EM structure

● A recent atomic experiment discovered the “Proton Radius puzzle”

✦ rEp = 0.84184± 0.00067 fm muonic hydrogen [Pohl et al.]

✦ rEp = 0.8768± 0.0069 fm ep elastic scattering & hydrogen [PDG]

✦ radius is defined by:
〈

r2E
〉

= −6 ∂
∂Q2 GE(Q

2)
∣

∣

∣

Q2=0

● Until the late 90s Rosenbulth

experiments found that the

GEp/GMp ratio was flat

● However JLab polarization

transfer experiments which are

directly sensitive to this ratio,

found a slope toward zero



Experimental Status (2)
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● pQCD F1 ∼ 1/Q4 F2 ∼ 1/Q6 =⇒ Q2 F2/F1 ∼ constant

✦ this behaviour is not seen in the data yet: QF2/F1 ∼ constant



Deriving a general form for a Photon-Hadron Vertex
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● Deriving the most general form of a photon-hadron vertex:

✦ write down the most general structure consistent with Lorentz covariance

✦ multiply each Lorentz structure by a scalar function

✦ used symmetries to derive constrains on these functions

✦ most importantly use CPT invariance and Ward-Takahashi identities

● For example consider the pion:

〈π |Jµ
em|π〉 =

(

p′ + p
)µ

F1

(

p′2, p2, q2
)

+
(

p′ − p
)µ

F2

(

p′2, p2, q2
)

● WT identity states: qµ Γ
µ
γππ(p′, p) = Q̂π [τπ(p

′)− τπ(p)]
on-shell−→ 0

● Now q · (p′ + p) = 0 & q · (p′ − p) = q2 implies F2 = 0, therefore

〈π |Jµ
em|π〉 =

(

p′ + p
)µ

Fπ

(

Q2
)

Q2 = −q2, p′2 = p2 = m2
π

q

µ

p

π

p′

π



Nucleon Form Factors in the NJL model
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● The Feynman diagrams that give the nucleon form factors in our NJL are

p p′

q

p p′
q

p p′

q

● Ingredients are:

✦ nucleon Faddeev amplitude ⇐⇒ Faddeev equation

✦ diquark propagators ⇐⇒ Bethe-Salpeter equation

✦ diquark BS vertex ⇐⇒ homogeneous Bethe-Salpeter equation

✦ quark propagator ⇐⇒ gap equation

✦ quark photon vertex ⇐⇒ inhomogeneous Bethe-Salpeter equation

● A separate calculation gives diquark form factors

● We also make the “static approximation” to the quark exchange kernel:

S(p) =
[

/p−M + iε
]−1 −→M−1



Nucleon Form Factors in the NJL model
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● The Feynman diagrams that give the nucleon form factors in our NJL are

p p′

q

p p′
q

● Ingredients are:

✦ nucleon Faddeev amplitude ⇐⇒ Faddeev equation

✦ diquark propagators ⇐⇒ Bethe-Salpeter equation

✦ diquark BS vertex ⇐⇒ homogeneous Bethe-Salpeter equation

✦ quark propagator ⇐⇒ gap equation

✦ quark photon vertex ⇐⇒ inhomogeneous Bethe-Salpeter equation

● A separate calculation given diquark form factors

● We also make the “static approximation” to the quark exchange kernel:

S(p) =
[

/p−M + iε
]−1 −→M−1



From Current to Constituent Quarks
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● Recall that the NJL gap equation takes the current quarks and dresses

them non-perturbatively so that they become constituent quarks

● Constituent quarks are extended non-trivial quasi-particles

● Consider an arbitrary current interacting with a contituent quark

= + + + · · ·

● This series can be summed by an integral equation

p

p′

=

p

p′

+

p

p′

=

p

p′

+

p

p′

✦ this is the inhomogeneous Bethe-Salpeter equation (BSE)



Constituent Quark EM Form Factors

frontpage table of contents appendices 22 / 32

● Quark-photon vertex is given by the inhomogeneous Bethe-Salpeter

equation – driving term is an external vector current: γµ
(

1
6 + τ3

2

)

p

p

=

p

p′

+

p

p′

q

p

p′

=
q

p

p′

+
q

p

p′

● Lorentz covariance implies that the quark–photon vertex has the structure

Γµ
γqq(p

′, p) =
∑12

i=1
λµi fi(p

′2, p2, q2) = Γµ
L(p

′, p) + Γµ
T (p

′, p)

