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Building Blocks of the Universe
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● Fundamental constituents of the Standard Model (SM) of particle physics

✦ Quantum Chromodynamics (QCD) & Electroweak (EW) theories

● Local non-abelian gauge field theories

✦ a special type of relativistic quantum field theory

● SM Lagrangian has gauge symmetries: SU(3)c ⊗ SU(2)L ⊗ UY (1)
✦ SM has 19 parameters which need to be determined by experiment

✦ however only 2 parameters are intrinsic to QCD: ΛQCD & θQCD 6 10−9



Motivation of Lectures
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● Explore non-perturbative structure of QCD, through the interplay of theory

and experiment, as it relates to hadron and nuclear structure

● The tools available are:

✦ lattice QCD

✦ chiral perturbation theory

✦ QCD inspired models

● We will review the model of Nambu and Jona-Lasinio (NJL model)

✦ first proposed in 1961 as a theory of elementary nucleons

✦ with advent of QCD reinterpreted as a quark effective theory

● Some of the advantages of models over lattice and χPT are

✦ can explore a wider array of physics problems

✦ may provide better insight into important physics mechanisms

✦ facilitate a dynamic interplay between experiment and theory



Plan of Lectures
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● Lecture 1 – Introduction to QCD and the non-perturbative framework

provided by the Nambu–Jona-Lasinio (NJL) model

● Lecture 2 – Relativistic Faddeev (3-body) equation & electromagnetic

form factors

● Lecture 3 – Deep inelastic scattering and parton distribution functions

● Lecture 4 – Quark degrees of freedom in nuclei and nuclear matter
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frontpage table of contents appendices 5 / 31

● Y. Nambu and G. Jona-Lasinio, “Dynamical model of elementary particles based

on an analogy with superconductivity I ”, Phys. Rev. 122, 345 (1961).

● Y. Nambu and G. Jona-Lasinio, “Dynamical model of elementary particles based

on an analogy with superconductivity II ”, Phys. Rev. 124, 246 (1961).

● U. Vogl and W. Weise, “The Nambu and Jona Lasinio model: Its implications for

hadrons and nuclei”, Prog. Part. Nucl. Phys. 27, 195 (1991).

● S. P. Klevansky, “The Nambu-Jona-Lasinio model of quantum

chromodynamics ,” Rev. Mod. Phys. 64, 649 (1992).

● R. L. Jaffe, “Deep Inelastic Scattering With Application To Nuclear Targets ”,

MIT-CTP-1261.

● W. Bentz and A. W. Thomas, “The Stability of nuclear matter in the

Nambu-Jona-Lasinio model ”, Nucl. Phys. A 696, 138 (2001).
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Quantum Chromodynamics (QCD)
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● QCD is the fundamental theory of the strong interaction, where the

quarks and gluons are the basic degrees of freedom

(qα)
A
f







colour A = 1, 2, 3

spin α = ↑, ↓
flavour f = u, d, s, c, b, t

Aaµ

{

colour a = 1, . . . , 8

spin ε±µ

● QCD is a non-abelian gauge theory whose dynamics are governed by the

Lagrangian

L = q̄f
(
i /D +mf

)
qf −

1

4
F aµνF

µν
a ;

i /D = γµ
(
i∂µ + gsA

a
µ T

a
)

F aµν = ∂µA
a
ν − ∂ν Aaµ + gs fabcA

b
µA

c
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p k

q

a, µ
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c, σ

a, µ b, ν

c, σ d, λ

● Gluon self-interactions have many profound consequences



Asymptotic Freedom
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● At large Q2 or short distances interaction

strength becomes logarithmically small

✦ a striking features of QCD

✦ QED has opposite behaviour: αe ≃ 1
137

αLOs (Q2) =
4π

(
11− 2

3 Nf

)
ln
(

Q2/Λ2
QCD

)

● Asymptotic Freedom – 2004 Nobel Prize – Gross, Politzer and Wilczek

● ΛQCD most important parameter in QCD – [dimenional transmutation of gs]

✦ ΛQCD ≃ 200MeV ≃ 1 fm−1 – sets scale, QCDs “standard kilogram”

● Momentum-dependent coupling ⇐⇒ coupling depends on separation

✦ interaction strength between quarks and gluons grows with separation



Confinement
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● Hadron structure & QCD is characterized by two emergent phenomena

