Current Physics Projects by JLQCD

Jun Noaki

野秋 淳一

for JLQCD Collaboration

Lattice Hadron Physics V, Cairns July 20-24, 2015

Geography

Flavor physics w/ GW fermions

NP search by high luminosity frontier experiments

- heavy flavor (B,D) decays
- theoretical studies at high-precision \rightarrow lattice QCD

• Matrix elements (decay consts., form factors etc) by N_f = 2+1 lattice QCD

▶ good chiral symmetry → (Möbius) DW fermions RBC Collab., 1998-

- control of chiral extrapolation
- suppression of operator mixing
- continuum extrapolation in the fine (a < 0.1 fm) region
 - accommodate relativistic heavy quarks
- light sea quarks (m_{π} = 500, 400, 300 MeV and lighter)
- lattice volume satisfying $m_{\pi}L > 4$
- rather multipurpose configs

(Möbuis) Domain-Wall fermions

Defined in 5D lattice (V x L_s) to separate L/R modes Kaplan 1992; Shamir 1994; Borici 1997; Chiu 1998; Brower et al. 2001

► 5D → 4D effective op ≈ Ginsparg-Wilson op

$$D_{DW}^{(4)}(m) = \left[\mathcal{P}^{-1} D_{DW}^{(5)}(m=1)^{-1} D_{DW}^{(5)}(m) \mathcal{P}\right]_{11}$$

$$(L_s \to \infty) \to \frac{1+m}{2} + \frac{1-m}{2}\gamma_5 \cdot \operatorname{sign}\left(\gamma_5 \frac{bD_W(-M)}{2+cD_W(-M)}\right)$$

M, *b*, *c* : tunable parameter

 \mathcal{P} : 5D projection

0

In our simulation

- ▶ set *M* = 1.0, *b* = 2, *c* = 1
- stout link smearing: smaller residual mass, faster inversion JLQCD 2013
- \triangleright good chiral properties with modest size of L_s
 - violation of GW relation (residual mass) is measured

$$m_{\rm res} \sim m_{\rm ud} \ge 0.1$$
 at $a^{-1} = 2.4 \,\,{\rm GeV} / m_{\rm ud} \ge 0.02$ at $a^{-1} = 3.6 \,\,{\rm GeV}$

J. Noaki for JLQCD Collab., LHPV Cairns, July 20-24 2015

1 s - 1

Design of the numerical simulation

Config generations have been finished

 \blacktriangleright three lattice spacings with physical size fixed to \sim 2.5 fm

- ▶ $m_{\pi}L > 4$ even for lightest pion
- Extrapolate the data to phys. point.

Plan of this talk

Introduction

- Generation of config.
 - HMC + basic measurements
- Lattice2015 summary + discussion
 - especially on hadron physics
 - chiral extrapolations
- Conclusions

Generation of config

• Action = Symanzik gauge + Möbius Domain-Wall (N_f = 2+1)

- tree-level Symanzik action
- 3-level stout smearing
- standard RHMC with Omelyan integrator
- performance @BG/Q : 30 GFlops/node (HMC), 45 GFlops/node (meas)

Hitachi SR16k M1, 57TFlops peak

IBM BG/Q, 1.2PFlops peak

thanks to P. Boyle !

powered by BAGLETM

Gauge ensembles

• $\beta = 4.17$, $32^3 \times 64 \times 12 \ a^{-1} \sim 2.4 \text{ GeV}$ • $\beta = 4.35$, $48^3 \times 96 \times 8 \ a^{-1} \sim 3.6 \text{ GeV}$

* 1 traj. = 2 MD time

$m_{ m ud}$	m_{π} [MeV]	MD time	
m _s =0.030			
0.007	310	10,000	
0.012	410	10,000	
0.019	510	10,000	
m _s =0.040			
0.0035	230	10,000	
0.007	320	10,000	
0.012	410	10,000	
0.019	510	10,000	
m _s =0.040, 48 ³ x96			
0.0035	240	10,000	

$m_{ m ud}$	m_{π} [MeV]	MD time*
m _s =0.018		
0.0042	300	10,000
0.0080	410	10,000
0.0120	500	10,000
m _s =0.025		
0.0042	300	10,000
0.0080	410	10,000
0.0120	510	10,000
B = 4 47 6	4 ³ x128 x8 g	

