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Building Blocks of the Universe

matter constituents

FERMIONS spin = 1/2, 3/2, 512, ...

force carriers

BOSONS <pin=0, 1,2, ...

Leptons spin =1/2 Quarks spin =1/2 — . .
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M) muon 0.106 -1 @ strange 0.1 -1/3 w; 80.39 +1
i W bosons
Vil neatiooe | (0.04-0.14)x10-°| 0 &) e 173 213 ZB s .
L‘P tau 1.777 -1 &) rotom 4.2 —1/3J Lz boson

® Fundamental constituents of the Standard Model (SM) of particle physics
4+ Quantum Chromodynamics (QCD) & Electroweak (EW) theories

® Local non-abelian gauge field theories
+ a special type of relativistic quantum field theory

® SM Lagrangian has gauge symmetries: SU(3). ® SU(2);, ® Uy (1)
+ SM has 19 parameters which need to be determined by experiment
+ however only 2 parameters are intrinsic to QCD: Agcp & 0gcp < 1077



® Explore non-perturbative structure of QCD, through the interplay of theory
and experiment, as it relates to hadron and nuclear structure

® The tools available are:
+ lattice QCD
4+ chiral perturbation theory
+ QCD inspired models

® We will review the model of Nambu and Jona-Lasinio (NJL model)
+ first proposed in 1961 as a theory of elementary nucleons
+ with advent of QCD reinterpreted as a quark effective theory

® Some of the advantages of models over lattice and yPT are
4+ can explore a wider array of physics problems
4+ may provide better insight into important physics mechanisms
+ facilitate a dynamic interplay between experiment and theory
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® Lecture 1 — Introduction to QCD and the non-perturbative framework
provided by the Nambu—Jona-Lasinio (NJL) model

® Lecture 2 — Relativistic Faddeev (3-body) equation & electromagnetic
form factors

® Lecture 3 — Deep inelastic scattering and parton distribution functions

® Lecture 4 — Quark degrees of freedom in nuclei and nuclear matter
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Quantum Chromodynamics (QCD)

® QCD is the fundamental theory of the strong interaction, where the
quarks and gluons are the basic degrees of freedom

(colour A=1,2 3
A _ colour a=1,...,8
(¢a)7 g spin a=1,] . soin et
flavour  f=wu,d, s, ¢, b, 1 H

® QCD is a non-abelian gauge theory whose dynamics are governed by the
Lagrangian
1
L=qs (iD+my¢)qr — -~ F* FM;
7 a3 b i) =y (i10u + g5 A% T?)

a a a b Ac
F%, = 8, A% — 8, A% + g5 fape AD AC

a, [t b, v

® Gluon self-interactions have many profound consequences



® At large Q? or short distances interaction
strength becomes logarithmically small

+ a striking features of QCD
1

+ QED has opposite behaviour: o, ~ 3= s *|

al(Q?) =
(11 - %Nf) In (Q2/A%OD)

0.4

47T 02}

A4 Deep Inelastic Scattering
oe ete— Annihilation

< Hadron Collisions

= ® Hecavy Quarkonia

= QCD 0o, (MZ)=0.1189 + 0.0010

lll} l{t]'[J
QlGeV]

® Asymptotic Freedom — 2004 Nobel Prize — Gross, Politzer and Wilczek

® Agcp most important parameter in QCD — [dimenional transmutation of g,]
+ Agcp ~ 200MeV ~ 1fm~! — sets scale, QCDs “standard kilogram”

® Momentum-dependent coupling <= coupling depends on separation

4+ interaction strength between quarks and gluons grows with separation
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Confinement

® Hadron structure & QCD is characterized by two emergent phenomena

+ confinement and dynamical chiral symmetry breaking (DCSB)

® Both of these phenomena are not evident from the QCD Lagrangian

® All known hadrons are colour singlets, even though they are composed of
coloured quarks and gluons: baryons (qqq) & mesons (qq)

® Confinement conjecture: particles that carry the colour charge cannot be
isolated and can therefore not be directly observed

® Related to $1 million Millennium Prize:

Yang-Mills Existence And Mass Gap: Prove that for any compact simple gauge group G,
quantum Yang-Mills theory on R* exists and has a mass gap A > 0.