● In QCD the properties of the quark–photon vertex are governed by the

quark propagator and the quark–gluon vertex

● A Ward-Takahashi identity constrains Γµ
L piece of quark–photon vertex

qµ Γ
µ
γqq = qµ Γ

µ
L = Q̂

[

S−1(p′)− S−1(p)
]

, qµ Γ
µ
T = 0

✦ these identities are a consequence of local U(1)V gauge invariance



NJL Constituent Quark Form Factors
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p

p

=

p

p′

+

p

p′ Kαβ,γδ =− 2iGω (γµ)αβ (γ
µ)γδ

− 2iGρ (γµτ )αβ (γ
µ
τ )γδ

● In general the quark–photon vertex has form

Γµ
γqq(p

′, p) =
1

6
Λµ
ω(p

′, p) +
τ3
2
Λµ
ρ(p

′, p).

● Recall Ward–Takahashi identity [S−1(p) = /p−M + iε]

qµ Γ
µ
γqq(p

′, p) =

(

1

6
+
τ3
2

)

[

S−1(p′)− S−1(p)
]NJL−→

(

1

6
+
τ3
2

)

/q

● NJL the vertex must be of form Λµ
ω,ρ = γµ + transverse terms

● Solving the NJL inhomogeneous BSE for the quark–photon vertex gives

Λµ
ω(p

′, p) = γµ+

(

γµ −
qµ/q

q2

)

F̂1ω(q
2), Λµ

ρ(p
′, p) = γµ+

(

γµ −
qµ/q

q2

)

F̂1ρ(q
2)



NJL Results
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● Current conservation implies qµ/q cannot contribute; vertex becomes

〈Jµ〉 = γµ
[

1
6 F1ω(Q

2) + τ3
2 F1ρ(Q

2)
]

● The up and down constituent quark form factors are given by [Q2 = −q2]

F1U (Q
2) = 1

6 F1ω(Q
2) + 1

2 F1ρ(Q
2) & F1D(Q

2) = 1
6 F1ω(Q

2)− 1
2 F1ρ(Q

2)

● Timelike poles at: F1ω(Q
2 = −m2

ω) & F1ρ(Q
2 = −m2

ρ)
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The role of Pions
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● Pions are the lightest hadrons, therefore, because of quantum fluctuations

we expect them to play an important role in many observables

p p, n p

π0, π+

n n, p n

π0, π−

● Because the pion is light it is long range

✦ expect proton and neutron charge and magnetic radii to be increased

✦ the nucleon magnetic moments are also sensitive to pion cloud effects

● To include pions in NJL we dress the constituent quarks with a pion cloud

p p′

µ

q

Zq × +
p p′

µ

q

k

+
p p′k

µ

q



Quark Form Factors with Pion Cloud
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p p′

µ

q

Zq × +
p p′

µ

q

k

+
p p′k

µ

q

● Zq is the probability to find a bare constituent quark: Zq =
[

∂
∂/p
S(p)

]−1

/p=M

● Pion cloud induces an anomalous magnetic moment for the quarks

F1q(Q2) = Zq

[

1
6 Fω(Q2)+

1
2 τ3 Fρ(Q2)

]

+[Fω(Q2)−τ3 Fρ(Q2)] F (q)
1q (Q2)+τ3 Fρ F

(π)
1q (Q2)

F2q(Q2) = [Fω(Q2)−τ3 Fρ(Q2)] F (q)
2q (Q2)+τ3 Fρ F

(π)
2q (Q2)
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An Aside – Muon Anomalous Magnetic Moment
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β α

p p′

µ

q

= + + . . . + + . . . + + . . . + + . . .

● aexp
µ = 11659208.0± 6.3× 10−10; a

theory
µ = 11659179.0± 6.5× 10−10

● largest theory error come from HLBL scattering contribution

q k

ℓ t

µ ν

α β

Πµναβ =

q k

ℓ t

µ ν

α β

+

q k

ℓ t

µ ν

α β

+ · · · +

q k

ℓ t

µ ν

α β

+

q k

ℓ t

µ ν

α β

+ . . .

