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Motivation

Lattice QCD is *the* non-perturbative method for determining the
behaviour of the strong force
Progressively faster/better over the years, due in part to advances in
computation power but also algorithmic improvements

1974 Cray-I 2014 Tianhe-2

⇒

∼ 100 MFLOPS 33.86 PFLOPS
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Motivation

As compute power has improved, so has the precision in Lattice QCD
measurements

1975 1980 1985 1990 1995 2000 2005 2010 2015

Quenched
Nf = 2
Nf = 2+ 1

QED

Search for better algorithms is an active field: simulations still take a
long time, so even a 10% speed improvement is great.
Includes polynomial-filtered Hybrid Monte Carlo (PFHMC).
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Expectation values

In Lattice QCD, we are interested in expectation values

〈O〉=
∫

D [ψ,ψ,U]e−S[ψ,ψ,U]O[U]∫
D [ψ,ψ,U]e−S[ψ,ψ,U] ,

where
S= SG[U]+S′F[ψ,ψ,U] = SG+∑

f
ψM(f)

ψ

is the lattice action andM(f) is the Dirac operator for the f th fermion
flavour.
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Evaluation

Integration over fermion fields can evaluated via Wick’s theorem: e.g.

Z ≡
∫

D [ψ,ψ,U]e−S[ψ,ψ,U] =
∫

D [U]e−SG[U]∏
f
detM(f)

Evaluating detM(f) directly is computationally infeasible, so we
evaluate determinants numerically via pseudo-fermions φ :

detM=
∫
e−SF [U,φ ,φ

†]dφdφ
†, where SF = φ

†M−1φ .

Have to invertM now, but this is tenable.
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Monte Carlo

Integration over gauge fields U and pseudo-fermion fields φ then can
be done via Monte Carlo methods.
We generate Ui and φ distributed according to the probability
distribution

1
Z
e−SG[U]−SF [U,φ ,φ

†],

then evaluate expectation values as 〈O〉 ≈ 1
N ∑iO[Ui].

This requires SF to be real and non-negative: non-trivial asM has a
complex spectrum.
Most common solution is to work with twomass-degenerate quarks,
and write

detM(u)detM(d) = detMdetM= detM†M≡ detK
s.t. SF[U] = φ

†(M†M)−1φ
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Evaluation

The target probability distribution then has Boltzmann factor
exp(−S[U])with

S[U] = SG[U]+φ
†K−1φ

Generating correctly distributed φ is easy:
generate χ ∼ e−χ†χ and use φ = M†χ .
Generating correctly distributed U is more involved:
use a Markov chain Monte Carlo method to generate configurations Ui.
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Hybrid Monte Carlo

Themethod of choice is Hybrid Monte Carlo (HMC).
Central idea is to extend the action S[U]with conjugate momenta P to
a Hamiltonian

H[P,U] = Tr P2+S[U],

then evolve the system according to Hamilton’s equations.
Corresponding update steps are

VT(δτ) : [P,U]→ [P,eiPδτU],
VS(δτ) : [P,U]→ [P−Fδτ,U].

where the force term F is given by

F =
dS
dU

=
dSG
dU
−φ

†K−1
dK
dU

K−1φ .
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Hybrid Monte Carlo

Require a reversible, space-preserving integration, e.g. leapfrog:

I(δτ) = VT(δτ/2)VS(δτ)VT(δτ/2)

Repeat n times to generate the next candidate gauge configuration,
[P′,U′] = I(δτ)N[P,U].
We accept the new gauge configuration U′ with probability

Pacc = exp
(
H[P′,U′]−H[P,U]

)
This step is necessary to ensure that successive U1→ U2→ . . .
approach the required equilibrium distribution.
Hamilton’s equations preserve the Hamiltonian, so we should expect a
good acceptance rate.
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Implementation

Main computational expense is in calculating K−1φ , i.e. solving Kχ = φ

for χ , for the force term.
The linear system is hard to solve due to K’s sheer size: about 8 million
rows and columns for a 243×48 lattice.
Mass matrices of interest have high-frequency modes, which mean
small step-sizes δ t are required for numerical stability.