+ for SU(3). must prove that glueballs have a lower bound on their mass
+ partial explanation as to why strong force is short ranged



Chiral Symmetry

® Define left- and right-handed fields: ¢r = 5 (1 £75) ¢

® The QCD Lagrangian then takes the form [m = diag (my, mq, ms, . . .)]
o o n n 1 a 1%
L=yYriDyr +YrilD g —prmpy —Prmipg — 7 Pt

® Therefore for m = 0 QCD Lagrangian is chirally symmetric

SU(Nf)L @ SU(Np)r = ¢rr—e L'y p
® SU(Nys)r ® SU(Ny)g chiral symmetry is equivalent to
SU(Ns)y ® SUNp)a = ¢ —e VI, ¢ —e*@a’ 7y

® Global symmetries: Wigner-Weyl or Nambu-Goldstone modes

+ Wigner-Weyl mode: vacuum is also invariant
+ Nambu-Goldstone mode: vacuum breaks symmetry



Dynamical Chiral Symmetry Breaking

® Recall for m =0 QCD Lagrangian is invariant under

SU(N#), ® SU(Nf)g <= SU(Ns)y @ SU(Ny)a

® Ny = 2 corresponds to the isospin subgroup of SU(N¢)y transformations
4+ hadronic mass spectrum tells us nature largely respects isospin symmetry
* M- Mo X Mgt, My =My, My- = Myo >~ My+

+ therefore SU(Ny)y is realized in the Wigner-Weyl mode

® SU(Ny)a transformations mix states of opposite parity
4+ expect hadronic mass spectrum to exhibit parity degeneracy
+ my, —my; ~300MeV, my, —m, ~490MeV, my —mpy- ~ 600 MeV, etc
+ recall: m, ~ mg ~ 5MeV = cannot produce large mass splittings

4+ therefore SU(N) 4 must be realized in the Nambu-Goldstone mode

® Chiral symmetry broken dynamically: SU(N¢)r, ® SU(Nf)r = SU(Ny¢)y



Goldstone’s Theorem

® (Goldstone’s theorem: if a continuous global symmetry is broken dynamically,
then for each broken group generator there must appear in the theory a
massless spinless particle (Goldstone boson)

® QCDs chiral symmetry is explicitly broken by small current quark masses

my=15-35MeV & my=35-60MeV (< Agcp)

® For N;=2 expect N; —1=3 Goldstone bosons: «*, n°, =

4+ physical particle masses are not zero — m, ~ 140 MeV — because of
explicit chiral symmetry breaking: m,, 4 # 0

® Chiral symmetry and its dynamical breaking has profound consequences
for the QCD mass spectrum and hadron structure

4+ this is not apparent from the QCD Lagrangian and is an innately
non-perturbative phenomena

® Need non-perturbative methods to understand all consequences of QCD



® DSEs are the equations of motion for a quantum field theory

+ must truncate infinite tower of coupled integral equations

Quark propagator: Gluon propagator:

O = =E m ’mﬁO’u‘ﬁW_1 - e |+
Ghost propagator: *
- SO X
____O____. = oot oa = i ____O.___ wSLL
o
Ghost-gluon vertex:
‘3‘_ = ,:%“ “+ ] =

Quark-gluon vertex:

PN Y < W= oY

@ Truncation: gluon propagator becomes constant — D*” (k) — g

® Largely equivalent to the Nambu—Jona Lasinio (NJL) model
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The Nambu-Jona-Lasinio Model

™
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® The Nambu—Jona-Lasinio (NJL) Model was invented in 1961 by Yoichiro
Nambu and Giovanni Jona-Lasinio while at The University of Chicago

4+ was inspired by the BCS theory of superconductivity
4+ was originally a theory of elementary nucleons

4+ rediscovered in the 80s as an effective quark theory

® ltis a relativistic quantum field theory, that is relatively easy to work with,
and is very successful in the description of hadrons, nuclear matter, etc

® Nambu won half the 2008 Nobel prize in physics in part for the NJL model:

“for the discovery of the mechanism of spontaneous broken symmetry in
subatomic physics” [Nobel Committee]



® NJL model is interpreted as low energy chiral effective theory of QCD

"""""" IRV
i\ 40 — () = (.5 1
@ Can be motivated by infrared S\ T -
A. Holl, et al, Phys. Rev. C 71, 065204 (2005) |
enhancement of quark—gluon R -
interaction § =0
e.g. DSEs and Lattice QCD Fu
N TR~
0 0.5 1.0 1.5 2.0
k2 (GeV?)

