Properties of Thermal Matter: Conductivity, Parity Restoration and the Charmonium Potential

Chris Allton Swansea University, U.K.

LHPV 2015 Workshop, Cairns, July 2015

FASTSUM Collaboration

Gert Aarts¹, CRA¹, Alessandro Amato^{1,2}, Davide de Boni¹, Wynne Evans^{1,3}, Pietro Giudice⁴, Simon Hands¹, Benjamin Jäger¹, Aoife Kelly⁵, Seyong Kim⁶, Maria-Paola Lombardo⁷, Dhagash Mehta⁸, Bugra Oktay⁹, Chrisanthi Praki¹, Sinead Ryan¹⁰, Jon-Ivar Skullerud⁵, Tim Harris^{10,11}

- ¹ Swansea University
- ² University of Helsinki
- ³ University of Bern
- ⁴ Münster University
- Maynooth University
- ⁶Sejong University

- ⁷Frascati, INFN
- ⁸ North Carolina State University
- ⁹ University of Utah
- ¹⁰ Trinity College Dublin
- ¹¹ University of Mainz

Setting the scene

quarks & gluons pressure viscosity plasma physics

hadrons masses mx els atomic physics

[http://www.bnl.gov/rhic/news]

Setting the scene

quarks & gluons pressure viscosity plasma physics

hadrons masses mx els atomic physics

Correlation Functions \leftrightarrow **Spectral Functions**

Particle Data Book

 $\sim 1,500 \; pages$

zero pages on Quark-Gluon Plasma...

Overview

Parity Restoration in the Baryon Sector

SYMMETRIES

arXiv/1505.06616

Charmonium Potential

INTERACTIONS

arXiv/1502.03603

 Conductivity, Susceptibility and Diffusion Coefficient

PHENOMENOLOGY

arXiv/1412.6411

Other Work

Bottomonium and Charmonium Spectral Functions

MELTING

arXiv:1402.6210

FASTSUM set up

- anisotropic lattices $a_{\tau} < a_{s}$
 - allowing better resolution, particularly at finite temperatures

since
$$T = \frac{1}{N_{\tau}a}$$

- "2nd" generation lattice ensembles
 - moving towards continuum, infinite volume, realistic light quark masses

Physics/lattice parameters

2nd Generation

2+1 flavours

larger volume: $(3 \text{fm})^3 - (4 \text{fm})^3$ finer lattices: $a_s = 0.123$ fm quark mass: $M_\pi/M_\rho \sim 0.45$ temporal cut-off: $a_\tau \sim 5.6$ GeV

Ns	$N_{ au}$	T(MeV)	T/T_c
24, 32	16	352	1.90
24	20	281	1.52
24, 32	24	235	1.27
24, 32	28	201	1.09
24, 32	32	176	0.95
24	36	156	0.84
24	40	141	0.76
32	48	117	0.63
16	128	44	0.24

Gauge Action:

Symanzik-improved, tree-level tadpole

Fermion Action:

clover, stout-links, tree-level tadpole

(Hadron Spectrum Collaboration)

Parity Restoration in the Baryon Spectrum

arXiv/1505.06616

Baryons at Finite Temperature

- ▶ little work on Baryons @ $T \neq 0$
 - ▶ DeTar and Kogut (1987) screening masses
 - ▶ QCD-TARO (2005) $\mu \neq 0$
 - Datta et al (2013) quenched

We use a standard baryon operator:

$$O_N(\mathbf{x},\tau) = \epsilon_{abc} u_a(\mathbf{x},\tau) \left[u_b^T(\mathbf{x},\tau) \mathcal{C} \gamma_5 d_c(\mathbf{x},\tau) \right]$$

and parity project it:

$$O_{N_+}(\mathbf{x},\tau) = P_{\pm}O_{N_+}(\mathbf{x},\tau)$$

Forward (+ve) and backward (-ve) parity states in correlator:

$$G(\tau) = \int d^3x \langle O_{N_+}(\mathbf{x}, \tau) \overline{O}_{N_+}(\mathbf{0}, 0) \rangle$$

$$= \int_0^\infty \frac{d\omega}{2\pi} \left[\frac{e^{-\omega \tau}}{1 + e^{-\omega/T}} \rho_+(\omega) - \frac{e^{-\omega(1/T - \tau)}}{1 + e^{-\omega/T}} \rho_-(\omega) \right]$$

