Polynomial Filtered HMC

Taylor Haar
Collaborators: Waseem Kamleh and James Zanotti
CSSM
University of Adelaide
Lattice Hadron Physics V, 2015

Outline

(1) Motivation
(2) Intro to PFHMC

- HMC recap
- Polynomial-filtered HMC (PFHMC)
(3) Analysis
- PFHMC versus Hasenbusch
- PF-RHMC

Outline

(1) Motivation
(2) Intro to PFHMC

- HMC recap
- Polynomial-filtered HMC (PFHMC)
(3) Analysis
- PFHMC versus Hasenbusch
- PF-RHMC

Motivation

- Lattice QCD is *the* non-perturbative method for determining the behaviour of the strong force
- Progressively faster/better over the years, due in part to advances in computation power but also algorithmic improvements

Motivation

- As compute power has improved, so has the precision in Lattice QCD measurements

- Search for better algorithms is an active field: simulations still take a long time, so even a 10% speed improvement is great.
- Includes polynomial-filtered Hybrid Monte Carlo (PFHMC).

Outline

(1) Motivation

(2) Intro to PFHMC

- HMC recap
- Polynomial-filtered HMC (PFHMC)
(3) Analysis
- PFHMC versus Hasenbusch
- PF-RHMC

Expectation values

- In Lattice QCD, we are interested in expectation values

$$
\langle O\rangle=\frac{\int \mathscr{D}[\psi, \bar{\psi}, U] e^{-S[\psi, \bar{\psi}, U]} O[U]}{\int \mathscr{D}[\psi, \bar{\psi}, U] e^{-S[\psi, \bar{\psi}, U]}}
$$

where

$$
S=S_{G}[U]+S_{F}^{\prime}[\psi, \bar{\psi}, U]=S_{G}+\sum_{f} \bar{\psi} M^{(f)} \psi
$$

is the lattice action and $M^{(f)}$ is the Dirac operator for the $f^{\text {th }}$ fermion flavour.

Evaluation

- Integration over fermion fields can evaluated via Wick's theorem: e.g.

$$
Z \equiv \int \mathscr{D}[\psi, \bar{\psi}, U] e^{-S[\psi, \bar{\psi}, U]}=\int \mathscr{D}[U] e^{-S_{G}[U]} \prod_{f} \operatorname{det} M^{(f)}
$$

- Evaluating $\operatorname{det} M^{(f)}$ directly is computationally infeasible, so we evaluate determinants numerically via pseudo-fermions ϕ :

$$
\operatorname{det} M=\int e^{-S_{F}\left[U, \phi, \phi^{\dagger}\right]} d \phi d \phi^{\dagger}, \quad \text { where } S_{F}=\phi^{\dagger} M^{-1} \phi
$$

- Have to invert M now, but this is tenable.

Monte Carlo

- Integration over gauge fields U and pseudo-fermion fields ϕ then can be done via Monte Carlo methods.
- We generate U_{i} and ϕ distributed according to the probability distribution

$$
\frac{1}{Z} e^{-S_{G}[U]-S_{F}\left[U, \phi, \phi^{\dagger}\right]},
$$

then evaluate expectation values as $\langle O\rangle \approx \frac{1}{N} \sum_{i} O\left[U_{i}\right]$.

- This requires S_{F} to be real and non-negative: non-trivial as M has a complex spectrum.
- Most common solution is to work with two mass-degenerate quarks, and write

$$
\begin{aligned}
\operatorname{det} M^{(u)} \operatorname{det} M^{(d)} & =\operatorname{det} M \operatorname{det} M=\operatorname{det} M^{\dagger} M \equiv \operatorname{det} K \\
\text { s.t. } \quad S_{F}[U] & =\phi^{\dagger}\left(M^{\dagger} M\right)^{-1} \phi
\end{aligned}
$$

Evaluation

- The target probability distribution then has Boltzmann factor $\exp (-S[U])$ with

$$
S[U]=S_{G}[U]+\phi^{\dagger} K^{-1} \phi
$$

- Generating correctly distributed ϕ is easy: generate $\chi \sim e^{-\chi^{\dagger} \chi}$ and use $\phi=M^{\dagger} \chi$.
- Generating correctly distributed U is more involved: use a Markov chain Monte Carlo method to generate configurations U_{i}.