Hence, plain HMC can take a long time.
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Improving HMC

By factorizing the determinant via

detK = detL
detK
detL

,

we can use an alternative action with more terms, namely

S′ = φ
†
1 L
−1

φ1+φ
†
2 LK

−1
φ2

Idea
Choose L such that

L−1 captures the UV (high energy) modes of the system
L−1φ is cheap to evaluate

This ensures we can place the two terms on di�erent time-scales:
the cheap UV term S1 on a finer scale than the expensive IR term S2.
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Filtering

K−1
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Filtering

K−1: 40 samples
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Filtering

K−1: 40 samples

UV IR

L−1 K−1L
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Filtering

K−1: 40 samples

UV IR

L−1: 40 samples K−1L: 5 samples
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Polynomial-filtered HMC

Definition
Polynomial-filtered HMC (PFHMC) chooses L= 1/P(K)where P is a
polynomial approximating the inverse P≈ 1/K. The action then becomes

S= φ
†
1 P(K)φ1+φ

†
2 [P(K)K]

−1
φ2

Kamleh and Peardon, Comp. Phys. Comm. 183, 2011, arXiv:1106.5625

By increasing the polynomial order p, the polynomial captures more of
the action whilst P(K)K gets closer to the identity I.
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Polynomial-filtered HMC

This method can be extended to use several filters; for example, the
2-filter fermion action is

S2−poly = φ
†
1 P1(K)φ1+φ

†
2Q(K)φ2+φ

†
3 [P2(K)K]

−1
φ3.

Here, we have two polynomials P1 and P2 with orders p1 < p2 and both
approximating 1/K.
The polynomials are chosen such that Q≡ P2/P1 is also a polynomial
with order q= p2−p1.
S2−poly further separates the frequency modes of the fermionmatrix,
and the terms can be placed on separate scales n3 < n2 < n1.
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PFHMC – Implementation

Modified an existing Lattice QCD program, BQCD, to accommodate
polynomial filtering. This Fortran code is used by the QCDSF
collaboration.

Nakamura and Stüben, PoS Lattice 2010, arXiv:1011.0199

Simulations were performed on a 243×48 lattice with a pionmass of
mπ ∼ 400 MeV (κ = 0.1362), along with other lattices that will not be
presented here.

Simulation parameters

This is relatively light pion mass, so the tests will give a good idea of
how the algorithms will perform close to physical masses.
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A Word of Caution

Attempts have beenmade to optimize each possible fermion action by
varying their parameters.
However, the parameter space that can be explored is vast:

Polynomial orders p1, p2
Choice of polynomials (Chebyshev, etc.)
Number of steps ni to use for each action term Si,
e.g. n1 = 560, n2 = 280, n3 = 140
Choice of integrator (e.g. leapfrog, 2nd order minimal-norm)

This space hasn’t been fully explored, so these results are preliminary.
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PFHMC – Cost
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Graph shows the number of matrix (M†M) multiplies per trajectory
weighted by the inverse acceptance rate.
This weighting takes into account the cost of rejected trajectories.

Data table
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PFHMC – Forces
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shows the maximal forces max(Fi) and shows the average forces.
The stronger the force, the more UV terms the action term is
incorporating =⇒ require a finer step-size.
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PFHMC versus Hasenbusch

Definition
Hasenbusch or mass preconditioning filters the fermion action SF with
another mass matrix K′, identical to K except that it has hopping parameter
ρ < κ :

Shasen = φ
†
1 K
′−1

φ1+φ
†
2K
′K−1φ2

Hasenbusch preconditioning is renderedmore e�ective via the use of
two filters, i.e. using the action

S2−hasen = φ
†
1 K
−1
1 φ1+φ

†
2K1K

−1
2 φ2+φ

†
3K2K

−1
φ3

where ρ1 < ρ2 < κ .

Taylor Haar (CSSM) Polynomial Filtered HMC LHPV 2015 23 / 38



PFHMC versus Hasenbusch – Implementation

In order to determine the e�ectiveness of PFHMC, we compared it to
the dominant filtering method, Hasenbusch preconditioning.
Used 2 filters for eachmethod, varying q= p2−p1 and ρ2 to find an
optimum fit whilst keeping p1 = 4 and ρ1 = 0.130 fixed.
Recall:

S2−poly = φ
†
1 P1(K)φ1+φ

†
2Q(K)φ2+φ

†
3 [P2(K)K]

−1
φ3

S2−hasen = φ
†
1 K
−1
1 φ1+φ

†
2K1K

−1
2 φ2+φ

†
3K2K

−1
φ3
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PFHMC versus Hasenbusch – Cost
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Hasenbusch

Number of matrix (M†M) multiplies per trajectory, weighted by the
inverse acceptance rate (cf. plain HMC≈ 15× 105).
Contributions from di�erent terms: S1 , S2 , and S3 .

