Lecture 1

QCD and the Nambu–Jona-Lasinio Model

Ian Cloët The University of Adelaide & Argonne National Laboratory

CSSM Summer School

Non-perturbative Methods in Quantum Field Theory

11th-15th February 2013

Building Blocks of the Universe

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,										
Lep	tons spin =1/		Quarks spin =1/2							
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge				
ℓ lightest neutrino*	(0-0.13)×10 ⁻⁹	0		u up	0.002	2/3				
e electron	0.000511	-1		d down	0.005	-1/3				
𝔑 middle neutrino*	(0.009-0.13)×10 ⁻⁹	0		C charm	1.3	2/3				
μ muon	0.106	-1		S strange	0.1	-1/3				
\mathcal{V}_{H} heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0		t top	173	2/3				
τ tau	1.777	-1		bottom	4.2	-1/3				

BOSONS force carriers spin = 0, 1, 2,									
Unified Electroweak spin = 1				Strong (color) spin =1					
Name	Mass GeV/c ²	Electric charge		Name	Mass GeV/c ²	Electric charge			
Y photon	0	0		gluon	0	0			
W	80.39	-1							
W+ W bosons	80.39	+1		Higgs boson					
Z ⁰ Z boson	91.188	0							

• Fundamental constituents of the Standard Model (SM) of particle physics

- Quantum Chromodynamics (QCD) & Electroweak (EW) theories
- Local non-abelian gauge field theories
 - a special type of relativistic quantum field theory
- SM Lagrangian has gauge symmetries: $SU(3)_c \otimes SU(2)_L \otimes U_Y(1)$
 - SM has 19 parameters which need to be determined by experiment
 - however only 2 parameters are intrinsic to QCD: $\Lambda_{QCD} \& \theta_{QCD} \leq 10^{-9}$

- Explore non-perturbative structure of QCD, through the interplay of theory and experiment, as it relates to hadron and nuclear structure
- The tools available are:
 - lattice QCD
 - chiral perturbation theory
 - ♦ QCD inspired models
- We will review the model of Nambu and Jona-Lasinio (NJL model)
 - first proposed in 1961 as a theory of elementary nucleons
 - with advent of QCD reinterpreted as a quark effective theory
- Some of the advantages of models over lattice and χ PT are
 - ♦ can explore a wider array of physics problems
 - may provide better insight into important physics mechanisms
 - facilitate a dynamic interplay between experiment and theory

Lecture 1 – Introduction to QCD and the non-perturbative framework provided by the Nambu–Jona-Lasinio (NJL) model

 Lecture 2 – Relativistic Faddeev (3-body) equation & electromagnetic form factors

• Lecture 3 – Deep inelastic scattering and parton distribution functions

Lecture 4 – Quark degrees of freedom in nuclei and nuclear matter

Recommended References

- Y. Nambu and G. Jona-Lasinio, "Dynamical model of elementary particles based on an analogy with superconductivity I", Phys. Rev. 122, 345 (1961).
- Y. Nambu and G. Jona-Lasinio, "Dynamical model of elementary particles based on an analogy with superconductivity II", Phys. Rev. 124, 246 (1961).
- U. Vogl and W. Weise, "The Nambu and Jona Lasinio model: Its implications for hadrons and nuclei", Prog. Part. Nucl. Phys. 27, 195 (1991).
- S. P. Klevansky, "*The Nambu-Jona-Lasinio model of quantum chromodynamics*," Rev. Mod. Phys. **64**, 649 (1992).
- R. L. Jaffe, "Deep Inelastic Scattering With Application To Nuclear Targets", MIT-CTP-1261.
- W. Bentz and A. W. Thomas, "The Stability of nuclear matter in the Nambu-Jona-Lasinio model", Nucl. Phys. A 696, 138 (2001).
- I. C. Cloët, W. Bentz and A. W. Thomas, "EMC and polarized EMC effects in nuclei", Phys. Lett. B 642, 210 (2006).
- I. C. Cloët, W. Bentz and A. W. Thomas, "Isovector EMC effect explains the NuTeV anomaly", Phys. Rev. Lett. 102, 252301 (2009).