Hybrid Monte Carlo

- The method of choice is Hybrid Monte Carlo (HMC).
- Central idea is to extend the action $S[U]$ with conjugate momenta P to a Hamiltonian

$$
H[P, U]=\operatorname{Tr} P^{2}+S[U],
$$

then evolve the system according to Hamilton's equations.

- Corresponding update steps are

$$
\begin{aligned}
& V_{T}(\delta \tau):[P, U] \rightarrow\left[P, e^{i P \delta \tau} U\right] \\
& V_{S}(\delta \tau):[P, U] \rightarrow[P-F \delta \tau, U]
\end{aligned}
$$

where the force term F is given by

$$
F=\frac{d S}{d U}=\frac{d S_{G}}{d U}-\phi^{\dagger} K^{-1} \frac{d K}{d U} K^{-1} \phi
$$

Hybrid Monte Carlo

- Require a reversible, space-preserving integration, e.g. leapfrog:

$$
I(\delta \tau)=V_{T}(\delta \tau / 2) V_{S}(\delta \tau) V_{T}(\delta \tau / 2)
$$

- Repeat n times to generate the next candidate gauge configuration, $\left[P^{\prime}, U^{\prime}\right]=I(\delta \tau)^{N}[P, U]$.
- We accept the new gauge configuration U^{\prime} with probability

$$
P_{\mathrm{acc}}=\exp \left(H\left[P^{\prime}, U^{\prime}\right]-H[P, U]\right)
$$

- This step is necessary to ensure that successive $U_{1} \rightarrow U_{2} \rightarrow \ldots$ approach the required equilibrium distribution.
- Hamilton's equations preserve the Hamiltonian, so we should expect a good acceptance rate.

Implementation

- Main computational expense is in calculating $K^{-1} \phi$, i.e. solving $K \chi=\phi$ for χ, for the force term.
- The linear system is hard to solve due to K 's sheer size: about 8 million rows and columns for a $24^{3} \times 48$ lattice.
- Mass matrices of interest have high-frequency modes, which mean small step-sizes δt are required for numerical stability.

Implementation

- Main computational expense is in calculating $K^{-1} \phi$, i.e. solving $K \chi=\phi$ for χ, for the force term.
- The linear system is hard to solve due to K 's sheer size: about 8 million rows and columns for a $24^{3} \times 48$ lattice.
- Mass matrices of interest have high-frequency modes, which mean small step-sizes δt are required for numerical stability.

Implementation

- Main computational expense is in calculating $K^{-1} \phi$, i.e. solving $K \chi=\phi$ for χ, for the force term.
- The linear system is hard to solve due to K 's sheer size: about 8 million rows and columns for a $24^{3} \times 48$ lattice.
- Mass matrices of interest have high-frequency modes, which mean small step-sizes δt are required for numerical stability.

Implementation

- Main computational expense is in calculating $K^{-1} \phi$, i.e. solving $K \chi=\phi$ for χ, for the force term.
- The linear system is hard to solve due to K 's sheer size: about 8 million rows and columns for a $24^{3} \times 48$ lattice.
- Mass matrices of interest have high-frequency modes, which mean small step-sizes δt are required for numerical stability.

- Hence, plain HMC can take a long time.

Improving HMC

By factorizing the determinant via

$$
\operatorname{det} K=\operatorname{det} L \frac{\operatorname{det} K}{\operatorname{det} L}
$$

we can use an alternative action with more terms, namely

$$
S^{\prime}=\phi_{1}^{\dagger} L^{-1} \phi_{1}+\phi_{2}^{\dagger} L K^{-1} \phi_{2}
$$

Idea

Choose L such that

- L^{-1} captures the UV (high energy) modes of the system
- $L^{-1} \phi$ is cheap to evaluate

This ensures we can place the two terms on different time-scales: the cheap $U V$ term S_{1} on a finer scale than the expensive IR term S_{2}.