Baryon Correlators

(Using Gaussian smeared baryon operators)

Baryon Correlators

(Using Gaussian smeared baryon operators)

Baryon Correlators

(Using Gaussian smeared baryon operators)

 \longrightarrow parity doubling for $T \gtrsim T_C$ observed at correlator level

Correlators - Parity Comparison

Experiment:

+ve parity: $M_N = 939 \text{ MeV}$ -ve parity: $M_{N*} = 1535 \text{ MeV}$

Correlators - Parity Comparison

Experiment:

+ve parity: $M_N = 939 \text{ MeV}$ -ve parity: $M_{N*} = 1535 \text{ MeV}$

Naive Exponential Fits

T/T_c	m ₊ [GeV]	<i>m_</i> [GeV]	m_+	- m_ [MeV]
0.24 0.76 0.84 0.95	1.20(3) 1.18(9) 1.08(9) 1.12(14)	1.9(3) 1.6(2) 1.6(1) 1.3(2)	∼700	<i>cf</i> expt: ∼600

Parity Comparison

Define $R(t) = \frac{G(\tau) - G(N_{\tau} - \tau)}{G(\tau) + G(N_{\tau} - \tau)}$

Datta et al, arXiv:1212.2927

Note: $R(1/2T) \equiv 0$

with: $R(\tau) \equiv 0$ for parity symmetry

Parity Restoration

Define
$$R = rac{\sum_{ au=1}^{N_{ au}/2-1} R(au)/\sigma^2(au)}{\sum_{ au=1}^{N_{ au}/2-1} 1/\sigma^2(au)}$$

Effects of Smearing

Systematics checks of smearing:

vary nvary τ-range

Implies parity doubling is:

ground state feature (recall Wilson term breaks chiral symmetry)
 not an artefact of smearing

Maximum Entropy Method (MEM)

Cont:
$$G(\tau) = \int K(\tau, \omega) \rho(\omega) d\omega$$
 Lat: $G(\tau_i) = \sum_j K(\tau_i, \omega_j) \rho(\omega_j)$

Input data: $\tau_i, \ i = \{1, \dots, \mathcal{O}(10)\}$ Output data : $\omega_j, \ j = \{1, \dots, \mathcal{O}(10^3)\}$

 \longrightarrow ill-posed

Bayes Th'm:
$$P[\rho|DH] = \frac{P[D|\rho H]P[\rho|H]}{P[D|H]} \propto \exp(-\chi^2 + \alpha S)$$

 $H = \text{prior knowledge} \quad D = \text{data}$

Shannon-Jaynes entropy:
$$S = \int_0^\infty \frac{d\omega}{2\pi} \left[\rho(\omega) - m(\omega) - \rho(\omega) \ln \frac{\rho(\omega)}{m(\omega)} \right]$$

Competition between minimising χ^2 and maximising S

Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459

Maximum Entropy Method (MEM)

Cont:
$$G(\tau) = \int K(\tau, \omega) \rho(\omega) d\omega$$
 Lat: $G(\tau_i) = \sum_j K(\tau_i, \omega_j) \rho(\omega_j)$
Input data: τ_i , $i = \{1, \dots, \mathcal{O}(10)\}$ Output data : ω_j , $j = \{1, \dots, \mathcal{O}(10^3)\}$
 \longrightarrow ill-posed
Bayes Th'm: $P[\rho|DH] = \frac{P[D|\rho H]P[\rho|H]}{P[D|H]} \propto \exp(-\chi^2 + \alpha S)$
 $H = \text{prior knowledge} \quad D = \text{data}$

Shannon-Jaynes entropy:
$$\mathbf{S} = \int_0^\infty \frac{d\omega}{2\pi} \left[\rho(\omega) - m(\omega) - \rho(\omega) \ln \frac{\rho(\omega)}{m(\omega)} \right]$$

