Properties of Thermal Matter: Conductivity, Parity Restoration and the Charmonium Potential

Chris Allton
Swansea University, U.K.

LHPV 2015 Workshop, Cairns, July 2015

FASTSUM Collaboration

Gert Aarts ${ }^{1}$, CRA ${ }^{1}$, Alessandro Amato ${ }^{1,2}$, Davide de Boni ${ }^{1}$, Wynne Evans ${ }^{1,3}$, Pietro Giudice ${ }^{4}$, Simon Hands ${ }^{1}$, Benjamin Jäger ${ }^{1}$, Aoife Kelly ${ }^{5}$, Seyong Kim ${ }^{6}$, Maria-Paola Lombardo ${ }^{7}$, Dhagash Mehta ${ }^{8}$, Bugra Oktay ${ }^{9}$, Chrisanthi Praki ${ }^{1}$, Sinead Ryan ${ }^{10}$, Jon-Ivar Skullerud ${ }^{5}$, Tim Harris ${ }^{10,11}$

```
1 Swansea University
2 University of Helsinki
3 University of Bern
4 Münster University
5 Maynooth University
*}\mathrm{ Sejong University
```

```
7
8 North Carolina State University
9 University of Utah
10 Trinity College Dublin
11 University of Mainz
```


Setting the scene

hadrons
masses
mx els
atomic physics

quarks \& gluons pressure viscosity plasma physics
[http://www.bnl.gov/rhic/news]

Setting the scene

hadrons
masses
mx els
atomic physics

quarks \& gluons pressure viscosity plasma physics

Correlation Functions \leftrightarrow Spectral Functions

Particle Data Book

~ 1,500 pages
zero pages on Quark-Gluon Plasma...

Overview

- Parity Restoration in the Baryon Sector SYMMETRIES arXiv/1505.06616

- Charmonium Potential INTERACTIONS arXiv/1502.03603

- Conductivity, Susceptibility and Diffusion Coefficient

PHENOMENOLOGY

arXiv/1412.6411

Other Work

- Bottomonium and Charmonium Spectral Functions

MELTING
arXiv:1402.6210

FASTSUM set up

- anisotropic lattices $a_{\tau}<a_{S}$
- allowing better resolution, particularly at finite temperatures

$$
\text { since } \quad T=\frac{1}{N_{\tau} a_{\tau}}
$$

- "2nd" generation lattice ensembles
- moving towards continuum, infinite volume, realistic light quark masses

Physics/lattice parameters

2nd Generation

2+1 flavours

larger volume: $(3 \mathrm{fm})^{3}-(4 \mathrm{fm})^{3}$ finer lattices: $a_{s}=0.123 \mathrm{fm}$ quark mass: $M_{\pi} / M_{\rho} \sim 0.45$ temporal cut-off: $a_{\tau} \sim 5.6 \mathrm{GeV}$
$N_{s} \quad N_{\tau} T(\mathrm{MeV}) T / T_{c}$

N_{s}	N_{τ}	$T(\mathrm{MeV})$	T / T_{C}
24,32	16	352	1.90
24	20	281	1.52
24,32	24	235	1.27
24,32	28	201	1.09
24,32	32	176	0.95
24	36	156	0.84
24	40	141	0.76
32	48	117	0.63
16	128	44	0.24

Gauge Action:
Symanzik-improved, tree-level tadpole Fermion Action:
clover, stout-links, tree-level tadpole

Parity Restoration in the Baryon Spectrum

arXiv/1505.06616

Baryons at Finite Temperature

- little work on Baryons @ $T \neq 0$
- DeTar and Kogut (1987) screening masses
- QCD-TARO (2005) $\mu \neq 0$
- Datta et al (2013) quenched