Filtering

Filtering

K^{-1} : 40 samples

Filtering

$K^{-1}: 40$ samples

L^{-1}

$K^{-1} L$

Filtering

$K^{-1}: 40$ samples

$L^{-1}: 40$ samples

$K^{-1} L$: 5 samples

Polynomial-filtered HMC

Definition

Polynomial-filtered HMC (PFHMC) chooses $L=1 / P(K)$ where P is a polynomial approximating the inverse $P \approx 1 / K$. The action then becomes

$$
\begin{aligned}
& S=\phi_{1}^{\dagger} P(K) \phi_{1}+\phi_{2}^{\dagger}[P(K) K]^{-1} \phi_{2} \\
& \text { Kamleh and Peardon, Comp. Phys. Comm. 183, 2011, arXiv:1106.5625 }
\end{aligned}
$$

- By increasing the polynomial order p, the polynomial captures more of the action whilst $P(K) K$ gets closer to the identity I.

Polynomial-filtered HMC

- This method can be extended to use several filters; for example, the 2-filter fermion action is

$$
S_{2-\text { poly }}=\phi_{1}^{\dagger} P_{1}(K) \phi_{1}+\phi_{2}^{\dagger} Q(K) \phi_{2}+\phi_{3}^{\dagger}\left[P_{2}(K) K\right]^{-1} \phi_{3} .
$$

- Here, we have two polynomials P_{1} and P_{2} with orders $p_{1}<p_{2}$ and both approximating $1 / K$.
- The polynomials are chosen such that $Q \equiv P_{2} / P_{1}$ is also a polynomial with order $q=p_{2}-p_{1}$.
- $S_{2 \text {-poly }}$ further separates the frequency modes of the fermion matrix, and the terms can be placed on separate scales $n_{3}<n_{2}<n_{1}$.

PFHMC - Implementation

- Modified an existing Lattice QCD program, BQCD, to accommodate polynomial filtering. This Fortran code is used by the QCDSF collaboration.

Nakamura and Stüben, PoS Lattice 2010, arXiv:1011.0199

- Simulations were performed on a $24^{3} \times 48$ lattice with a pion mass of $m_{\pi} \sim 400 \mathrm{MeV}(\kappa=0.1362)$, along with other lattices that will not be presented here.

```
- Simulation parameters
```

- This is relatively light pion mass, so the tests will give a good idea of how the algorithms will perform close to physical masses.

A Word of Caution

- Attempts have been made to optimize each possible fermion action by varying their parameters.
- However, the parameter space that can be explored is vast:
- Polynomial orders p_{1}, p_{2}
- Choice of polynomials (Chebyshev, etc.)
- Number of steps n_{i} to use for each action term S_{i},

$$
\text { e.g. } n_{1}=560, n_{2}=280, n_{3}=140
$$

- Choice of integrator (e.g. leapfrog, $2^{\text {nd }}$ order minimal-norm)
- This space hasn't been fully explored, so these results are preliminary.

PFHMC - Cost

- Graph shows the number of matrix $\left(M^{\dagger} M\right)$ multiplies per trajectory weighted by the inverse acceptance rate.
- This weighting takes into account the cost of rejected trajectories.

PFHMC - Forces

- $\square \square$ shows the maximal forces $\max \left(F_{i}\right)$ and $\|$ shows the average forces.
- The stronger the force, the more UV terms the action term is incorporating \Longrightarrow require a finer step-size.

Outline

(1) Motivation

(2) Intro to PFHMC

- HMC recap
- Polynomial-filtered HMC (PFHMC)
(3) Analysis
- PFHMC versus Hasenbusch
- PF-RHMC

PFHMC versus Hasenbusch

Definition

Hasenbusch or mass preconditioning filters the fermion action S_{F} with another mass matrix K^{\prime}, identical to K except that it has hopping parameter $\rho<\kappa$:

$$
S_{\text {hasen }}=\phi_{1}^{\dagger} K^{\prime-1} \phi_{1}+\phi_{2}^{\dagger} K^{\prime} K^{-1} \phi_{2}
$$

- Hasenbusch preconditioning is rendered more effective via the use of two filters, i.e. using the action

$$
S_{2-\text { hasen }}=\phi_{1}^{\dagger} K_{1}^{-1} \phi_{1}+\phi_{2}^{\dagger} K_{1} K_{2}^{-1} \phi_{2}+\phi_{3}^{\dagger} K_{2} K^{-1} \phi_{3}
$$

where $\rho_{1}<\rho_{2}<\kappa$.