Competition between minimising χ^2 and maximising S

Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459

Example Spectral Functions

Example Spectral Functions

Example Spectral Functions

$$G_2(t) \sim \int \rho(\omega) e^{-\omega t} d\omega$$

MEM for finite *T* baryons

Recall:
$$G(\tau) = \int d^3x \langle O_{N_+}(\mathbf{x}, \tau) \overline{O}_{N_+}(\mathbf{0}, 0) \rangle$$
$$= \int_0^\infty \frac{d\omega}{2\pi} \left[\frac{e^{-\omega \tau}}{1 + e^{-\omega/T}} \rho_+(\omega) - \frac{e^{-\omega(1/T - \tau)}}{1 + e^{-\omega/T}} \rho_-(\omega) \right]$$

So can define:
$$K(\tau,\omega) = \frac{e^{-\omega\tau}}{1+e^{-\omega/T}} \qquad \omega>0$$

$$= \frac{e^{+\omega(1/T-\tau)}}{1+e^{+\omega/T}} \qquad \omega<0$$

and use MEM with
$$G(\tau) \equiv \int_{-\infty}^{+\infty} K(\tau, \omega) \rho(\omega) d\omega$$

giving:
$$\rho_+(\omega) \equiv \rho(\omega)$$
 $\omega > 0$ $\rho_-(-\omega) \equiv -\rho(\omega)$ $\omega < 0$

(Need to assume $\rho(\omega)$ is positive definite for MEM to work)

Charmonium Potential charmonium potential

arXiv/1502.03603

Lattice goes Nuclear

HAL QCD Collaboration, Aoki, Doi, Hatsuda, Ikeda, Inoue, Ishii, Murano, Nemura, Sasaki lida, Ikeda PoS LATTICE2011(2011)195

Schrödinger Equation Approach

HAL QCD Collaboration, S. Aoki et al. [arXiv:1206.5088]

Schrödinger equation used to "reverse engineer" the potential, V(r), given the Nambu- Bethe-Salpeter wavefunction, $\psi(r)$:

$$\left(\frac{p^2}{2M} + \frac{V(r)}{V(r)}\right)\psi(r) = E \psi(r)$$

 $\psi(r)$ is determined from correlators of *non-local* operators,

$$J(x; \vec{r}) = q(x) \Gamma U(x, x + \vec{r}) \overline{q}(x + \vec{r})$$

$$C(\vec{r}, t) = \sum_{\vec{x}} \langle J(0; \vec{r} = \vec{0}) J(x; \vec{r}) \rangle$$

$$\rightarrow \psi(r) e^{-Mt} \text{ where } \langle 0 | J(x; \vec{r}) | gnd \rangle \approx \psi(r)$$

Schrödinger Equation Approach

HAL QCD Collaboration, S. Aoki et al. [arXiv:1206.5088]

Schrödinger equation used to "reverse engineer" the potential, V(r), given the Nambu- Bethe-Salpeter wavefunction, $\psi(r)$:

input input
$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\left(\frac{p^2}{2M} + \frac{V(r)}{r}\right) \psi(r) = \frac{E}{r} \psi(r)$$
output

 $\psi(r)$ is determined from correlators of *non-local* operators,

$$J(x; \vec{r}) = q(x) \Gamma U(x, x + \vec{r}) \overline{q}(x + \vec{r})$$

$$C(\vec{r}, t) = \sum_{\vec{x}} \langle J(0; \vec{r} = \vec{0}) J(x; \vec{r}) \rangle$$

$$\rightarrow \psi(r) e^{-Mt} \text{ where } \langle 0 | J(x; \vec{r}) | gnd \rangle \approx \psi(r)$$

HAL QCD Time Dependent Method

SOURCE

SINK

$$(\mathbf{x}, \mathbf{r}, \tau)$$

$$(\mathbf{x}, 0) \qquad \overline{c} \qquad (\mathbf{x}, \tau)$$

$$J_{\Gamma}(\mathbf{x}, \tau; \mathbf{r})$$

$$J_{\Gamma}(x;\mathbf{r})=\bar{q}(x)\,\Gamma\,U(x,x+\mathbf{r})\,q(x+\mathbf{r})$$