Quantum Chromodynamics (QCD)

 QCD is the fundamental theory of the strong interaction, where the quarks and gluons are the basic degrees of freedom

 $(q_{\alpha})_{f}^{A} \quad \begin{cases} \text{colour} \quad A = 1, 2, 3\\ \text{spin} \quad \alpha = \uparrow, \downarrow \\ \text{flavour} \quad f = u, d, s, c, b, t \end{cases} \quad A_{\mu}^{a} \quad \begin{cases} \text{colour} \quad a = 1, \dots, 8\\ \text{spin} \quad \varepsilon_{\mu}^{\pm} \end{cases}$

 QCD is a non-abelian gauge theory whose dynamics are governed by the Lagrangian

$$\mathcal{L} = \bar{q}_f \left(i \not{\!\!D} + m_f \right) q_f - \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a; \qquad i \not{\!\!D} = \gamma^\mu \left(i \partial_\mu + g_s A^a_\mu T^a \right) F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g_s f_{abc} A^b_\mu A^c_\nu$$

 β, B α, A

Gluon self-interactions have many profound consequences

Asymptotic Freedom

- At large Q^2 or short distances interaction strength becomes logarithmically small
 - a striking features of QCD
 - QED has opposite behaviour: $\alpha_e \simeq \frac{1}{137}$

$$\alpha_s^{LO}(Q^2) = \frac{4\pi}{\left(11 - \frac{2}{3}N_f\right)\ln\left(Q^2/\Lambda_{QCD}^2\right)}$$

- Asymptotic Freedom 2004 Nobel Prize Gross, Politzer and Wilczek
- Λ_{QCD} most important parameter in QCD [dimenional transmutation of g_s]
 - → $\Lambda_{QCD} \simeq 200 \,\text{MeV} \simeq 1 \,\text{fm}^{-1}$ sets scale, QCDs "standard kilogram"
- Momentum-dependent coupling <i>coupling depends on separation
 - interaction strength between quarks and gluons grows with separation

Confinement

- Hadron structure & QCD is characterized by two emergent phenomena
 - confinement and dynamical chiral symmetry breaking (DCSB)
- Both of these phenomena are not evident from the QCD Lagrangian
- All known hadrons are colour singlets, even though they are composed of coloured quarks and gluons: baryons (qqq) & mesons $(\bar{q}q)$
- Confinement conjecture: particles that carry the colour charge cannot be isolated and can therefore not be directly observed

Related to \$1 million Millennium Prize:

Yang-Mills Existence And Mass Gap: Prove that for any compact simple gauge group G, quantum Yang-Mills theory on \mathbb{R}^4 exists and has a mass gap $\Delta > 0$.

- for $SU(3)_c$ must prove that glueballs have a lower bound on their mass
- partial explanation as to why strong force is short ranged

Chiral Symmetry

- Define left- and right-handed fields: $\psi_{R,L} = \frac{1}{2} (1 \pm \gamma_5) \psi$
- The QCD Lagrangian then takes the form $[\mathbf{m} = \operatorname{diag}(m_u, m_d, m_s, \ldots)]$

$$\mathcal{L} = \bar{\psi}_L \, i \not\!\!D \, \psi_L + \bar{\psi}_R \, i \not\!\!D \, \psi_R - \bar{\psi}_R \, \mathbf{m} \, \psi_L - \bar{\psi}_L \, \mathbf{m} \, \psi_R - \frac{1}{4} \, F^a_{\mu\nu} F^{\mu\nu}_a$$

• Therefore for $\mathbf{m} = 0$ QCD Lagrangian is chirally symmetric

$$SU(N_f)_L \otimes SU(N_f)_R \implies \psi_{L,R} \to e^{-i\,\omega^a_{L,R}\,T^a}\,\psi_{L,R}$$

- $SU(N_f)_L \otimes SU(N_f)_R$ chiral symmetry is equivalent to $SU(N_f)_V \otimes SU(N_f)_A \implies \psi \to e^{-i\omega_V^a T^a} \psi, \ \psi \to e^{-i\omega_A^a T^a \gamma_5} \psi$
- Global symmetries: Wigner-Weyl or Nambu-Goldstone modes
 - Wigner-Weyl mode: vacuum is also invariant
 - Nambu-Goldstone mode: vacuum breaks symmetry