✦ confinement and dynamical chiral symmetry breaking (DCSB)

● Both of these phenomena are not evident from the QCD Lagrangian

● All known hadrons are colour singlets, even though they are composed of

coloured quarks and gluons: baryons (qqq) & mesons (q̄q)

● Confinement conjecture: particles that carry the colour charge cannot be

isolated and can therefore not be directly observed

● Related to $1 million Millennium Prize:

✦ for SU(3)c must prove that glueballs have a lower bound on their mass

✦ partial explanation as to why strong force is short ranged



Chiral Symmetry
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● Define left- and right-handed fields: ψR,L = 1
2 (1± γ5)ψ

● The QCD Lagrangian then takes the form [m = diag (mu,md,ms, . . .)]

L = ψ̄L i /D ψL + ψ̄R i /D ψR − ψ̄RmψL − ψ̄LmψR −
1

4
F aµνF

µν
a

● Therefore for m = 0 QCD Lagrangian is chirally symmetric

SU(Nf )L ⊗ SU(Nf )R =⇒ ψL,R → e−i ω
a
L,R T

a

ψL,R

● SU(Nf )L ⊗ SU(Nf )R chiral symmetry is equivalent to

SU(Nf )V ⊗ SU(Nf )A =⇒ ψ → e−i ω
a
V Ta

ψ, ψ → e−i ω
a
A T

a γ5ψ

● Global symmetries: Wigner-Weyl or Nambu-Goldstone modes

✦ Wigner-Weyl mode: vacuum is also invariant

✦ Nambu-Goldstone mode: vacuum breaks symmetry



Dynamical Chiral Symmetry Breaking
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● Recall for m = 0 QCD Lagrangian is invariant under

SU(Nf )L ⊗ SU(Nf )R ⇐⇒ SU(Nf )V ⊗ SU(Nf )A

● Nf = 2 corresponds to the isospin subgroup of SU(Nf )V transformations

✦ hadronic mass spectrum tells us nature largely respects isospin symmetry

✦ mπ− ≃ mπ0 ≃ mπ+ , mp ≃ mn, mΣ− ≃ mΣ0 ≃ mΣ+

✦ therefore SU(Nf )V is realized in the Wigner-Weyl mode

● SU(Nf )A transformations mix states of opposite parity

✦ expect hadronic mass spectrum to exhibit parity degeneracy

✦ mσ −mπ ∼ 300MeV, ma1
−mρ ∼ 490MeV, mN −mN∗ ∼ 600MeV, etc

✦ recall: mu ≃ md ≃ 5MeV =⇒ cannot produce large mass splittings

✦ therefore SU(Nf )A must be realized in the Nambu-Goldstone mode

● Chiral symmetry broken dynamically: SU(Nf )L ⊗ SU(Nf )R =⇒ SU(Nf )V



Goldstone’s Theorem
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● Goldstone’s theorem: if a continuous global symmetry is broken dynamically,

then for each broken group generator there must appear in the theory a

massless spinless particle (Goldstone boson)

● QCDs chiral symmetry is explicitly broken by small current quark masses

mu = 1.5− 3.5MeV & md = 3.5− 6.0MeV (≪ ΛQCD)

● For Nf = 2 expect N2
f − 1 = 3 Goldstone bosons: π+, π0, π−

✦ physical particle masses are not zero – mπ ∼ 140MeV – because of

explicit chiral symmetry breaking: mu,d 6= 0

● Chiral symmetry and its dynamical breaking has profound consequences

for the QCD mass spectrum and hadron structure

✦ this is not apparent from the QCD Lagrangian and is an innately

non-perturbative phenomena

● Need non-perturbative methods to understand all consequences of QCD



QCDs Dyson–Schwinger Equations
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● DSEs are the equations of motion for a quantum field theory

✦ must truncate infinite tower of coupled integral equations

● Truncation: gluon propagator becomes constant – Dµν(k)→ gµν

● Largely equivalent to the Nambu–Jona Lasinio (NJL) model

ETC!