Local Extended Correlation Functions

$$C_{\Gamma}(\mathbf{r}, au) = \sum_{\mathbf{x}} \langle J_{\Gamma}(\mathbf{x}, au; \mathbf{r}) J_{\Gamma}^{\dagger}(0; \mathbf{0}) \rangle$$

$$\begin{split} C_{\Gamma}(\mathbf{r},\tau) &= \sum_{j} \frac{\psi_{j}^{*}(\mathbf{0})\psi_{j}(\mathbf{r})}{2E_{j}} \; \left(e^{-E_{j}\tau} + e^{-E_{j}(N_{\tau}-\tau)}\right) \approx \sum_{j} \psi_{j}(\mathbf{r})e^{-E_{j}\tau} \quad & \text{ignoring} \\ \text{backward mover} \end{split}$$
 Schrödinger Eqn
$$\begin{aligned} E_{j}\psi_{j}(r) &= \left(-\frac{\nabla_{r}^{2}}{2\mu} + V_{\Gamma}(r)\right)\psi_{j}(r) \\ \frac{\partial C_{\Gamma}(\mathbf{r},\tau)}{\partial \tau} &= -\sum_{j} E_{j}\psi_{j}(\mathbf{r})e^{-E_{j}\tau} &= \sum_{j} \left(\frac{\nabla_{r}^{2}}{2\mu} - V_{\Gamma}(r)\right)\psi_{j}(r)e^{-E_{j}\tau} \\ \frac{\partial C_{\Gamma}(\mathbf{r},\tau)}{\partial \tau} &= \left(\frac{\nabla_{r}^{2}}{2\mu} - V_{\Gamma}(r)\right)C_{\Gamma}(\mathbf{r},\tau) \end{aligned}$$

HAL QCD Time Dependent Method

SOURCE

SINK

$$(\mathbf{x}, \tau)$$

$$(\mathbf{x}, 0)$$

$$(\mathbf{x}, \tau)$$

$$J_{\Gamma}(\mathbf{x}, \tau; \mathbf{r})$$

$$J_{\Gamma}(x;\mathbf{r}) = \bar{q}(x) \Gamma U(x,x+\mathbf{r}) q(x+\mathbf{r})$$

Local Extended Correlation Functions

$$C_{\Gamma}(\mathbf{r}, \tau) = \sum_{\mathbf{x}} \langle J_{\Gamma}(\mathbf{x}, \tau; \mathbf{r}) J_{\Gamma}^{\dagger}(0; \mathbf{0}) \rangle$$

$$\begin{split} C_{\Gamma}(\mathbf{r},\tau) &= \sum_{j} \frac{\psi_{j}^{*}(\mathbf{0})\psi_{j}(\mathbf{r})}{2E_{j}} \; \left(e^{-E_{j}\tau} + e^{-E_{j}(N_{\tau}-\tau)}\right) \approx \sum_{j} \psi_{j}(\mathbf{r})e^{-E_{j}\tau} \quad & \text{ignoring} \\ \text{backward mover} \end{split}$$
 Schrödinger Eqn
$$E_{j}\psi_{j}(r) \; = \; \left(-\frac{\nabla_{r}^{2}}{2\mu} + V_{\Gamma}(r)\right)\psi_{j}(r) \\ \frac{\partial C_{\Gamma}(\mathbf{r},\tau)}{\partial \tau} &= -\sum_{j} E_{j}\psi_{j}(\mathbf{r})e^{-E_{j}\tau} \; = \; \sum_{j} \left(\frac{\nabla_{r}^{2}}{2\mu} - V_{\Gamma}(r)\right)\psi_{j}(r)e^{-E_{j}\tau} \\ \frac{\partial C_{\Gamma}(\mathbf{r},\tau)}{\partial \tau} \; &= \; \left(\frac{\nabla_{r}^{2}}{2\mu} - V_{\Gamma}(r)\right)C_{\Gamma}(\mathbf{r},\tau) \end{split}$$

Correlation Functions

PS channel $0.76T_c$ ($N_{\tau}=40$)

Central Potentials - cold

$$V_{\Gamma}(\mathbf{r}) = V_{\mathrm{C}}(\mathbf{r}) + V_{\mathrm{S}}(\mathbf{r}) \, s_1 \cdot s_2 \quad \longrightarrow \quad V_{\mathrm{C}}(\mathbf{r}) = \frac{1}{4} \, V_{\mathrm{PS}} + \frac{3}{4} \, V_{\mathrm{V}} \qquad V_{\mathrm{S}}(\mathbf{r}) = V_{\mathrm{V}} - V_{\mathrm{PS}}$$