PFHMC versus Hasenbusch - Implementation

- In order to determine the effectiveness of PFHMC, we compared it to the dominant filtering method, Hasenbusch preconditioning.
- Used 2 filters for each method, varying $q=p_{2}-p_{1}$ and ρ_{2} to find an optimum fit whilst keeping $p_{1}=4$ and $\rho_{1}=0.130$ fixed.
- Recall:

$$
\begin{aligned}
S_{2-\text { poly }} & =\phi_{1}^{\dagger} P_{1}(K) \phi_{1}+\phi_{2}^{\dagger} Q(K) \phi_{2}+\phi_{3}^{\dagger}\left[P_{2}(K) K\right]^{-1} \phi_{3} \\
S_{2-\text { hasen }} & =\phi_{1}^{\dagger} K_{1}^{-1} \phi_{1}+\phi_{2}^{\dagger} K_{1} K_{2}^{-1} \phi_{2}+\phi_{3}^{\dagger} K_{2} K^{-1} \phi_{3}
\end{aligned}
$$

PFHMC versus Hasenbusch - Cost

- Number of matrix ($M^{\dagger} M$) multiplies per trajectory, weighted by the inverse acceptance rate (cf. plain HMC $\approx 15 \times 10^{5}$).
- Contributions from different terms: $S_{1} \square, S_{2} \triangle$, and $S_{3} \rightarrow$.

PFHMC versus Hasenbusch - Forces

F_{1}

PFHMC versus Hasenbusch - Forces

F_{1}

F_{2}

PFHMC with Hasenbusch

- One can also combine the two methods, using a polynomial filter to capture the high energy modes, and a Hasenbusch intermediate filter:

$$
S_{\text {mix }}=\phi_{1}^{\dagger} P\left(K^{\prime}\right) \phi_{1}+\phi_{2}^{\dagger}\left[P\left(K^{\prime}\right) K^{\prime}\right]^{-1} \phi_{2}+\phi_{3}^{\dagger} K^{\prime} K^{-1} \phi_{3}
$$

- The motivation is that the polynomial $P\left(K^{\prime}\right)$ is much easier to calculate than the inverse of an equivalent heavier mass matrix $K^{\prime \prime}$, and so may be better suited to capturing the UV modes.

PFHMC with Hasenbusch - Cost

- Left hand plot shows the results for mixed PFHMC/Hasenbusch with polynomial order $p=4$, whilst the right hand plot is from before.
- $S_{1} \square, S_{2} \triangle, S_{3} \square$

PFHMC with Hasenbusch - Forces

PFHMC with Hasenbusch - Forces

Single Flavours

- Have been using 2 degenerate flavours of quark up to now, with $K=M^{\dagger} M$, i.e. $S_{F}=\phi^{\dagger} M^{\dagger} M \phi$.
- However, to include Lattice QED effects we must use singleton quarks, as the quark charges discriminate the up and down quarks.
- To simulate just a single flavour, can we just use

$$
S_{F}=\phi^{\dagger} M \phi ?
$$

Single Flavours

- Have been using 2 degenerate flavours of quark up to now, with $K=M^{\dagger} M$, i.e. $S_{F}=\phi^{\dagger} M^{\dagger} M \phi$.
- However, to include Lattice QED effects we must use singleton quarks, as the quark charges discriminate the up and down quarks.
- To simulate just a single flavour, can we just use

$$
S_{F}=\phi^{\dagger} M \phi ?
$$

Problem

- e^{-S} needs to be interpreted as a probability distribution, so M must be positive-semidefinite (i.e. $S_{F} \geq 0$).
- The mass matrix M is not positive-semidefinite in general.

Single Flavours

- Have been using 2 degenerate flavours of quark up to now, with $K=M^{\dagger} M$, i.e. $S_{F}=\phi^{\dagger} M^{\dagger} M \phi$.
- However, to include Lattice QED effects we must use singleton quarks, as the quark charges discriminate the up and down quarks.
- To simulate just a single flavour, can we just use

$$
S_{F}=\phi^{\dagger} M \phi ?
$$

Problem

- e^{-S} needs to be interpreted as a probability distribution, so M must be positive-semidefinite (i.e. $S_{F} \geq 0$).
- The mass matrix M is not positive-semidefinite in general.