Dynamical Chiral Symmetry Breaking

- Recall for $\mathbf{m} = 0$ QCD Lagrangian is invariant under $SU(N_f)_L \otimes SU(N_f)_R \iff SU(N_f)_V \otimes SU(N_f)_A$
- $N_f = 2$ corresponds to the isospin subgroup of $SU(N_f)_V$ transformations
- hadronic mass spectrum tells us nature largely respects isospin symmetry
- therefore $SU(N_f)_V$ is realized in the Wigner-Weyl mode
- $SU(N_f)_A$ transformations mix states of opposite parity
 - expect hadronic mass spectrum to exhibit parity degeneracy
 - $m_{\sigma} m_{\pi} \sim 300 \,\text{MeV}, \ m_{a_1} m_{\rho} \sim 490 \,\text{MeV}, \ m_N m_{N^*} \sim 600 \,\text{MeV}, \text{ etc}$
 - recall: $m_u \simeq m_d \simeq 5 \text{ MeV} \Longrightarrow$ cannot produce large mass splittings
 - therefore $SU(N_f)_A$ must be realized in the Nambu-Goldstone mode
- Chiral symmetry broken dynamically: $SU(N_f)_L \otimes SU(N_f)_R \Longrightarrow SU(N_f)_V$

Goldstone's Theorem

- Goldstone's theorem: if a continuous global symmetry is broken dynamically, then for each broken group generator there must appear in the theory a massless spinless particle (Goldstone boson)
- QCDs chiral symmetry is explicitly broken by small current quark masses

 $m_u = 1.5 - 3.5 \,\mathrm{MeV}$ & $m_d = 3.5 - 6.0 \,\mathrm{MeV}$ ($\ll \Lambda_{QCD}$)

- For $N_f = 2$ expect $N_f^2 1 = 3$ Goldstone bosons: π^+, π^0, π^-
 - ♦ physical particle masses are not zero $m_π \sim 140 \text{ MeV}$ because of explicit chiral symmetry breaking: $m_{u,d} \neq 0$
- Chiral symmetry and its dynamical breaking has profound consequences for the QCD mass spectrum and hadron structure
 - this is not apparent from the QCD Lagrangian and is an innately non-perturbative phenomena
- Need non-perturbative methods to understand all consequences of QCD

QCDs Dyson–Schwinger Equations

- DSEs are the equations of motion for a quantum field theory
 - must truncate infinite tower of coupled integral equations

- Truncation: gluon propagator becomes constant $D^{\mu
 u}(k)
 ightarrow g^{\mu
 u}$
- Largely equivalent to the Nambu–Jona Lasinio (NJL) model

The Nambu–Jona-Lasinio Model

- The Nambu–Jona-Lasinio (NJL) Model was invented in 1961 by Yoichiro Nambu and Giovanni Jona-Lasinio while at The University of Chicago
 - was inspired by the BCS theory of superconductivity
 - was originally a theory of elementary nucleons
 - rediscovered in the 80s as an effective quark theory
- It is a relativistic quantum field theory, that is relatively easy to work with, and is very successful in the description of hadrons, nuclear matter, etc
- Nambu won half the 2008 Nobel prize in physics in part for the NJL model: *"for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics"* [Nobel Committee]

NJL Model

• NJL model is interpreted as low energy chiral effective theory of QCD

 Can be motivated by infrared enhancement of quark–gluon interaction e.g. DSEs and Lattice QCD

- Investigate the role of quark degrees of freedom
- NJL has same flavour symmetries as QCD
- NJL is non-renormalizable \implies cannot remove regularization parameter

NJL Lagrangian

In general the NJL Lagrangian has the form

$$\mathcal{L}_{NJL} = \mathcal{L}_0 + \mathcal{L}_I = \overline{\psi} \left(i \not\partial - m \right) \psi + \sum_{\alpha} G_{\alpha} \left(\overline{\psi} \Gamma_{\alpha} \psi \right)^2$$

• Γ_{α} represents a product of Dirac, colour and flavour matrices

- What about \mathcal{L}_I ? effective theories should maintain symmetries of QCD
- In chiral limit QCD Lagrangian has symmetries

 $\mathcal{S}_{QCD} = SU(3)_c \otimes SU(N_f)_V \otimes SU(N_f)_A \otimes U(1)_V \otimes U(1)_A \otimes \mathcal{C} \otimes \mathcal{P} \otimes \mathcal{T}$

- $SU(N_f)_A$ is broken dynamically DCSB
- $U(1)_A$ is broken in the anomalous mode U(1) problem massive η'
- NJL interaction Lagrangian must respect the symmetries

 $\mathcal{S}_{NJL} = SU(3)_c \otimes SU(N_f)_V \otimes SU(N_f)_A \otimes U(1)_V \otimes \mathcal{C} \otimes \mathcal{P} \otimes \mathcal{T}$