We use a standard baryon operator:

$$
O_{N}(\mathbf{x}, \tau)=\epsilon_{a b c} u_{a}(\mathbf{x}, \tau)\left[u_{b}^{T}(\mathbf{x}, \tau) \mathcal{C} \gamma_{5} d_{c}(\mathbf{x}, \tau)\right]
$$

and parity project it:

$$
O_{N_{ \pm}}(\mathbf{x}, \tau)=P_{ \pm} O_{N_{ \pm}}(\mathbf{x}, \tau)
$$

Forward (+ve) and backward (-ve) parity states in correlator:

$$
\begin{aligned}
G(\tau) & =\int d^{3} x\left\langle O_{N_{+}}(\mathbf{x}, \tau) \bar{O}_{N_{+}}(\mathbf{0}, 0)\right\rangle \\
& =\int_{0}^{\infty} \frac{d \omega}{2 \pi}\left[\frac{e^{-\omega \tau}}{1+e^{-\omega / T}} \rho_{+}(\omega)-\frac{e^{-\omega(1 / T-\tau)}}{1+e^{-\omega / T}} \rho_{-}(\omega)\right]
\end{aligned}
$$

Baryon Correlators

(Using Gaussian smeared baryon operators)

Baryon Correlators

(Using Gaussian smeared baryon operators)

Baryon Correlators

(Using Gaussian smeared baryon operators)
\longrightarrow parity doubling for $T \gtrsim T_{C}$ observed at correlator level

Correlators - Parity Comparison

Experiment:
+ve parity: $M_{N}=939 \mathrm{MeV} \quad$-ve parity: $M_{N *}=1535 \mathrm{MeV}$

Correlators - Parity Comparison

Experiment:
+ve parity: $M_{N}=939 \mathrm{MeV} \quad$-ve parity: $M_{N *}=1535 \mathrm{MeV}$

Naive Exponential Fits

$$
T / T_{c} \quad m_{+}[\mathrm{GeV}] \quad m_{-}[\mathrm{GeV}] \quad m_{+}-m_{-}[\mathrm{MeV}]
$$

0.24	$1.20(3)$	$1.9(3)$	~ 700	cf expt: ~ 600
0.76	$1.18(9)$	$1.6(2)$		
0.84	$1.08(9)$	$1.6(1)$		
0.95	$1.12(14)$	$1.3(2)$		

Parity Comparison

Define $\quad R(t)=\frac{G(\tau)-G\left(N_{\tau}-\tau\right)}{G(\tau)+G\left(N_{\tau}-\tau\right)}$
Datta et al, arXiv:1212.2927
Note: $\quad R(1 / 2 T) \equiv 0$
with: $\quad R(\tau) \equiv 0 \quad$ for parity symmetry

Parity Restoration

Effects of Smearing

Systematics checks of smearing:

- vary n
- vary τ-range

Implies parity doubling is:

- ground state feature (recall Wilson term breaks chiral symmetry)
- not an artefact of smearing

Maximum Entropy Method (MEM)

Cont: $G(\tau)=\int K(\tau, \omega) \rho(\omega) d \omega \quad$ Lat: $\quad G\left(\tau_{i}\right)=\sum_{j} K\left(\tau_{i}, \omega_{j}\right) \rho\left(\omega_{j}\right)$ Input data: $\tau_{i}, i=\{1, \ldots, \mathcal{O}(10)\} \quad$ Output data : $\omega_{j}, j=\left\{1, \ldots, \mathcal{O}\left(10^{3}\right)\right\}$

$$
\longrightarrow \text { ill-posed }
$$

Bayes Th'm:

$$
\begin{aligned}
& P[\rho \mid D H]=\frac{P[D \mid \rho H] P[\rho \mid H]}{P[D \mid H]} \propto \exp \left(-\chi^{2}+\alpha S\right) \\
& H=\text { prior knowledge } \quad D=\text { data }
\end{aligned}
$$

Shannon-Jaynes entropy: $S=\int_{0}^{\infty} \frac{d \omega}{2 \pi}\left[\rho(\omega)-m(\omega)-\rho(\omega) \ln \frac{\rho(\omega)}{m(\omega)}\right]$

Maximum Entropy Method (MEM)