Data table
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PFHMC versus Hasenbusch – Forces
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PFHMC with Hasenbusch

One can also combine the twomethods, using a polynomial filter to
capture the high energy modes, and a Hasenbusch intermediate filter:

Smix = φ
†
1 P(K

′)φ1+φ
†
2 [P(K

′)K′]−1φ2+φ
†
3K
′K−1φ3

Themotivation is that the polynomial P(K′) is much easier to calculate
than the inverse of an equivalent heavier mass matrix K′′, and so may
be better suited to capturing the UVmodes.
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PFHMC with Hasenbusch – Cost
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Le� hand plot shows the results for mixed PFHMC/Hasenbusch with
polynomial order p= 4, whilst the right hand plot is from before.
S1 , S2 , S3

Data table
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PFHMC with Hasenbusch – Forces
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Single Flavours

Have been using 2 degenerate flavours of quark up to now, with
K = M†M, i.e. SF = φ †M†Mφ .
However, to include Lattice QED e�ects wemust use singleton quarks,
as the quark charges discriminate the up and down quarks.
To simulate just a single flavour, can we just use

SF = φ
†Mφ?

Problem
e−S needs to be interpreted as a probability distribution, soMmust be
positive-semidefinite (i.e. SF ≥ 0).
The mass matrixM is not positive-semidefinite in general.

Solution
Replace M by a positive-semidefinite approximation, e.g. Rational HMC
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Rational HMC

Definition
Rational HMC (RHMC) approximates the inverse of the fermionmatrix K by a
rational function R(Q). One then uses the action

SRHMC = φ
†R(Q)φ

In the singleton quark case, we choose Q= M†M and set R(Q) to
approximate 1√

Q , which is positive-semidefinite. This works as

detQ
1
2 =

√
detQ=

√
detMdetM= |detM|
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Polynomial Filtered RHMC

Polynomial filtering can be applied to RHMC.
In the case of a single quark flavour, we choose a polynomial
P(Q)≈ 1/

√
Q then use the action

SPF−RHMC = φ
†
1 P(Q)φ1+φ

†
2R(Q)P

−1(Q)φ2.

As before, we can place the UV/first term on a finer time-scale than the
IR/second term.
Tests ongoing for 1+ 1 fermion flavours, such that existing 243×48
configurations can be used.
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Summary

PFHMC is better than plain HMC.
Hasenbusch + PFHMC works about as well as Hasenbusch +
Hasenbusch.
Tests for PF-RHMC are ongoing.

Future Work
Tune relative step-sizes for the mixed case
2-filter PF-RHMC
QED
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Outline

4 Tables
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Tables

size β κ mπ (MeV) integrator

243×48 5.29 0.1362 400 2MNSTS

Table: General simulation parameters

Wilson gauge action
Clover fermion action, csw = 1.9192
All runs have≥ 100 trajectories

Return to ’PFHMC - Implementation’
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Tables

p steps Pacc matrix ops

0 300×2 0.60(7) 885,000± 11,000
4 160×2×2 0.86(5) 529,800± 7900
10 110×2×2 0.65(5) 446,700± 5300

Table: 1-filter PFHMC parameters

Return to graph
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Tables

p q steps Pacc matrix ops

4 20 80×2×2×2 0.66(5) 233,200± 2700
4 30 55×2×2×2 0.70(5) 180,900± 1600
4 80 35×2×2×2 0.73(4) 132,500± 1300

Table: 2-filter PFHMC parameters

ρ1 ρ2 steps Pacc matrix ops

0.130 0.1353 10×2×2×2 0.62(5) 82,160± 580
0.130 0.1355 8×2×2×2 0.67(5) 75,800± 1200
0.130 0.1357 7×2×2×2 0.71(5) 80,330± 450
0.130 0.136 8×2×2×2 0.84(4) 116,270± 780

Table: 2-filter Hasenbusch parameters

Return to graph
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Tables

ρ p steps Pacc matrix ops

0.135 4 14×2×2×2 0.74(4) 89,050± 620
0.1353 4 11×2×2×2 0.67(5) 85,100± 540
0.1355 4 10×2×2×2 0.77(4) 82,800± 500
0.136 4 20×2×2×2 0.68(5) 218,500± 1500

Table: Mixed PFHMC/Hasenbusch parameters

Return to graph
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