The Nambu–Jona-Lasinio Model

frontpage table of contents appendices 13 / 31

● The Nambu–Jona-Lasinio (NJL) Model was invented in 1961 by Yoichiro

Nambu and Giovanni Jona-Lasinio while at The University of Chicago

✦ was inspired by the BCS theory of superconductivity

✦ was originally a theory of elementary nucleons

✦ rediscovered in the 80s as an effective quark theory

● It is a relativistic quantum field theory, that is relatively easy to work with,

and is very successful in the description of hadrons, nuclear matter, etc

● Nambu won half the 2008 Nobel prize in physics in part for the NJL model:

“for the discovery of the mechanism of spontaneous broken symmetry in

subatomic physics” [Nobel Committee]



NJL Model
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● NJL model is interpreted as low energy chiral effective theory of QCD

Z(k2)

k2

➞ G Θ(k2−Λ2)

● Can be motivated by infrared

enhancement of quark–gluon

interaction

e.g. DSEs and Lattice QCD

A. Holl, et al, Phys. Rev. C 71, 065204 (2005)
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● Investigate the role of quark degrees of freedom

● NJL has same flavour symmetries as QCD

● NJL is non-renormalizable =⇒ cannot remove regularization parameter



NJL Lagrangian
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● In general the NJL Lagrangian has the form

LNJL = L0 + LI = ψ
(
i /∂ −m

)
ψ +

∑

α
Gα

(
ψ Γα ψ

)2

✦ Γα represents a product of Dirac, colour and flavour matrices

● What about LI? – effective theories should maintain symmetries of QCD

● In chiral limit QCD Lagrangian has symmetries

SQCD = SU(3)c ⊗ SU(Nf )V ⊗ SU(Nf )A ⊗ U(1)V ⊗ U(1)A ⊗ C ⊗ P ⊗ T

✦ SU(Nf )A is broken dynamically – DCSB

✦ U(1)A is broken in the anomalous mode – U(1) problem – massive η′

● NJL interaction Lagrangian must respect the symmetries

SNJL = SU(3)c ⊗ SU(Nf )V ⊗ SU(Nf )A ⊗ U(1)V ⊗ C ⊗ P ⊗ T

✦ in NJL SU(3)c will be considered a global gauge symmetry

✦ U(1)A is often broken explicitly =⇒ mη′ 6= 0



NJL Lagrangian (2)

frontpage table of contents appendices 16 / 31

SNJL = SU(3)c ⊗ SU(Nf )V ⊗ SU(Nf )A ⊗ U(1)V ⊗ C ⊗ P ⊗ T

● The NJL Lagrangian should be symmetric under the transformations

SU(Nf )V : ψ −→ e−i t·θV ψ ψ̄ −→ ψ̄ ei t·θV

SU(Nf )A : ψ −→ e−i γ5 t·θA ψ ψ̄ −→ ψ̄ e−i γ5 t·θA

U(1)V : ψ −→ e−i θ ψ ψ̄ −→ ψ̄ ei θ

U(1)A : ψ−→ e−i γ5 θ ψ ψ̄−→ ψ̄ e−i γ5 θ

● Nambu and Jona-Lasinio choose the Lagrangian

L = ψ̄
(
i/∂ −m

)
ψ +Gπ

[(
ψ̄ψ

)2 −
(
ψ̄ γ5τ ψ

)2
]

● Can choose any combination of these 4−fermion interactions

(
ψ̄ψ

)2
,

(
ψ̄ γ5 ψ

)2
,

(
ψ̄ γµ ψ

)2 (
ψ̄ γµγ5 ψ

)2
,

(
ψ̄ iσµν ψ

)2
,

(
ψ̄ tψ

)2
,

(
ψ̄ γ5 tψ

)2
,

(
ψ̄ γµ tψ

)2
,

(
ψ̄ γµγ5 tψ

)2
,

(
ψ̄ iσµν tψ

)2
.