- in NJL $SU(3)_c$ will be considered a global gauge symmetry
- $U(1)_A$ is often broken explicitly $\implies m_{\eta'} \neq 0$

$\mathcal{S}_{NJL} = SU(3)_c \otimes SU(N_f)_V \otimes SU(N_f)_A \otimes U(1)_V \otimes \mathcal{C} \otimes \mathcal{P} \otimes \mathcal{T}$

The NJL Lagrangian should be symmetric under the transformations

$$\begin{aligned} SU(N_f)_V : & \psi \longrightarrow e^{-it \cdot \theta_V} \psi & \bar{\psi} \longrightarrow \bar{\psi} e^{it \cdot \theta_V} \\ SU(N_f)_A : & \psi \longrightarrow e^{-i\gamma_5 t \cdot \theta_A} \psi & \bar{\psi} \longrightarrow \bar{\psi} e^{-i\gamma_5 t \cdot \theta_A} \\ U(1)_V : & \psi \longrightarrow e^{-i\theta} \psi & \bar{\psi} \longrightarrow \bar{\psi} e^{i\theta} \\ U(1)_A : & \psi \longrightarrow e^{-i\gamma_5 \theta} \psi & \bar{\psi} \longrightarrow \bar{\psi} e^{-i\gamma_5 \theta} \end{aligned}$$

Nambu and Jona-Lasinio choose the Lagrangian

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m \right) \psi + G_{\pi} \left[\left(\bar{\psi} \psi \right)^2 - \left(\bar{\psi} \gamma_5 \tau \, \psi \right)^2 \right]$$

• Can choose any combination of these 4–fermion interactions

$$\begin{array}{ll} \left(\bar{\psi}\psi\right)^2, & \left(\bar{\psi}\gamma_5\psi\right)^2, & \left(\bar{\psi}\gamma^\mu\psi\right)^2 & \left(\bar{\psi}\gamma^\mu\gamma_5\psi\right)^2, & \left(\bar{\psi}i\sigma^{\mu\nu}\psi\right)^2, \\ \left(\bar{\psi}t\psi\right)^2, & \left(\bar{\psi}\gamma_5t\psi\right)^2, & \left(\bar{\psi}\gamma^\mu t\psi\right)^2, & \left(\bar{\psi}\gamma^\mu\gamma_5t\psi\right)^2, & \left(\bar{\psi}i\sigma^{\mu\nu}t\psi\right)^2. \end{array}$$

NJL Lagrangian (3)

• The most general $N_f = 2$ NJL Lagrangian that respects the symmetries is

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m \right) \psi + G_{\pi} \left[\left(\bar{\psi} \psi \right)^2 - \left(\bar{\psi} \gamma_5 \tau \psi \right)^2 \right] + G_{\omega} \left(\bar{\psi} \gamma^{\mu} \psi \right)^2 + G_{\rho} \left[\left(\bar{\psi} \gamma^{\mu} \tau \psi \right)^2 + \left(\bar{\psi} \gamma^{\mu} \gamma_5 \tau \psi \right)^2 \right] \\ + G_h \left(\bar{\psi} \gamma^{\mu} \gamma_5 \psi \right)^2 + G_{\eta} \left[\left(\bar{\psi} \gamma_5 \psi \right)^2 - \left(\bar{\psi} \tau \psi \right)^2 \right] + G_T \left[\left(\bar{\psi} i \sigma^{\mu\nu} \psi \right)^2 - \left(\bar{\psi} i \sigma^{\mu\nu} \tau \psi \right)^2 \right]$$

• \mathcal{L}_I is $U(1)_A$ invariant if: $G_{\pi} = -G_{\eta} \& G_T = 0$

$$\begin{split} \bar{\psi}\psi & \longleftrightarrow & \sigma & \longleftrightarrow & (J^P,T) = (0^+,0) \\ \bar{\psi}\gamma_5 \tau \psi & \longleftrightarrow & \pi & \longleftrightarrow & (J^P,T) = (0^-,1) \\ \bar{\psi}\gamma^\mu \psi & \longleftrightarrow & \omega & \longleftrightarrow & (J^P,T) = (1^-,0) \\ \bar{\psi}\gamma^\mu \tau \psi & \longleftrightarrow & \rho & \longleftrightarrow & (J^P,T) = (1^-,1) \\ \bar{\psi}\gamma^\mu \gamma_5 \psi & \longleftrightarrow & f_1, h_1 & \longleftrightarrow & (J^P,T) = (1^+,0) \\ \bar{\psi}\gamma^\mu \gamma_5 \tau \psi & \longleftrightarrow & a_1 & \longleftrightarrow & (J^P,T) = (1^+,1) \\ \bar{\psi}\tau \psi & \longleftrightarrow & a_0 & \longleftrightarrow & (J^P,T) = (0^+,1) \\ \bar{\psi}\gamma_5 \psi & \longleftrightarrow & \eta, \eta' & \longleftrightarrow & (J^P,T) = (0^-,0) \end{split}$$