® Investigate the role of quark degrees of freedom
® NJL has same flavour symmetries as QCD

® NJL is non-renormalizable =—- cannot remove regularization parameter
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NJL Lagrangian

® In general the NJL Lagrangian has the form
Lnjr=Lo+Lr=v¢ (id—m)+ Za Ga @Foﬂb)Q

+ I, represents a product of Dirac, colour and flavour matrices

® What about £;? — effective theories should maintain symmetries of QCD

® In chiral limit QCD Lagrangian has symmetries

Socp =SU3). @ SU(N#)y @ SUN#)AaQU(Q)y QU(LaRCRIP T

4 SU(N¢)a is broken dynamically — DCSB
+ U(1)4 is broken in the anomalous mode — U (1) problem — massive 7’

® NJL interaction Lagrangian must respect the symmetries

Snr=SU3)e® SUWNf)y @ SUNH)A@U(L)y COP T

+ in NJL SU(3). will be considered a global gauge symmetry
4+ U(1)4 is often broken explicitly = m,, # 0



NJL Lagrangian (2)

SNJL :SU(S)C@)SU(Nf)V@SU(Nf)A®U(1)V®C®P®T

® The NJL Lagrangian should be symmetric under the transformations

SU(Nf)V L —> e—it-ev 0 QE . lzeit-ev

SU(Np)a: o — e t5t%y b —s e irt0a
Ul)y: o—e "%y p — e’
Ul)a: yp—s e % p—s et Y

® Nambu and Jona-Lasinio choose the Lagrangian
L= (i —m) Y+ G | (99)* = (@157 )]

® Can choose any combination of these 4—fermion interactions

2

(By)*,  @wv)’, @) @rsv)’. (B e),
(Btv)”, (Brste)’, (@ ty)’, (Bywsty)’, (Dic" ty)°.



NJL Lagrangian (3)

® The most general Ny = 2 NJL Lagrangian that respects the symmetries is

L= (i —m)§+Gx [(#9)7 = B1s79)’] + Gu (F7 )7 + G, [(Br*79) + (P57 )]
+G (P95 %) + G [ (B59)” = (B 79)°] +Gr [(@ic™w)? - (DicH )]

4 LrisU(1)4 invariantif: G, = -G, & G =0

P —— o «—  (JV,T) = (0%,0)

VYT Y —> 7 — (JP,T) = (O_,l)
R — W G (JP,T):(l_,O)
vty = p —  (JNT)=(17,1)
Py — fi,he — (J5,T)=(1%,0)
Rty XV} ¢ aq oy (JP,T) = (1+,1)
VTY 2 ag e (JP,T) — (O+,1)

W Y5 1Y +—— n,n e (JP,T) — (O_,O)



NJL Lagrangian (4)

® The most general Ny = 2 NJL Lagrangian that respects the symmetries is

—1G, BT w)® - (Pr T )]
LG (@15 9)° = 3Gy [@959)° — @7v)?| - L Gr |(Biow)® — (Dick T )’
4 LrisU(1)a invariantif: G, = -G, & G =0

® The most general Ny = 3 NJL Lagrangian that respects the symmetries is

L1=Gr |3 @)+ (Bt9)’ - § (F19)” - (B tv)’]

1
6
3 G5 00 + G795 0)?] = G (9 9)° — 5 G (59725 0)°

® Enlarging the SU(N;)y ® SU(Ny) 4 chiral group from Ny = 2to Ny = 3
reduces the number of coupling from six to four

® The N; = 3 Lagrangian is automatically U (1) 4 invariant

+ U(1)_,4 is then often broken by the 't Hooft term — a 6-quark interaction

£ = K [det (P(1 + 75)%) + det ((1 — 75)))]