NJL Lagrangian (3)
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● The most general Nf = 2 NJL Lagrangian that respects the symmetries is

L = ψ̄
(

i/∂ −m
)

ψ +Gπ

[

(

ψ̄ψ
)2

−
(

ψ̄ γ5τ ψ
)2

]

+Gω
(

ψ̄ γµ ψ
)2

+Gρ

[

(

ψ̄ γµτ ψ
)2

+
(

ψ̄ γµγ5τ ψ
)2

]

+Gh

(

ψ̄ γµγ5 ψ
)2

+Gη

[

(

ψ̄ γ5 ψ
)2

−
(

ψ̄ τ ψ
)2

]

+GT

[

(

ψ̄ iσµνψ
)2

−
(

ψ̄ iσµν
τ ψ

)2
]

✦ LI is U(1)A invariant if: Gπ = −Gη & GT = 0

ψ̄ψ ←→ σ ←→
(
JP , T

)
=

(
0+, 0

)

ψ̄ γ5τ ψ ←→ π ←→
(
JP , T

)
=

(
0−, 1

)

ψ̄ γµ ψ ←→ ω ←→
(
JP , T

)
=

(
1−, 0

)

ψ̄ γµτ ψ ←→ ρ ←→
(
JP , T

)
=

(
1−, 1

)

ψ̄ γµγ5 ψ ←→ f1, h1 ←→
(
JP , T

)
=

(
1+, 0

)

ψ̄ γµγ5τ ψ ←→ a1 ←→
(
JP , T

)
=

(
1+, 1

)

ψ̄τψ ←→ a0 ←→
(
JP , T

)
=

(
0+, 1

)

ψ̄ γ5 ψ ←→ η, η′ ←→
(
JP , T

)
=

(
0−, 0

)



NJL Lagrangian (4)
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● The most general Nf = 2 NJL Lagrangian that respects the symmetries is

LI = 1
2
Gπ

[

(

ψ̄ψ
)2

−
(

ψ̄ γ5τ ψ
)2

]

−
1
2
Gω

(

ψ̄ γµ ψ
)2

−
1
2
Gρ

[

(

ψ̄ γµτ ψ
)2

−
(

ψ̄ γµγ5τ ψ
)2

]

+ 1
2
Gf

(

ψ̄ γµγ5 ψ
)2

−
1
2
Gη

[

(

ψ̄ γ5 ψ
)2

−
(

ψ̄ τ ψ
)2

]

−
1
2
GT

[

(

ψ̄ iσµνψ
)2

−
(

ψ̄ iσµν
τ ψ

)2
]

✦ LI is U(1)A invariant if: Gπ = −Gη & GT = 0

● The most general Nf = 3 NJL Lagrangian that respects the symmetries is

LI = Gπ

[

1
6

(

ψ̄ψ
)2

+
(

ψ̄ tψ
)2

−
1
6

(

ψ̄ γ5 ψ
)2

−
(

ψ̄ γ5 tψ
)2

]

−
1

2
Gρ

[

(

ψ̄ γµ tψ
)2

+
(

ψ̄ γµγ5 tψ
)2

]

−
1

2
Gω

(

ψ̄ γµ ψ
)2

−
1

2
Gf

(

ψ̄ γµγ5 ψ
)2

● Enlarging the SU(Nf )V ⊗ SU(Nf )A chiral group from Nf = 2 to Nf = 3
reduces the number of coupling from six to four

● The Nf = 3 Lagrangian is automatically U(1)A invariant

✦ U(1)A is then often broken by the ’t Hooft term – a 6-quark interaction

L(6)I = K
[
det

(
ψ̄(1 + γ5)ψ

)
+ det

(
ψ̄(1− γ5)ψ

)]



NJL Interaction Kernel
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● Using Wick’s theorem and the NJL Lagrangian their are 2 diagrams for

the interaction between a quark and an anti-quark

γ

δ

α

β
Direct

−

Time

δ α

γ βExchange

2iG
[

ΩiαβΩ
i
γδ − ΩiαδΩ

i
γβ

]

● Using Fierz transformations can express each exchange term as a sum of

direct terms

● The SU(2) NJL interaction kernel then takes the form

Kαβ,γδ = 2iGπ

[

(1)αβ (1)γδ − (γ5τ )αβ (γ5τ )γδ

]

− 2iGω (γµ)αβ (γ
µ)γδ

− 2iGρ

[

(γµτ )αβ (γ
µ
τ )γδ + (γµγ5τ )αβ (γ

µγ5τ )γδ

]

+ . . .

● This kernel enters the NJL gap and meson Bethe-Salpeter equations



Regularization Schemes
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● The NJL model is non-renormalizable =⇒ cannot remove regularization

✦ regularization parameter(s) play a dynamical role

● Popular choices are:

✦ 3-momentum cutoff: ~p 2 < Λ2

✦ 4-momentum cutoff p2E < Λ2

✦ Pauli-Villars

● We will use the proper-time regularization scheme

1

Xn
=

1

(n− 1)!