NJL Lagrangian (4)

• The most general $N_f = 2$ NJL Lagrangian that respects the symmetries is

$$\mathcal{L}_{I} = \frac{1}{2} G_{\pi} \left[\left(\bar{\psi} \psi \right)^{2} - \left(\bar{\psi} \gamma_{5} \boldsymbol{\tau} \psi \right)^{2} \right] - \frac{1}{2} G_{\omega} \left(\bar{\psi} \gamma^{\mu} \psi \right)^{2} - \frac{1}{2} G_{\rho} \left[\left(\bar{\psi} \gamma^{\mu} \boldsymbol{\tau} \psi \right)^{2} - \left(\bar{\psi} \gamma^{\mu} \gamma_{5} \boldsymbol{\tau} \psi \right)^{2} \right] + \frac{1}{2} G_{f} \left(\bar{\psi} \gamma^{\mu} \gamma_{5} \psi \right)^{2} - \frac{1}{2} G_{\eta} \left[\left(\bar{\psi} \gamma_{5} \psi \right)^{2} - \left(\bar{\psi} \boldsymbol{\tau} \psi \right)^{2} \right] - \frac{1}{2} G_{T} \left[\left(\bar{\psi} i \sigma^{\mu\nu} \psi \right)^{2} - \left(\bar{\psi} i \sigma^{\mu\nu} \boldsymbol{\tau} \psi \right)^{2} \right]$$

• \mathcal{L}_I is $U(1)_A$ invariant if: $G_{\pi} = -G_{\eta} \& G_T = 0$

• The most general $N_f = 3$ NJL Lagrangian that respects the symmetries is

$$\mathcal{L}_{I} = G_{\pi} \left[\frac{1}{6} \left(\bar{\psi} \psi \right)^{2} + \left(\bar{\psi} \, \boldsymbol{t} \, \psi \right)^{2} - \frac{1}{6} \left(\bar{\psi} \, \gamma_{5} \, \psi \right)^{2} - \left(\bar{\psi} \, \gamma_{5} \, \boldsymbol{t} \, \psi \right)^{2} \right] \\ - \frac{1}{2} \, G_{\rho} \left[\left(\bar{\psi} \, \gamma^{\mu} \, \boldsymbol{t} \, \psi \right)^{2} + \left(\bar{\psi} \, \gamma^{\mu} \, \gamma_{5} \, \boldsymbol{t} \, \psi \right)^{2} \right] - \frac{1}{2} \, G_{\omega} \left(\bar{\psi} \, \gamma^{\mu} \, \psi \right)^{2} - \frac{1}{2} \, G_{f} \left(\bar{\psi} \, \gamma^{\mu} \, \gamma_{5} \, \psi \right)^{2} \right]$$

- Enlarging the $SU(N_f)_V \otimes SU(N_f)_A$ chiral group from $N_f = 2$ to $N_f = 3$ reduces the number of coupling from six to four
- The $N_f = 3$ Lagrangian is automatically $U(1)_A$ invariant
 - $U(1)_A$ is then often broken by the 't Hooft term a 6-quark interaction

$$\mathcal{L}_{I}^{(6)} = K \left[\det \left(\bar{\psi}(1+\gamma_{5})\psi \right) + \det \left(\bar{\psi}(1-\gamma_{5})\psi \right) \right]$$

NJL Interaction Kernel

 Using Wick's theorem and the NJL Lagrangian their are 2 diagrams for the interaction between a quark and an anti-quark

$$2i G \left[\Omega^i_{\alpha\beta} \overline{\Omega}^i_{\gamma\delta} - \Omega^i_{\alpha\delta} \overline{\Omega}^i_{\gamma\beta} \right]$$