Solution

Replace M by a positive-semidefinite approximation, e.g. Rational HMC

Rational HMC

Definition

Rational HMC (RHMC) approximates the inverse of the fermion matrix K by a rational function $R(Q)$. One then uses the action

$$
S_{\mathrm{RHMC}}=\phi^{\dagger} R(Q) \phi
$$

- In the singleton quark case, we choose $Q=M^{\dagger} M$ and set $R(Q)$ to approximate $\frac{1}{\sqrt{Q}}$, which is positive-semidefinite. This works as

$$
\operatorname{det} Q^{\frac{1}{2}}=\sqrt{\operatorname{det} Q}=\sqrt{\operatorname{det} M \operatorname{det} M}=|\operatorname{det} M|
$$

Polynomial Filtered RHMC

- Polynomial filtering can be applied to RHMC.
- In the case of a single quark flavour, we choose a polynomial $P(Q) \approx 1 / \sqrt{Q}$ then use the action

$$
S_{\mathrm{PF}-\mathrm{RHMC}}=\phi_{1}^{\dagger} P(Q) \phi_{1}+\phi_{2}^{\dagger} R(Q) P^{-1}(Q) \phi_{2} .
$$

- As before, we can place the UV/first term on a finer time-scale than the IR/second term.
- Tests ongoing for $1+1$ fermion flavours, such that existing $24^{3} \times 48$ configurations can be used.

Summary

- PFHMC is better than plain HMC.
- Hasenbusch + PFHMC works about as well as Hasenbusch + Hasenbusch.
- Tests for PF-RHMC are ongoing.

Future Work

- Tune relative step-sizes for the mixed case
- 2-filter PF-RHMC
- QED

Outline

(4) Tables

Taylor Haar (CSSM)

Tables

size	β	κ	$m_{\pi}(\mathrm{MeV})$	integrator
$24^{3} \times 48$	5.29	0.1362	400	2MNSTS

Table: General simulation parameters

- Wilson gauge action
- Clover fermion action, $c_{s w}=1.9192$
- All runs have ≥ 100 trajectories

Tables

p	steps	$P_{\text {acc }}$	matrix ops
0	300×2	$0.60(7)$	$885,000 \pm 11,000$
4	$160 \times 2 \times 2$	$0.86(5)$	$529,800 \pm 7900$
10	$110 \times 2 \times 2$	$0.65(5)$	$446,700 \pm 5300$

Table: 1-filter PFHMC parameters

Tables

p	q	steps	$P_{\text {acc }}$	matrix ops
4	20	$80 \times 2 \times 2 \times 2$	$0.66(5)$	$233,200 \pm 2700$
4	30	$55 \times 2 \times 2 \times 2$	$0.70(5)$	$180,900 \pm 1600$
4	80	$35 \times 2 \times 2 \times 2$	$0.73(4)$	$132,500 \pm 1300$

Table: 2-filter PFHMC parameters

ρ_{1}	ρ_{2}	steps	$P_{\text {acc }}$	matrix ops
0.130	0.1353	$10 \times 2 \times 2 \times 2$	$0.62(5)$	$82,160 \pm 580$
0.130	0.1355	$8 \times 2 \times 2 \times 2$	$0.67(5)$	$75,800 \pm 1200$
0.130	0.1357	$7 \times 2 \times 2 \times 2$	$0.71(5)$	$80,330 \pm 450$
0.130	0.136	$8 \times 2 \times 2 \times 2$	$0.84(4)$	$116,270 \pm 780$

Table: 2-filter Hasenbusch parameters

Tables

ρ	p	steps	$P_{\text {acc }}$	matrix ops
0.135	4	$14 \times 2 \times 2 \times 2$	$0.74(4)$	$89,050 \pm 620$
0.1353	4	$11 \times 2 \times 2 \times 2$	$0.67(5)$	$85,100 \pm 540$
0.1355	4	$10 \times 2 \times 2 \times 2$	$0.77(4)$	$82,800 \pm 500$
0.136	4	$20 \times 2 \times 2 \times 2$	$0.68(5)$	$218,500 \pm 1500$

Table: Mixed PFHMC/Hasenbusch parameters