∫
∞

0
dτ τn−1 e−τ X → 1

(n− 1)!

∫ 1/Λ2
IR

1/Λ2
UV

dτ τn−1 e−τ X

✦ only ΛUV is need to render the theory finite

✦ however, as we shall see, ΛIR plays a very important role; it prevents

quarks going on their mass shell and hence simulates confinement



NJL Quark Propagator
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● Complete expression for the quark propagator cannot be obtained

✦ need a truncation

● Do not in include diagrams like:

✦ would give a momentum dependent mass function

● Include all diagrams of the form:

= + + + + · · ·

● All these diagrams can be summed via an integral equation

−1
=

−1
+

● The most general quark propagator has the form

S(p) =
1

/p−m− Σ(p)
=

Z(p2)

/p−M(p2)



NJL Gap Equation
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−1
=

−1
+

● The NJL gap equation has the form

S−1(k) = S−1
0 (k)− Σ(k) = [/k −m]−

∑

j

∫
d4ℓ

(2π)4
Tr

[

S(ℓ) Ω
j
]

Ωj

● The only piece of the interaction kernel that contributes is:

Kσ
αβ,γδ = 2iGπ (1)γδ (1)αβ

● Solving this equation give a quark propagator of the form

S−1(k) = /k −M + iε

● The constituent quark mass satisfies the equation

M = m+ 48iGπM

∫
d4ℓ

(2π)4
1

ℓ2 −M2 + iε
= m+M

3Gπ
π2

∫

dτ
e−τ M

2

τ2



NJL Gap Equation (2)
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M = m+M
3Gπ
π2

∫

dτ
e−τ M

2

τ2

● For the case m = 0 the gap equation has two solutions:

✦ trivial solution: M = 0 & non-trivial solution: M 6= 0

● Which solution does nature choose, that is, which solution minimizes the

energy. Compare vacuum energy density, E , for each case

E(M)− E(M = 0) = − 3

4π2

∫

dτ
1

τ3

(

e−τM
2 − 1

)

+
M2

4Gπ

−0.002

0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

E
[G

eV
4
]

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

M [GeV]

Gπ = 5 GeV−2

Gπ = Gπ,crit

Gπ = 20 GeV−2

Gπ = 30 GeV−2

● For Gπ > Gπ,crit the lowest energy

solution has M 6= 0

● Therefore for Gπ > Gπ,crit NJL has

DCSB

● DCSB⇐⇒ generates mass from

nothing



NJL & DSE gap equations
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● NJL constituent mass is given by: M = m− 2Gπ
〈
ψ̄ψ

〉

● Chiral condensate is defined by

〈
ψ̄ψ

〉
≡ lim

x→y
Tr [−iS(x− y)] = −

∫
d4k

(2π)4
Tr [i S(k)]

● Mass is generated via interaction with vacuum

● Dynamically generated quark masses ⇐⇒ 〈ψψ〉 6= 0

●

〈
ψ̄ψ

〉
=

〈
ūu+ d̄d

〉
is an order parameter for DSCB



Confinement in NJL model
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● In general the NJL model is not confining; quark propagator is simply

S(k) =
1

/k −M + iε
=

/k +M

k2 −M2 + iε

✦ quark propagator has a pole =⇒ quarks are part of physical spectrum

● However the proper-time scheme is unique

S(k) =

∫
∞

0
dτ (/k +M) e−τ(k

2−M2) →
[

e−(k2−M2)/Λ2
UV −e−(k2−M2)/Λ2

IR

]

k2−M2
︸ ︷︷ ︸

≡Z(k2)

[/k +M ]

● quark propagator does not have a pole: Z(k2)
k2→M2

= 1
Λ2
IR
− 1

Λ2
UV
6=∞

● Are confinement and DCSB related?