NJL Interaction Kernel

® Using Wick’s theorem and the NJL Lagrangian their are 2 diagrams for
the interaction between a quark and an anti-quark

>< 2i G | 505 — QLT 5

5
Direct _ Time Exchange

® Using Fierz transformations can express each exchange term as a sum of
direct terms

® The SU(2) NJL interaction kernel then takes the form
Kag s =2 G | (1) ap ()5 = (35 ag (357 )rs| — 20 G (V) o3 (¥)rs
= 2G| (uT)oy (V7). 5+ (157 05 (19575 + -

® This kernel enters the NJL gap and meson Bethe-Salpeter equations



® The NJL model is non-renormalizable = cannot remove regularization

4+ regularization parameter(s) play a dynamical role

® Popular choices are:

4+ 3-momentum cutoff: 5% < A?
+ 4-momentum cutoff p%, < A?
+ Pauli-Villars

® We will use the proper-time regularization scheme

1 1 o0 1 1/A%p
— = / dr 7" le ™% o / dr 77 e ™%
X" (n—=1"!J (n =1 Jijaz,,

+ only Ay is need to render the theory finite

+ however, as we shall see, A;r plays a very important role; it prevents
quarks going on their mass shell and hence simulates confinement
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NJL Quark Propagator

® Complete expression for the quark propagator cannot be obtained

4 need a truncation

e Do not in include diagrams like: m

4+ would give a momentum dependent mass function

® Include all diagrams of the form:

——— = » +—>—Q—>—++—Q—Q—»+A_8_g_|_...

® All these diagrams can be summed via an integral equation

-1
> = > + >——>

® The most general quark propagator has the form

1 Z(p?)

S(p):p—m—z(p) - M(p?)




NJL Gap Equation

—1
> = > + > —

® The NJL gap equation has the form

4
S7H(k) = Sy (k) — X(k) = [ —m] - Z/ (if‘*

T [S(z) ﬁ”} 9%

® The only piece of the interaction kernel that contributes is:
ape = 20Gr (1), 5(1),5

® Solving this equation give a quark propagator of the form
S~HEk)=F — M +ic

® The constituent quark mass satisfies the equation

d4e 1 3G Caalh
M =m +48i G M d
m A / T M2 tie / N




NJL Gap Equation (2)

M=m+M

2

—7 M?2
SGW/dTe

2

® Forthe case m = 0 the gap equation has two solutions:

4+ trivial solution: M =0

& non-trivial solution: M # 0

® Which solution does nature choose, that is, which solution minimizes the
energy. Compare vacuum energy density, &, for each case

£ [GeVY]

0.014 [
0.012 |
0.010 A
0.008 [

0.006

0.004 [
0.002 |

oL
—0.002 L

1 M?
= —— dT—3 (e_TMQ — 1) —+

— G, =5GeV2
—— Gr = Grait
— G, =20GeV2
— G =30GeV2

-1.0-08 -06 -04 -0.2 0.0 02 04 06 08 1.0

M [GeV]

4G,

T

For G > G ¢t the lowest energy
solution has M # 0

Therefore for G > G ¢it NJL has
DCSB

DCSB <= generates mass from
nothing



[ ! [ ! I
Rapid acquisition of mass is
_ _ yeffect of gluon cloud

P4

0.4

—— m = 0 (Chiral limit)
— m = 30 MeV

M(p) [GeV]

Dynamical Quark Mass (MeV)

=
I o I I I e

0O 02 04 06 08 10 12 14 16 1.8 20
G/Gcrit

® NJL constituent mass is given by: M =m — 2G (1))

® Chiral condensate is defined by

() = lim Tr [—iS(z — y)] = —/ (ZWI): Tr [i S(k)]

r—y
® Mass is generated via interaction with vacuum
e® Dynamically generated quark masses <= (Y1) #0
® (Y1) = (uu+ dd) is an order parameter for DSCB
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Confinement in NJL model

® In general the NJL model is not confining; quark propagator is simply

1 k+ M

L) — _
S (k) F—M+ie k22— M?+ie

4+ quark propagator has a pole = quarks are part of physical spectrum

® However the proper-time scheme is unique

00 e—(kQ—MQ)/A%]V _e—(k2—M2)/A%R
S(k) = / dr (k + 2y =20, | T Y
O - ~ _
= Z(k?)
2 2
® quark propagator does not have a pole: Z(k?) e A%R — A%v # 00

® Are confinement and DCSB related?