Central Potentials - hot

$$V_{\Gamma}(\mathbf{r}) = V_{\mathrm{C}}(\mathbf{r}) + V_{\mathrm{S}}(\mathbf{r}) \, s_1 \cdot s_2 \quad \longrightarrow \quad V_{\mathrm{C}}(\mathbf{r}) = \frac{1}{4} \, V_{\mathrm{PS}} + \frac{3}{4} \, V_{\mathrm{V}} \qquad V_{\mathrm{S}}(\mathbf{r}) = V_{\mathrm{V}} - V_{\mathrm{PS}}$$

Fitting Ranges

$T/T_{\rm C}$	$N_{ au}$	Best Range	Lower Range
0.24	128	30 - 63	15 – 19
0.76	40	15 - 19	12 – 17
0.84	36	12 - 17	11 – 15
0.95	32	11 - 15	11 – 13
1.09	28	11 - 13	9 – 11
1.27	24	9 - 11	N/A

Central Potential Results

Cornell Potential Comparison

Karsch, hep-ph/0512217, "Continuum Cornell": $\alpha = \pi/12$, $\sqrt{\sigma} = 445$ GeV

String Tension

$$V(r) = -\frac{\alpha_{\rm c}}{r} + \sigma r + C,$$

Debye Screening

Karsch, Mehr, Satz, Z.Phys. C37 (1988) 617

$$V(r,T) = -\frac{\alpha_s}{r}e^{-m_D(T)r} + \frac{\sigma}{m_D(T)}\left(1 - e^{-m_D(T)r}\right) + C$$

 $m_D(T)$ = the Debye screening mass.

 $\sigma = \text{434 MeV}$ (i.e. fixed to "zero" temperature value)

Spin-Dependent Potentials

$$V_{\Gamma}(\mathbf{r}) = V_{\mathrm{C}}(\mathbf{r}) + V_{\mathrm{S}}(\mathbf{r}) \, s_1 \cdot s_2 \quad \longrightarrow \quad V_{\mathrm{C}}(\mathbf{r}) = \frac{1}{4} \, V_{\mathrm{PS}} + \frac{3}{4} \, V_{\mathrm{V}} \qquad V_{\mathrm{S}}(\mathbf{r}) = V_{\mathrm{V}} - V_{\mathrm{PS}}$$

Comparison with 1st generation

Comparison with Static Quark Potential

$$\frac{F_1(r,T)}{T} = -\log\left[Tr\left(L_{\text{ren}}(0)L_{\text{ren}}(r)\right)\right]$$
 $L_{\text{ren}} = \text{renormalised Polyakov loop}$

Kaczmarek, arXiv:0710.0498

Charmonia Properties from the Potential: Radii

Using the parameterised screened potential from Lattice

$$V(r,T) = -\frac{\alpha_s}{r}e^{-m_D(T)r} + \frac{\sigma}{m_D(T)}\left(1 - e^{-m_D(T)r}\right) + C$$

and solve Schrödinger Equation

Preliminary

Charmonia Properties from Potential: Binding Energy

Binding Energy =
$$M(T) - V(r \to \infty, T) = M(T) - \frac{m_D}{\sigma} - C$$

- ▶ 1P melts $\lesssim 1.2T_C$
- ▶ 1S remains bound up to at least $1.2T_C$

Charmonia Properties from Potential: Binding Energy

Binding Energy =
$$M(T) - V(r \to \infty, T) = M(T) - \frac{m_D}{\sigma} - C$$

- ▶ 1P melts $\lesssim 1.2T_C$
- ▶ 1S remains bound up to at least $1.2T_C$

Conductivity & Light Quark Diffusivity

arXiv:1412.6411, arXiv:1307.6763

Electrical conductivity on the lattice

EM current:
$$j_{\mu}^{\text{em}} = \frac{2e}{3}j_{\mu}^{\text{u}} - \frac{e}{3}j_{\mu}^{\text{d}} - \frac{e}{3}j_{\mu}^{\text{s}}$$
,

$$\text{EM Correlator:} \quad \textbf{\textit{G}}_{\mu\nu}^{\,\text{em}}(\tau) = \int \textbf{\textit{d}}^3 x \, \langle j_{\mu}^{\text{em}}(\tau, \mathbf{x}) j_{\nu}^{\text{em}}(\mathbf{0}, \mathbf{0})^{\dagger} \rangle$$