- Using Fierz transformations can express each exchange term as a sum of direct terms
- The SU(2) NJL interaction kernel then takes the form

$$K_{\alpha\beta,\gamma\delta} = 2i G_{\pi} \left[(\mathbb{1})_{\alpha\beta} (\mathbb{1})_{\gamma\delta} - (\gamma_{5}\boldsymbol{\tau})_{\alpha\beta} (\gamma_{5}\boldsymbol{\tau})_{\gamma\delta} \right] - 2i G_{\omega} (\gamma_{\mu})_{\alpha\beta} (\gamma^{\mu})_{\gamma\delta} - 2i G_{\rho} \left[(\gamma_{\mu}\boldsymbol{\tau})_{\alpha\beta} (\gamma^{\mu}\boldsymbol{\tau})_{\gamma\delta} + (\gamma_{\mu}\gamma_{5}\boldsymbol{\tau})_{\alpha\beta} (\gamma^{\mu}\gamma_{5}\boldsymbol{\tau})_{\gamma\delta} \right] + \dots$$

This kernel enters the NJL gap and meson Bethe-Salpeter equations

Regularization Schemes

- The NJL model is non-renormalizable \implies cannot remove regularization
 - regularization parameter(s) play a dynamical role
- Popular choices are:
 - 3-momentum cutoff: $\vec{p}^2 < \Lambda^2$
 - + 4-momentum cutoff $p_E^2 < \Lambda^2$
 - Pauli-Villars
- We will use the proper-time regularization scheme

$$\frac{1}{X^n} = \frac{1}{(n-1)!} \int_0^\infty d\tau \ \tau^{n-1} \ e^{-\tau X} \ \to \ \frac{1}{(n-1)!} \int_{1/\Lambda_{UV}^2}^{1/\Lambda_{IR}^2} d\tau \ \tau^{n-1} \ e^{-\tau X}$$

- only Λ_{UV} is need to render the theory finite
- however, as we shall see, Λ_{IR} plays a very important role; it prevents quarks going on their mass shell and hence simulates confinement

NJL Quark Propagator

- Complete expression for the quark propagator cannot be obtained
 - need a truncation
- Do not in include diagrams like:

- would give a momentum dependent mass function
- Include all diagrams of the form:

All these diagrams can be summed via an integral equation

The most general quark propagator has the form

$$S(p) = \frac{1}{\not p - m - \Sigma(p)} = \frac{Z(p^2)}{\not p - M(p^2)}$$

• The NJL gap equation has the form

$$S^{-1}(k) = S_0^{-1}(k) - \Sigma(k) = [k - m] - \sum_j \int \frac{d^4\ell}{(2\pi)^4} \operatorname{Tr} \left[S(\ell) \,\overline{\Omega}^j \right] \Omega^j$$

• The only piece of the interaction kernel that contributes is:

$$K^{\sigma}_{\alpha\beta,\gamma\delta} = 2i \, G_{\pi} \, (\mathbb{1})_{\gamma\delta} \, (\mathbb{1})_{\alpha\beta}$$

Solving this equation give a quark propagator of the form

$$S^{-1}(k) = k - M + i\varepsilon$$

• The constituent quark mass satisfies the equation

$$M = m + 48i G_{\pi} M \int \frac{d^4 \ell}{(2\pi)^4} \frac{1}{\ell^2 - M^2 + i\varepsilon} = m + M \frac{3 G_{\pi}}{\pi^2} \int d\tau \, \frac{e^{-\tau M^2}}{\tau^2}$$

NJL Gap Equation (2)

$$M = m + M \,\frac{3\,G_{\pi}}{\pi^2} \int d\tau \,\frac{e^{-\tau\,M^2}}{\tau^2}$$

- For the case m = 0 the gap equation has two solutions:
 - trivial solution: M = 0 & non-trivial solution: $M \neq 0$
- Which solution does nature choose, that is, which solution minimizes the energy. Compare vacuum energy density, *E*, for each case

$$\mathcal{E}(M) - \mathcal{E}(M=0) = -\frac{3}{4\pi^2} \int d\tau \frac{1}{\tau^3} \left(e^{-\tau M^2} - 1 \right) + \frac{M^2}{4 G_\pi}$$

- For $G_{\pi} > G_{\pi, crit}$ the lowest energy solution has $M \neq 0$
 - Therefore for $G_{\pi} > G_{\pi, crit}$ NJL has DCSB
 - $\begin{array}{l} \mathsf{DCSB} \Longleftrightarrow \mathsf{generates} \ \mathsf{mass} \ \mathsf{from} \\ \mathsf{nothing} \end{array}$