$\beta = 4.47,$	64 ³ x128 x8	<i>a</i> ^{−1} ~4.5 GeV
	* 1 tr	aj. = 4 MD time

$m_{ m ud}$	m_{π} [MeV]	MD time*
m _s =0.015		
0.0030	240	10,000

Basic studies through YM grad. flow

- sensitive only global (IR) structures
- useful to monitor the thermalization or auto-correlation JLQCD 2013
- ▶ traj. length τ = 2 (β = 4.35) and 4 (β = 4.47)

• topology changing $Q = \frac{1}{32\pi^2} \sum \operatorname{tr} F_{\mu\nu} \tilde{F}_{\mu\nu}$

J. Noaki for JLQCD Collab. , LHPV Cairns, July 20-24 2015

100

Scale setting

mass dependence of t_0/a^2 $t^2 \langle E \rangle |_{t=t_0} = 0.3, \quad \sqrt{t_0^{\text{phys}}} = 0.1465 \text{ fm}$

Lüscher 2010; BMW 2012

- $\beta = 4.17$:non-significant FV effect
- sizable strange mass dependence
- combined linear-fit of all data

$$\frac{t_0}{a^2} = \frac{t_0^{\text{phys}}}{a^2} \left[1 + c_\pi \left(t_0 m_\pi^2 - \left(t_0 m_\pi^2 \right)^{\text{phys}} \right) + c_s \left(t_0 (2m_K^2 - m_\pi^2) - \left(t_0 (2m_K^2 - m_\pi^2) \right)^{\text{phys}} \right) \right]$$

1.84 1.83

1.78

2.70

2.65

2.66

• NLO ChPT : small higher order effect Bär-Golterman, 2013

Result (statistical error only):

β	4.17	4.35	4.47
$a^{-1}[\text{GeV}]$	2.453(4)	3.609(9)	4.496(9)

 $\beta = 4.17 \quad t_{2}^{1/2}$

LATTICE2015 summary + discussion

LATTICE2015 presentations

Hadron physics

- Charmonium current-current correlators K. Nakayama
- OPE study of coord. space correlators M. Tomii
- Eta' -mass by topological analysis H. Fukaya
- light(-heavy) meson spectrum
 B. Fahy
- D-meson semileptonic decays T. Suzuki
- ightarrow g_A & g_T (on previous confs) N. Yamanaka
- light meson EM form factors (on previous confs) T. Kaneko
- Finite temperature
 - restoration of U(1)_A symmetry at Nf=2 G. Cossu + A. Tomiya

etc

Stochastic approach to the spectral density S.Hashimoto

LATTICE2015 presentations

Hadron physics

- Charmonium current-current correlators K. Nakayama
- ► OPE study of coord. space correlators M. Tomii
- Eta' -mass by topological analysis H. Fukaya
- light(-heavy) meson spectrum
 B. Fahy
- D-meson semileptonic decays
 T. Suzuki
- $ightarrow g_A \& g_T$ (on previous confs) N. Yamanaka
- ▶ light meson EM form factors (on previous confs) T. Kaneko
- Finite temperature
 - restoration of U(1)_A symmetry at Nf=2 G. Cossu + A. Tomiya

etc

Stochastic approach to the spectral density S.Hashimoto

Charm correlators (K. Nakayama)

result: $m_c(3 \text{ GeV}) = 0.9901(81) \text{ GeV}, \ \alpha_S^{\overline{\text{MS}}}(3 \text{ GeV}) = 0.2526(77)$

OPE study in coord. space (M. Tomii)

Lattice correlator and its improvement

$$\Pi_{\Gamma}^{\text{latt}}(x) \equiv \langle \mathcal{O}_{\Gamma}(x)\mathcal{O}_{\Gamma}(0)^{\dagger} \rangle \to \Pi_{\Gamma}^{\text{latt}}(x) - \left(\Pi_{\Gamma}^{\text{latt,free}}(x) - \Pi_{\Gamma}^{\text{cont,free}}(x)\right)$$

• OPE $\leftrightarrow \Pi_{\Gamma}^{\text{latt}}(\mathbf{x}) \leftrightarrow \text{perturbation}$

significant discretization error

• NPR
$$Z_{\Gamma}^{\overline{\mathrm{MS}}}(\mu) = \sqrt{\Pi_{\Gamma}^{\overline{\mathrm{MS}},\mathrm{cont}}(\mu;x)/\Pi_{\Gamma}^{\mathrm{latt}}(x)}$$

Martinelli et al, 1997; Gimenez et al, 2004; Cichy et al, 2012

- **b** gauge invariant, $\Pi_{\Gamma}^{\text{latt}}(\mathbf{x})$ available to 4-loop level
- ▶ OPE tells best modification $O_{\Gamma} \rightarrow O_{\Gamma'}$ to simplify x-dependence \rightarrow extract Z's

*n***' by YM-gradient flow** (H. Fukaya)

Use of gluonic operator after the flow Chowdhury et al. 2014

$$\eta'(x) \to q(x) \equiv \frac{1}{32\pi^2} \operatorname{Tr} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$$
$$\langle q(x)q(y) \rangle = \frac{A}{|x-y|} K_1(m_{\eta'}|x-y|)$$

much cheaper than hadronic calc.