Spectral decomposition:

$$G_{\mu\nu}^{\,\text{em}}(\tau) = \int_0^\infty \frac{d\omega}{2\pi} \; K(\tau,\omega) \, \rho_{\mu\nu}^{\,\text{em}}(\omega) \quad \text{with} \quad K(\tau,\omega) = \frac{\cosh[\omega(\tau-1/2T)]}{\sinh[\omega/2T]}$$

Conductivity:
$$\frac{\sigma}{T} = \frac{1}{6T} \lim_{\omega \to 0} \frac{\rho^{\text{em}}(\omega)}{\omega}$$

Relationship to Diffusivity: $D\chi_Q = \sigma$

Conserved (lattice) vector current used for $j_{\mu}^{\rm em}$

$$V_{\mu}^{\scriptscriptstyle \mathbb{C}}(x) = \left[ar{\psi}(x+\hat{\mu})(1+\gamma_{\mu})\,U_{\mu}^{\dagger}(x)\,\psi(x) - ar{\psi}(x)(1-\gamma_{\mu})\,U_{\mu}(x)\,\psi(x+\hat{\mu})
ight]$$

Example Spectral Functions

Conserved Vector Correlators

Vector Spectral Function

Using default model: $m(\omega) = m_0(b + \omega)\omega$

Vector Spectral Functions

Conductivity Result

Useful to factor out charge:

$$C_{\rm em} = e^2 \sum_f q_f^2$$

Rectangles = default model systematic (i.e. *b*). Recall :

$$m(\omega) = m_0(b + \omega)\omega$$

Whiskers = statistical error

Diffusion Coefficient

Relationship to Diffusivity: $D = \sigma/\chi_Q$

Summary 1

Baryonic Parity Restoration

- Signicant thermal effects in —ve parity nucleon
- No observed thermal modification of +ve parity mass below T_C
- Degeneracy in ground state of baryonic parity partners above T_c
- Finite temperature baryonic spectral functions determined

Summary 2

Charmonium Potential

- Relativistic quarks rather than static quarks
- Finite temperature rather than T = 0
- Clear temperature dependent effect
- Matches Debye-screened formula with $m_D \approx 0$ for $T < T_C$

Conductivity & Light Quark Diffusivity

- 2+1 flavour conductivity calculated as function of temperature
- Finite temperature diffusion coefficient determined

Physics/lattice parameters

2nd Generation

2+1 flavours

larger volume: $(3 \text{fm})^3 - (4 \text{fm})^3$ finer lattices: $a_s = 0.123$ fm quark mass: $M_\pi/M_\rho \sim 0.45$ temporal cut-off: $a_\tau \sim 5.6$ GeV

Ns	$N_{ au}$	T(MeV)	T/T _c
24, 32	16	352	1.90
24	20	281	1.52
24, 32	24	235	1.27
24, 32	28	201	1.09
24, 32	32	176	0.95
24	36	156	0.84
24	40	141	0.76
32	48	117	0.63
16	128	44	0.24

3rd Generation

2+1 flavours

larger volume: $(3\text{fm})^3 - (4\text{fm})^3$ finer lattices: $a_s = 0.123$ fm quark mass: $M_\pi/M_\rho \sim 0.45$ temporal cut-off: $a_\tau \sim 11.2$ GeV

Ns	N_{τ}	T(MeV)	T/T_c
24, 32	32	352	1.90
24	40	281	1.52
24, 32	48	235	1.27
24, 32	56	201	1.09
24, 32	64	176	0.95
24	72	156	0.84
24	80	141	0.76
32	96	117	0.63
16	256	44	0.24

Particle Data Book

 $\sim 1,500 \; pages$

zero pages on Quark-Gluon Plasma...