NJL & DSE gap equations

• NJL constituent mass is given by: $M = m - 2 G_{\pi} \langle \bar{\psi} \psi \rangle$

Chiral condensate is defined by

$$\left\langle \bar{\psi}\psi \right\rangle \equiv \lim_{x \to y} \operatorname{Tr}\left[-iS(x-y)\right] = -\int \frac{d^4k}{(2\pi)^4} \operatorname{Tr}\left[iS(k)\right]$$

- Mass is generated via interaction with vacuum
- Dynamically generated quark masses $\iff \langle \overline{\psi}\psi \rangle \neq 0$
- $\langle \bar{\psi}\psi \rangle = \langle \bar{u}u + \bar{d}d \rangle$ is an order parameter for DSCB

Confinement in NJL model

In general the NJL model is not confining; quark propagator is simply

$$S(k) = \frac{1}{\not k - M + i\varepsilon} = \frac{\not k + M}{k^2 - M^2 + i\varepsilon}$$

- quark propagator has a pole quarks are part of physical spectrum
- However the proper-time scheme is unique

$$S(k) = \int_0^\infty d\tau \, (\not\!k + M) \, e^{-\tau \left(k^2 - M^2\right)} \to \underbrace{\frac{\left[e^{-(k^2 - M^2)/\Lambda_{UV}^2 - e^{-(k^2 - M^2)/\Lambda_{IR}^2}\right]}{k^2 - M^2}}_{\equiv Z(k^2)} [\not\!k + M]$$

- quark propagator does not have a pole: $Z(k^2) \stackrel{k^2}{=} \stackrel{M^2}{=} \frac{1}{\Lambda_{IR}^2} \frac{1}{\Lambda_{IV}^2} \neq \infty$
- Are confinement and DCSB related?
 - NJL model is proof that DCSB can exist without confinement
 - however commonly believed cannot have confinement without DCSB

Hadron Spectrum

- In QFT physical states appear as poles in *n*-point Green Functions
- For example, the full quark–antiquark scattering matrix or T-matrix, contains poles for all $\bar{q}q$ bound states, that is, the physical mesons
- The quark-antiquark T-matrix is obtained by solving the Bethe-Salpeter equation

• In principle kernel, K, contains all possible 2PI diagrams

Kernel of gap and BSEs are intimately related

 $q_{\mu} \Gamma_{5}^{\mu,i}(p',p) = S^{-1}(p') \gamma_{5} \frac{1}{2} \tau_{i} + \frac{1}{2} \tau_{i} \gamma_{5} S^{-1}(p) + 2 m \Gamma_{\pi}^{i}(p',p)$

Bethe-Salpeter Equation for the Pion

- How does the pion become (almost) massless when it is composed of two massive constituents
- The pion is realized as the lowest lying pole in the quark anti-quark *T*-matrix in the pseudo-scalar channel
- In the NJL model this *T*-matrix is given by

$$\mathcal{T}(q)_{\alpha\beta,\gamma\delta} = \mathcal{K}_{\alpha\beta,\gamma\delta} + \int \frac{d^4k}{(2\pi)^4} \, \mathcal{K}_{\alpha\beta,\lambda\epsilon} \, S(q+k)_{\varepsilon\varepsilon'} \, S(k)_{\lambda'\lambda} \, \mathcal{T}(q)_{\varepsilon'\lambda',\gamma\delta},$$

$$\mathcal{K}_{\pi} = -2i \, G_{\pi} \, (\gamma_5 \boldsymbol{\tau})_{lpha eta} (\gamma_5 \boldsymbol{\tau})_{\lambda \epsilon}$$

• The NJL pion *t*-matrix is

$$\mathcal{T}(q)^{i}_{\alpha\beta,\gamma\delta} = (\gamma_5\tau_i)_{\alpha\beta} \; \frac{-2i\,G_{\pi}}{1+2\,G_{\pi}\,\Pi_{\pi}(q^2)} \; (\gamma_5\tau_i)_{\gamma\delta}$$

• The pion mass is then given by: $1 + 2 G_{\pi} \prod_{\pi} (q^2 = m_{\pi}^2) = 0$