+ NJL model is proof that DCSB can exist without confinement
+ however commonly believed cannot have confinement without DCSB



Hadron Spectrum

In QF T physical states appear as poles in n-point Green Functions

For example, the full quark—antiquark scattering matrix or 7T-matrix,
contains poles for all gg bound states, that is, the physical mesons

The quark—antiquark T-matrix is obtained by solving the Bethe-Salpeter

equation
IE)N - T e

In principle kernel, K, contains all possible 2P| diagrams

_?_ g +X+N:>JL><
s

Kernel of gap and BSEs are intimately related

qu. T (0, p) = STW) 5 57 + 375 ST (p) + 2mTL(0, p)



Bethe-Salpeter Equation for the Pion

® How does the pion become (almost) massless when it is composed of two
massive constituents

® The pion is realized as the lowest lying pole in the quark anti-quark
T-matrix in the pseudo-scalar channel

® In the NJL model this T-matrix is given by

d*k
T q afB,yé6 — Kaﬁ Y4 + / ) ’Caﬂ,)\e S(q + k)se’ S(k))\’)\ T(Q)s’)\’,’y57

<X

® The NJL pion t-matrix is

Kr=-20Gr (’757')045('757')>\6

—21Gr

T(Q)ﬁw,ya — (%Tz')aﬁ 142G Hw(qg) (75%%5

® The pion mass is then givenby: 1 +2G,11,(¢> =m2) =0



The Pion as a Goldstone Boson

® Recall the pion pole condition — 1 +2 G I1,(¢> = m2) = 0 — where

B m 1
C2G. M 2G.

I (q%) — ¢’ I(q°)

4+ have used the gap equation to obtain this expression

® The pion pole condition therefore implies

s m
T 2G; M I(m2)

m

® Therefore in the chiral limit — m — 0 (M # 0) — pion is massless

® Can show other chiral symmetry relations are also satisfied:
*  frOrgg = Mga,, Goldberger—Treiman (GT) relation

+ f2m2 =35 (my +mg) (tu—+dd) Gell-Mann—Oakes—Renner (GMOR)

- (0[A% | mp(p)) = @ fr P" dab



Chiral Partners

® If chiral symmetry was NOT dynamically broken in nature expect mass
degenerate chiral partners, e.g., m, ~m, & mg, ~m,

® The p and a; are the lowest lying vector (J© = 17) and axial-vector
(JP = 17) gq bound states: mS®' ~ 770MeV & m&®' ~ 1230 MeV

® Masses given by T-matrix poles in the vector and axial-vector gq channels

>==< >< >==Q< K = =2 G, [ (37) (7)
+ (Yu57) (Y957 |

® Pole conditions: 1 +2G,I1,(m?) =0 & 1+2G, I, (mZ)=0

ai

I, (¢%) = M? I(Cf) +11,(¢%)

® DCSB splits masses; NJL gives: m, =770MeV & m,, ~ 1098 MeV
4+ good agreement with the Weinberg sum rule result: m,, ~ ﬂmp

® Pion conditions for r and 0 =— m2 ~m2 + 4 M?



Homogeneous Bethe-Salpeter vertex functions

T - g - 48

® Near a bound state pole of mass m a two-body t-matrix behaves as

['(p, k) T'(p, k)
p2 . m2

T(p, k) — where  p=p1 +p2, k=p1 —po

® I'(p, k) isthe homogeneous Bethe-Salpeter vertex and describes the
relative motion of the quark and anti-quark while they form the bound state

® Expanding the pion T-matrix about the pole gives

. 2

T =57 133 Gzzg @@ 15T = qzzgﬁqq (v57:)(57:) = T'x = \/9r V5T

4+ grqq IS effective pion-quark coupling constant

® Bethe-Salpeter vertex needed for calculations e.g. f-

. Q o Iz
i fr g 85 = [ {5ks Tr [§ 457 S(k) TE S(k — g)] =QW~W
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