SLIDES TO HELP ME ANSWER DUMB QUESTIONS

SLIDES TO HELP ME ANSWER TRICKY QUESTIONS

Physics/lattice parameters

1st Generation

2 flavours

smaller volume: $(2 {\rm fm})^3$ coarser lattices: $a_{\rm s}=0.167$ fm quark mass: $M_\pi/M_\rho\sim0.55$ temporal cut-off: $a_\tau\sim7.4$ GeV

Ns	$N_{ au}$	T(MeV)	T/T_c
12	16	460	2.09
12	18	409	1.86
12	20	368	1.68
12	24	306	1.40
12	28	263	1.20
12	32	230	1.05
12	80	90	0.42

2nd Generation

2+1 flavours

larger volume: $(3 \text{fm})^3 - (4 \text{fm})^3$ finer lattices: $a_s = 0.123$ fm quark mass: $M_\pi/M_\rho \sim 0.45$ temporal cut-off: $a_\tau \sim 5.6$ GeV

N _s	$N_{ au}$	T(MeV)	T/T _c
24, 32	16	352	1.90
24	20	281	1.52
24, 32	24	235	1.27
24, 32	28	201	1.09
24, 32	32	176	0.95
24	36	156	0.84
24	40	141	0.76
32	48	117	0.63
16	128	44	0.24

Effects of Smearing

Above results used Gaussian smearing with sources/sinks, η smeared with:

 $\eta' = C(1 + \kappa H)^n \eta$ using $\kappa = 8.7$ and n = 140 Capitani et al [arXiv:1205.0180]

Systematics checks of smearing

vary nvary τ-range

Effects of Smearing

Above results used Gaussian smearing with sources/sinks, η smeared with:

 $\eta' = C (1 + \kappa H)^n \eta$ using $\kappa = 8.7$ and n = 140 Capitani et al [arXiv:1205.0180] Systematics checks of smearing:

vary nvary τ-range

Baryonic Spectral Functions - Systematic Checks

Checking systematics by using MEM on fixed τ windows:

$$\tau = 1, 2, \dots, 7, N_{\tau} - 7, N_{\tau} - 6, \dots, N_{\tau} - 1$$

Preliminary

Volume Effects

Naive Temporal Term in Potential

PS 0.76T_C using the naive form

$$rac{\partial}{\partial au}f(au) \longrightarrow \left[rac{f(au+a_ au)-f(au-a_ au)}{2a_ au}
ight]$$

Improved Temporal Term in Potential

PS 0.76T_C using the improved form Durr 1203.2560

$$\tilde{E_0}(\tau) = \frac{1}{2} \log \left(\frac{C_{\Gamma}(\tau-1) + \sqrt{C_{\Gamma}(\tau-1)^2 - C_{\Gamma}(N_{\tau}/2)^2}}{C_{\Gamma}(\tau+1) + \sqrt{C_{\Gamma}(\tau+1)^2 - C_{\Gamma}(N_{\tau}/2)^2}} \right)$$

Renormalising the Polyakov Loop

Polyakov Loop, L, related to free energy, F, via:

$$L(T) = e^{-F(T)/T}$$

But F defined up to addivitive constant $\Delta F = f(\beta, \kappa)$. Imposing renormalisation condition:

$$L_R(T_R) \equiv$$
 some number

gives us

$$L_{R}(T) = e^{-F_{R}(T)/T} = e^{-(F_{0}(T) + \Delta F)/T} = L_{0}(T)e^{-\Delta F/T} = L_{0}(T)Z_{L}^{N_{T}}$$

and Z_L defined from renormalisation condition.

Wuppertal-Budapest, PLB713(2012)342 [1204.4089]

T_C from Polyakov Loop

Scheme A:
$$L_R(Nt = 16) = 1.0$$

Scheme B: $L_R(Nt = 20) = 1.0$
Scheme C: $L_R(Nt = 20) = 0.5$

Cubic spline, solid =
$$32^3$$
, open = 24^3

$$\longrightarrow$$
 $N_{ au}^{crit}=30.4(7) \text{ or } T_c=171(4) \text{ MeV}$

Susceptibilities' Definitions

$$n_{i} = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu_{i}} \qquad \chi_{ij} = \frac{T}{V} \frac{\partial^{2} \ln Z}{\partial \mu_{i} \partial \mu_{j}}$$

