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Introduction

What do we mean by ‘Wave function’?

As a state in quantum field theory, the nucleon doesn’t have a simple
wave function in the naive quantum mechanic sense.

Lattice QCD interpolating fields naturally correspond to a fixed
number of quarks

This leads to a description using the Nambu-Bethe-Saltpeter
wavefunction of three quarks
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Introduction

Consider the standard nucleon interpolating fields, but with a
displaced d quark

χ1(x , z ; t) = εabc [uTa (x ; t)Cγ5db(x + z ; t)]uc(x ; t)

χ2(x , z ; t) = εabc [uTa (x ; t)Cdb(x + z ; t)]γ5uc(x ; t)

Could also consider displacement of the u quarks as long as we
consider an interchange u(x + z)↔ u(x)
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Introduction

Define the wave function given by the two-point correlator of this
displaced operator with a standard source operator:

W (p, z , t) =
∑
x∈V

e ipx〈χ(x , z ; t)χ̄(x0, 0; t0)〉

Not gauge invariant - fix to Landau gauge
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Lattice Parameters

(2+1) flavour PACS-CS collaboration ( Aoki et al [arXiv:0807.1661] )
via ILDG

a=0.0907 fm, aLx=2.9 fm ≈ (68MeV)−1

κud mπ N

0.13754 413 MeV 260
0.13770 293 MeV 250× 2
0.13781 156 MeV 200× 4

Gaussian smeared fermion sources, α=0.7
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Previous Work

( Roberts et al [hep-lat:1311.6626], [hep-lat:1312.2314] )
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Previous Work
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Spherical Harmonics

z 6= 0→ not restricted to zero angular momentum

Recall the spherical harmonics Yl ,m:
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Spherical Harmonics
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Y0,0 : (is = 1, js = 1; is = 2, js = 2)

Samuel D. Thomas (CSSM) Wave functions of the Nucleon LHPV, Cairns 2015 10 / 37



Y1,0 : (is = 1, js = 3; is = 2, js = 4)
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Y1,−1 : (is = 1, js = 4) (real part)
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Y1,−1 : (is = 1, js = 4) (imaginary part)
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Variational Analysis

From the standard 2-point correlation function, projected to definite parity:

Gij(~p, t) =
∑
x

e−i~p·~xTrsp{
1

2
(γ0 + I)〈χi(x)χ̄j(0)〉 (1)

The right eigenvector is defined by the generalized eigenvalue problem:

Gij(t0 + δt)vj = e−mδt0Gij(t)vj
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Variational Analysis

t0=17, dt=3 ; basis Nsm=[16, 35, 100, 200]
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Normalization

These eigenvectors are calculated with a normalized correlation matrix

Gij(t)→
Gij(t)√

Gii (0)Gjj(0)

This makes the components of G similar in magnitude

Otherwise the generalized eigenvalue is badly-behaved

Then normalize the eigenvectors u, v by their vector norm
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Normalization

In this case, we can’t create a full correlation matrix for the wave
function ( sink smearing would destroy the spatial information we care
about)

However, the sum vj χ̄j has been determined to be the best linear
combination of the operators to create a single state from the
vacuum.

The standard normalization for v is then vj → vj/
√
Gjj(0).

→Wproj(z , t) =
∑
j

Wj(z , t)vj
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Normalization

Consider the probability density for positive parity
Pj(z , t) = |TrSpΓ+Wj(z, t)|2.

An alternative normalization could be to scale Wj(z , t) such that∑
z

Pj(z , t) = 1

for each individual time value

How would this change the eigenstate projection?
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Normalization
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Projected results
Ground state (lightest pion mass):
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Projected results
First posity parity excited state:
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Projected results
Second posity parity excited state:
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Projected results
Ground state (heavier pion mass):

Samuel D. Thomas (CSSM) Wave functions of the Nucleon LHPV, Cairns 2015 25 / 37



Projected results
First posity parity excited state:
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Projected results
Second posity parity excited state:
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〈χ2(z)χ̄1〉
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Higher spin

Examining off-diagonal Dirac elements of the wave function has let us
obtain angular momenta of ml = ±1.

To access higher values we need a interpolating field for the spin-32
nucleon.

There is one obvious choice - the interpolator χµ:

χµ(x , z) = εabc [uTa (x)Cγ5γµdb(x + z)]γ5uc(x + z)

The local version of this operator (z=0) has both spin-12 and spin-32
contributions.
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Higher spin

The spin-32 components must obey the Rarita-Schwinger equations
(pµuµ = 0, γµuµ = 0 ) as well as the Dirac equation

Also, Pmunu must be idempotent ( P2 = P )

This gives a simple spin-32 projection operator (at ~p = 0):

Pµν = δij I −
1

3
γiγj (µ, ν 6= 0)
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Spin projection

The spin-12 projection operators are :

Pµν = δµ0δν0

Equivalent to using χ = εabc [uTa Cγ0γ5db]γ5uc at both the source and
sink

and

Pµν =
1

3
γiγj (µ, ν 6= 0)
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Spin projection

The explicit form of the projection operator depends on the basis for
the gamma matrices

At zero momentum, the projection operator is block-diagonal in the
dirac indices (it does not mix upper and lower components).

Considering only the upper components and lorentz indices 1,2,3; this
gives a 4-dimension eigenspace with eigenvalue 1 (spin-3/2), and a
2-dimension eigenspace with eigenvalue 0 (spin-1/2).
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Spin projection

This 4-dimensional space is spanned by the Clebsch-Gordan addition of a
spin-1 vector and dirac spinor:

ψ(+3/2) =
1√
2
{−ψ1(↑) + iψ2(↑)}

ψ(+1/2) =
1√
6
{−ψ1(↓) + iψ2(↓) + 2ψ3(↑)}

ψ(−1/2) =
1√
6
{ψ1(↑) + iψ2(↑) + 2ψ3(↓)}

ψ(−3/2) =
1√
2
{ψ1(↓) + iψ2(↓)}
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Spin projection

Similarly, the two-dimensional space of the spin-12 component has basis:

ψ(+1/2) =
1√
3
{ψ1(↓)− iψ2(↓) + ψ3(↑)}

ψ(−1/2) =
1√
3
{−ψ1(↑)− iψ2(↑) + ψ3(↓)}
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ψ1(↑) (real part)
Corresponds to s = 3

2 , ms = +3
2 ,−12 and to s = 1

2 , ms = −1
2
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ψ1(↓) (imaginary part)
Corresponds to s = 3

2 , ms = +1
2 ,−32 and to s = 1

2 , ms = +1
2
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Pψ1(↓) = P1νψν
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