✦ NJL model is proof that DCSB can exist without confinement

✦ however commonly believed cannot have confinement without DCSB



Hadron Spectrum
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● In QFT physical states appear as poles in n-point Green Functions

● For example, the full quark–antiquark scattering matrix or T -matrix,

contains poles for all q̄q bound states, that is, the physical mesons

● The quark–antiquark T -matrix is obtained by solving the Bethe-Salpeter

equation

T = K + T K

● In principle kernel, K, contains all possible 2PI diagrams

K = + + . . . NJL
=⇒

● Kernel of gap and BSEs are intimately related

qµ Γ
µ,i
5 (p′, p) = S−1(p′) γ5

1
2τi +

1
2τi γ5 S

−1(p) + 2mΓiπ(p
′, p)



Bethe-Salpeter Equation for the Pion
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● How does the pion become (almost) massless when it is composed of two

massive constituents

● The pion is realized as the lowest lying pole in the quark anti-quark

T -matrix in the pseudo-scalar channel

● In the NJL model this T -matrix is given by

T (q)αβ,γδ = Kαβ,γδ +
∫

d4k

(2π)4
Kαβ,λǫ S(q + k)εε′ S(k)λ′λ T (q)ε′λ′,γδ,

γ

δ

q

α

β

=

γ

δ

α

β

+

γ

δ

ε′

λ′

α

β

ε

λ

Kπ = −2iGπ (γ5τ )αβ(γ5τ )λǫ

● The NJL pion t-matrix is

T (q)iαβ,γδ = (γ5τi)αβ
−2iGπ

1 + 2Gπ Ππ(q2)
(γ5τi)γδ

● The pion mass is then given by: 1 + 2Gπ Ππ(q
2 = m2

π) = 0



The Pion as a Goldstone Boson
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● Recall the pion pole condition – 1 + 2Gπ Ππ(q
2 = m2

π) = 0 – where

Ππ(q
2) =

m

2GπM
− 1

2Gπ
− q2 I(q2)

✦ have used the gap equation to obtain this expression

● The pion pole condition therefore implies

m2
π =

m

2GπM I(m2
π)

● Therefore in the chiral limit – m→ 0 (M 6= 0) – pion is massless

● Can show other chiral symmetry relations are also satisfied:

✦ fπ gπqq =M gAqq Goldberger–Treiman (GT) relation

✦ f2πm
2
π = 1

2 (mu +md)
〈
ūu+ d̄d

〉
Gell-Mann–Oakes–Renner (GMOR)

µα α′

β β′q q
〈0 |Aµa |πb(p)〉 = i fπ p

µ δab



Chiral Partners
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● If chiral symmetry was NOT dynamically broken in nature expect mass

degenerate chiral partners, e.g., mσ ≃ mπ & ma1
≃ mρ

● The ρ and a1 are the lowest lying vector (JP = 1−) and axial-vector

(JP = 1+) q̄q bound states: mexp’t
ρ ≃ 770MeV & mexp’t

a1 ≃ 1230MeV

● Masses given by T -matrix poles in the vector and axial-vector q̄q channels

q
= +

q

K = −2iGρ
[
(γµτ ) (γ

µ
τ )

+ (γµγ5τ ) (γ
µγ5τ )

]

● Pole conditions: 1 + 2GρΠρ(m
2
ρ) = 0 & 1 + 2GρΠa1(m

2
a1) = 0

Πa1(q
2) =M2 I(q2) + Πρ(q

2)

● DCSB splits masses; NJL gives: mρ ≡ 770MeV & ma1
≃ 1098MeV

✦ good agreement with the Weinberg sum rule result: ma1 ≃
√
2mρ

● Pion conditions for π and σ =⇒ m2

σ ≃ m2

π + 4M2
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T = K + T K =⇒ Γ = Γ K

● Near a bound state pole of mass m a two-body t-matrix behaves as

T (p, k)→ Γ(p, k) Γ̄(p, k)

p2 −m2
where p = p1 + p2, k = p1 − p2

● Γ(p, k) is the homogeneous Bethe-Salpeter vertex and describes the

relative motion of the quark and anti-quark while they form the bound state

● Expanding the pion T -matrix about the pole gives

T = γ5τi
−2iGπ

1+2Gπ Ππ(q2)
γ5τi → i g2πqq

q2−m2
π
(γ5τi)(γ5τi) =⇒ Γπ =

√
gπ γ5τi

✦ gπqq is effective pion-quark coupling constant

● Bethe-Salpeter vertex needed for calculations e.g. fπ

i fπ q
µ δij =

∫
d4k
(2π)4

Tr
[
1
2 γ

µγ5τj S(k) Γ
i
π S(k − q)

] µα α′

β β′q q
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