$$Q = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu_{Q}} = \sum_{i=1}^{3} q_{i} n_{i} \qquad \chi_{Q} = \frac{\partial Q}{\partial \mu_{Q}} = \sum_{i=1}^{3} (q_{i})^{2} \chi_{ii} + \sum_{i \neq j}^{3} q_{i} q_{j} \chi_{ij}$$

$$B = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu_{B}} = \sum_{i=1}^{3} n_{i} \qquad \chi_{B} = \frac{\partial B}{\partial \mu_{B}} = \sum_{i=1}^{3} \chi_{ii} + \sum_{i \neq j}^{3} \chi_{ij}$$

$$\mu_{I} = \mu_{d} - \mu_{u} \qquad \chi_{I} = \frac{T}{V} \frac{\partial^{2} \ln Z}{\partial \mu_{s}^{2}}$$

Susceptibilities

 χ_{SB} is Stefan-Boltzman (free) result

Conserved Vector Correlators vs Free

MEM Systematics I

Variation with default model parameter *b*

Recall $m(\omega) = m_0(b + \omega)\omega$

Anisotropy check including: all or 1 in 2 or 1 in 3 of the τ datapoints

MEM Systematics II

Stability tests: discarding the last time slices:

Are we seeing a numberof-datapoints (N_{τ}) systematic or a true thermal effect?

MEM systematics

- default model
- time range
- energy discretisation: $\omega = \{\omega_{\min}, \omega_{\min} + \Delta\omega \dots \omega_{\max}\}$
- number of configs
- numerical precision

(All true also for BR)

Recall $\mathcal{I}(\rho) \leq N_t$ for MEM

Can vary this in free case by varying N_t

Feature Resolution

MEM can reproduce features smaller than the characteristic size of its basis functions:

MEM: more than you ever wanted to know

The Task

Given data D

Find fit F by maximising P(F|D)

Bayes Theorem

Need to maximise P(F|D)

Bayes Theorem:

$$P(F|D)P(D) = P(D|F)P(F)$$

i.e.
$$P(F|D) = \frac{P(D|F)P(F)}{P(D)}$$

But
$$P(D|F) \sim e^{-\chi^2} \longrightarrow \text{minimising } \chi^2 \neq \text{maximising } P(F|D) \longrightarrow \text{Maximum Likelihood Method wrong??}$$

No! Since for simple $F(t) = Ze^{-Mt}$, $P(F) = P(Z, M) \sim \text{const}$

Bayes Theorem

Need to maximise P(F|D)

Bayes Theorem:

$$P(F|D)P(D) = P(D|F)P(F)$$

i.e.
$$P(F|D) = \frac{P(D|F)P(F)}{P(D)}$$

But
$$P(D|F) \sim e^{-\chi^2} \longrightarrow \text{minimising } \chi^2 \neq \text{maximising } P(F|D) \longrightarrow \text{Maximum Likelihood Method wrong??}$$

No! Since for simple $F(t) = Ze^{-Mt}$, $P(F) = P(Z, M) \sim \text{const}$

Priors

```
Actually P(F = elephant) \equiv 0
---- "priors" which encode any additional information
(a.k.a. predisposition, prejudices, impartialities, biases, prediliction, subjectivity, . . .)
E.g. in L.G.T. P(M < 0) \equiv 0
```

"Bland"
$$F$$
 has $\mathcal{I}(F)\sim 0$ and $S\gg 0$
"Spiky" F has $\mathcal{I}(F)\gg 0$ and $S\equiv 0$

Priors

```
Actually P(F = elephant) \equiv 0
--- "priors" which encode any additional information
(a.k.a. predisposition, prejudices, impartialities, biases, prediliction, subjectivity, . . .)
E.g. in L.G.T. P(M < 0) \equiv 0
Maximum Likelihood Method applies this prior implicitly
Can encode prior information with "entropy" = S (dis-information)
Define \mathcal{I}(F) = "Information content" of F
               "Bland" F has \mathcal{I}(F) \sim 0 and S \gg 0
               "Spiky" F has \mathcal{I}(F) \gg 0 and S \equiv 0
```

Entropy

	No Data	Data
No Prior	$\mathcal{I}(F)\equiv 0$	<i>F</i> from min χ^2
Prior	$F\equiv prior$	F from max $P(F D)$

$$P(F) = e^{-S}$$