The Pion as a Goldstone Boson

• Recall the pion pole condition $-1 + 2 G_{\pi} \prod_{\pi} (q^2 = m_{\pi}^2) = 0$ – where

$$\Pi_{\pi}(q^2) = \frac{m}{2 G_{\pi} M} - \frac{1}{2 G_{\pi}} - q^2 I(q^2)$$

- have used the gap equation to obtain this expression
- The pion pole condition therefore implies

$$m_{\pi}^2 = \frac{m}{2 \, G_{\pi} \, M \, I(m_{\pi}^2)}$$

- Therefore in the chiral limit $-m \rightarrow 0$ $(M \neq 0) pion$ is massless
- Can show other chiral symmetry relations are also satisfied:
 - $f_{\pi} g_{\pi qq} = M g_{Aqq}$ Goldberger–Treiman (GT) relation

$$f_{\pi}^2 m_{\pi}^2 = \frac{1}{2} \left(m_u + m_d \right) \left\langle \bar{u}u + \bar{d}d \right\rangle$$

Gell-Mann–Oakes–Renner (GMOR)

$$\langle 0 | A_a^{\mu} | \pi_b(p) \rangle = i f_{\pi} p^{\mu} \delta_{ab}$$

Chiral Partners

- If chiral symmetry was *NOT* dynamically broken in nature expect mass degenerate chiral partners, e.g., $m_{\sigma} \simeq m_{\pi}$ & $m_{a_1} \simeq m_{\rho}$
- The ρ and a_1 are the lowest lying vector ($J^P = 1^-$) and axial-vector ($J^P = 1^+$) $\bar{q}q$ bound states: $m_{\rho}^{\exp^i t} \simeq 770 \text{ MeV} \& m_{a_1}^{\exp^i t} \simeq 1230 \text{ MeV}$
- Masses given by T-matrix poles in the vector and axial-vector $\bar{q}q$ channels

• Pole conditions: $1 + 2 G_{\rho} \Pi_{\rho}(m_{\rho}^2) = 0$ & $1 + 2 G_{\rho} \Pi_{a_1}(m_{a_1}^2) = 0$

$$\Pi_{a_1}(q^2) = M^2 I(q^2) + \Pi_{\rho}(q^2)$$

- DCSB splits masses; NJL gives: $m_{\rho} \equiv 770 \text{ MeV}$ & $m_{a_1} \simeq 1098 \text{ MeV}$
 - good agreement with the Weinberg sum rule result: $m_{a_1} \simeq \sqrt{2} m_{
 ho}$
- Pion conditions for π and $\sigma \implies m_{\sigma}^2 \simeq m_{\pi}^2 + 4 M^2$

Homogeneous Bethe-Salpeter vertex functions

 $T = K + T K \Rightarrow T = K$

• Near a bound state pole of mass m a two-body t-matrix behaves as

 $\mathcal{T}(p,k) \rightarrow \frac{\Gamma(p,k) \ \bar{\Gamma}(p,k)}{p^2 - m^2} \qquad \text{where} \qquad p = p_1 + p_2, \ k = p_1 - p_2$

- $\Gamma(p, k)$ is the homogeneous Bethe-Salpeter vertex and describes the relative motion of the quark and anti-quark while they form the bound state
- Expanding the pion T-matrix about the pole gives

$$\mathcal{T} = \gamma_5 \tau_i \, \frac{-2i \, G_\pi}{1 + 2 \, G_\pi \, \Pi_\pi(q^2)} \, \gamma_5 \tau_i \to \frac{i \, g_{\pi q q}^2}{q^2 - m_\pi^2} (\gamma_5 \tau_i) (\gamma_5 \tau_i) \implies \Gamma_\pi = \sqrt{g_\pi} \, \gamma_5 \tau_i$$

- $g_{\pi qq}$ is effective pion-quark coupling constant
- Bethe-Salpeter vertex needed for calculations e.g. f_{π} $i f_{\pi} q^{\mu} \delta_{ij} = \int \frac{d^4k}{(2\pi)^4} \operatorname{Tr} \left[\frac{1}{2} \gamma^{\mu} \gamma_5 \tau_j S(k) \Gamma^i_{\pi} S(k-q) \right] \xrightarrow{\alpha}_{q} \beta$

Table of Contents

- building blocks
- motivation
- 🏶 plan
- recommended references
- 🏶 QCD
- asymptotic freedom
- QCD & hadron structure
- chiral symmetry
- DCSB
- goldstone's theorem
- 🏶 DSEs
- introduction

- 🏶 njl model
- 🏶 njl Lagrangian
- njl interaction
- regularization
- gap equation
- njl & dse gap equations
- njl confinement
- hadron spectrum
- 🏶 pion
- goldstone boson
- chiral partners
- BS vertex functions