1

consider

nsider
$$\sqrt{8t} \ll |x-y| = \mathcal{O}(m_{\eta'}^{-1})$$

• We chose t < 0.008 fm², |x-y| > 0.7 fm

Meson spectrum (B. Fahy)

$$\hat{m}_s \equiv 2m_K^2 - m_\pi^2$$

Meson spectrum contd.

naïve linear fit works! What about chiral log and LECs ?

► eg. NLO SU(2) ChPT with expansion param $\xi_{\pi} \equiv \left(\frac{m_{\pi}}{4\pi f_{\pi}}\right)^2$ JLQCD 2008 $m_{\pi}^2/m_{ud} = 2B(1 + \xi_{\pi} \ln \xi_{\pi}/\Lambda_R) + A_m \xi_{\pi} + C_{m_{\pi}} a^2$ $f_{\pi} = f(1 - 2\xi_{\pi} \ln \xi_{\pi}/\Lambda_R) + A_f \xi_{\pi} + C_{f_{\pi}} a^2$ $m_K^2/m_s = B^{(K)} \left(1 + \frac{1}{2}\frac{A_m}{2B} + \frac{A_f + fF_1(m_s)}{f^{(K)}} + G_1(m_s)\right) + C_{m_K} a^2$ $f_K = f^{(K)} \left(1 - \frac{3}{4}\xi_{\pi} \ln \xi_{\pi}/\Lambda_R + F_2(m_s)\xi_{\pi}\right) + \left(\frac{1}{2}(\frac{f^{(K)}}{f} + 1)A_f + f^{(K)}F_2(m_s) + fG_2(m_s)\right)\xi_{\pi} + C_{f_K} a^2$ $(B^{(K)}, f^{(K)}, A_m, A_f) \rightarrow (L_4, L_5, L_6, L_8)$ does not describe the data \rightarrow needs more study

D-meson semileptonic decays (T. Suzuki)

Determination of CKM matrix elements

$$\frac{d\Gamma(D \to \pi)}{dq^2} \propto |V_{cd}|^2 |f_+^{D \to \pi}(q^2)|^2$$

Correlators with momentum insertion

gaussian smeared source/sink, tuned meson separation

- remove time dependence by picking up plateau
- observables as a func of momenta
 - matrix elements on the lattice

$$\langle \pi(\mathbf{p}_f) | V_{\mu}^{\text{latt}} | D(\mathbf{p}_i) \rangle = 2\sqrt{E_D E_\pi} \sqrt{\frac{C_{3\text{pt}}^{\mu}(\mathbf{p}_i, \mathbf{p}_f)^2}{C_{2pt}^{D}(\mathbf{p}_i) C_{2pt}^{\pi}(\mathbf{p}_f)}}$$

• form factor ($V_{\mu} = Z_V V_{\mu}^{\text{latt}}$, $q^2 = (p_i - p_f)^2$)

$$f_{+}^{D \to \pi}(q^2) = \frac{(E_D - E_\pi) \langle \pi(\mathbf{p}_f) | V_k | D(\mathbf{p}_i) \rangle (p_D - p_\pi)_k \langle \pi(\mathbf{p}_f) | V_0 | D(\mathbf{p}_i) \rangle}{2(E_D p_\pi^k - E_\pi p_D^k)}$$

D-meson semileptonic decays contd.

• Performance test (β = 4.17): compare the q-dependence with CLEO-c

Conclusions

 $\sim N_f$ = 2+1 simulation with Möbius Domain-Wall fermions

- precise control of systematics with chiral symm. / discretization / finite volume
- heavy quarks in the same framework as light quarks
- ▶ 10,000 MD-times generated at a^{-1} = 2.4, 3.6, 4.5 GeV
- basic study and scale setting by YM gradient flow

Physics

- ongoing projects including η' -mass / charm-current / OPE study / D-meson semileptonic / spectrum + chiral property
- semileptonic decay: more statistics / data points / operators
- chiral property: consistency with previous works? determine LECs.
- next plans (more phenomenology-driven)
 - baryon (hyperon)-semileptonic decays
 - B-meson decay constants