● Box diagram contribution is least know

✦ only γµ coupling and VMD has been considered so far

✦ we argue that the anomalous magnetic moment term cannot be ignored

● At least error on aHLBL
µ = 8.3± 3.2× 10−10 should be much larger

● Fred Jegerlehner, Andreas Nyffeler, Physics Reports 477 (2009) 1–110



Nucleon Electromagnetic Form Factors
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p p′

q

p p′
q

p

p

=

p

p′

+

p

p′

● Now have all ingredients needed to determine NJL nucleon form factors

p p′

µ

q

Zq × +
p p′

µ

q

k

+
p p′k

µ

q

● The nucleon electromagnetic current is given by

〈Jµ〉 = u(p′)
[

γµ F1(Q
2) + iσµνqν

2M F2(Q
2)
]

u(p)

● Include both scalar and axial-vector diquarks

τs(q) =
−4iGs

1 + 2GsΠs(q2)
,

τµνa (q) =
−4iGa

1 + 2GaΠa(q2)

[

gµν + 2GaΠa(q
2)
qµqν

q2

]

,



Proton Form Factor Results
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● For the proton magnetic moment (µ = 1 + κ) find

µbare
p = 2.37µN , µvmd+π

p = 2.78µN , µexperiment
p = 2.79µN

✦ pion increases anomalous magnetic moment by ∼ 30%

✦ results use a consistent treatment for meson and diquark T -matrices

● For the proton charge and magnetic radii find

〈rE〉vmd+π
p = 0.86 fm 〈rE〉experiment

p = 0.85 fm

〈rM 〉vmd+π
p = 0.83 fm 〈rM 〉experiment

p = 0.84 fm
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● For the neutron magnetic moment (µ = κ) find

µbare
n = 1.25µN , µvmd+π

n = 1.81µN , µexperiment
n = 1.91µN

✦ pion increases anomalous magnetic moment by ∼ 45%

✦ results use a consistent treatment for meson and diquark T -matrices

● For the neutron charge and magnetic radii find

〈rE〉vmd+π
n = −0.34 fm 〈rE〉experiment

n = −0.35 fm

〈rM 〉vmd+π
n = 0.86 fm 〈rM 〉experiment

n = 0.89 fm
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● Free Parameters:

✦ ΛIR, ΛUV , M0, Gπ, Gs, Ga, Gω, Gρ

● Constraints:

✦ fπ = 93MeV, mπ = 140MeV, mρ = 770MeV & mω = 782MeV

✦ MN = 940MeV & M∆ = 1232MeV

✦ ΛIR = 240MeV, M0 = 400MeV

● Obtain:

✦ ΛUV = 645MeV

✦ Ms = 768MeV, Ma = 928MeV, . . .

● Can now study a large array of observables:

✦ e.g. meson and baryon quark distributions, form factors, GPDs, TMDs,

properties at finite temperature and density; neutron stars, etc



Table of Contents

frontpage table of contents appendices 32 / 32

❁ recap

❁ chiral partners

❁ BS vertex functions

❁ baryons

❁ diquarks

❁ njl model diquarks

❁ njl diquark t-matrices

❁ njl faddeev

❁ nucleon static properties

❁ nucleon form factors

❁ physical interpretation

❁ experimental status

❁ lorentz structure

❁ NJL nucleon form factors

❁ current to constituent quarks

❁ quark form factors

❁ njl results

❁ role of pions

❁ quark form factors

❁ muon g − 2
❁ nucleon form factors

❁ proton form factor

❁ neutron form factor

❁ model parameters


	Recap
	Chiral Partners
	Homogeneous Bethe-Salpeter vertex functions
	Baryons in the QFT
	Baryons in the QFT (2)
	What is a Diquark
	Diquarks in the NJL model
	NJL diquark T-matrices
	NJL Faddeev Equation
	NJL Faddeev Equation (2)
	Nucleon Static Properties
	Nucleon electromagnetic form factors
	Physical Interpretation of Form Factors
	Physical Interpretation of Form Factors (2)
	Experimental Status
	Experimental Status (2)
	Deriving a general form for a Photon-Hadron Vertex
	Nucleon Form Factors in the NJL model
	Nucleon Form Factors in the NJL model
	From Current to Constituent Quarks
	Constituent Quark EM Form Factors
	NJL Constituent Quark Form Factors
	NJL Results
	The role of Pions
	Quark Form Factors with Pion Cloud
	An Aside – Muon Anomalous Magnetic Moment
	Nucleon Electromagnetic Form Factors
	Proton Form Factor Results
	Neutron Form Factor Results
	Model Parameters
	Table of Contents