Cont: $G(\tau)=\int K(\tau, \omega) \rho(\omega) d \omega \quad$ Lat: $\quad G\left(\tau_{i}\right)=\sum_{j} K\left(\tau_{i}, \omega_{j}\right) \rho\left(\omega_{j}\right)$ Input data: $\tau_{i}, i=\{1, \ldots, \mathcal{O}(10)\} \quad$ Output data : $\omega_{j}, j=\left\{1, \ldots, \mathcal{O}\left(10^{3}\right)\right\}$

\longrightarrow ill-posed

Bayes Th'm: $\quad P[\rho \mid D H]=\frac{P[D \mid \rho H] P[\rho \mid H]}{P[D \mid H]} \propto \exp \left(-\chi^{2}+\alpha S\right)$

$$
H=\text { prior knowledge } \quad D=\text { data }
$$

Shannon-Jaynes entropy: $\quad S=\int_{0}^{\infty} \frac{d \omega}{2 \pi}\left[\rho(\omega)-m(\omega)-\rho(\omega) \ln \frac{\rho(\omega)}{m(\omega)}\right]$
Competition between minimising χ^{2} and maximising S
Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459

Example Spectral Functions

$$
G_{2}(t) \sim \int \rho(\omega) e^{-\omega t} d \omega
$$

©

Stable

Example Spectral Functions

$$
G_{2}(t) \sim \int \rho(\omega) e^{-\omega t} d \omega
$$

Example Spectral Functions

$$
G_{2}(t) \sim \int \rho(\omega) e^{-\omega t} d \omega
$$

MEM for finite T baryons

Recall: $\quad G(\tau)=\int d^{3} x\left\langle O_{N_{+}}(\mathbf{x}, \tau) \bar{O}_{N_{+}}(\mathbf{0}, 0)\right\rangle$

$$
=\int_{0}^{\infty} \frac{d \omega}{2 \pi}\left[\frac{e^{-\omega \tau}}{1+e^{-\omega / T}} \rho_{+}(\omega)-\frac{e^{-\omega(1 / T-\tau)}}{1+e^{-\omega / T}} \rho_{-}(\omega)\right]
$$

So can define: $\quad K(\tau, \omega)=\frac{e^{-\omega \tau}}{1+e^{-\omega / T}} \quad \omega>0$

$$
=\frac{e^{+\omega(1 / T-\tau)}}{1+e^{+\omega / T}} \quad \omega<0
$$

and use MEM with $\quad G(\tau) \equiv \int_{-\infty}^{+\infty} K(\tau, \omega) \rho(\omega) d \omega$

$$
\begin{array}{rlrl}
\text { giving: } & \rho_{+}(\omega) & \equiv \rho(\omega) & \\
& \rho_{-}(-\omega) & \equiv-\rho(\omega) & \\
\omega<0
\end{array}
$$

(Need to assume $\rho(\omega)$ is positive definite for MEM to work)

Baryonic Spectral Functions

Preliminary

Charmonium Potential charmonium potential

arXiv/1502.03603

Lattice goes Nuclear

N-N potential

HAL QCD Collaboration, Aoki, Doi, Hatsuda, Ikeda, Inoue, Ishii, Murano, Nemura, Sasaki
lida, Ikeda PoS LATTICE2011(2011)195

Schrödinger Equation Approach

haL QCD Collaboration, S. Aoki et al. [arXiv:1206.5088]
Schrödinger equation used to "reverse engineer" the potential, $V(r)$, given the Nambu- Bethe-Salpeter wavefunction, $\psi(r)$:

$$
\left(\frac{p^{2}}{2 M}+V(r)\right) \psi(r)=E \psi(r)
$$

$\psi(r)$ is determined from correlators of non-local operators,

$$
\begin{aligned}
J(x ; \vec{r}) & =q(x) \Gamma U(x, x+\vec{r}) \bar{q}(x+\vec{r}) \\
C(\vec{r}, t) & =\sum_{\vec{x}}\langle J(0 ; \vec{r}=\overrightarrow{0}) J(x ; \vec{r})\rangle \\
& \left.\longrightarrow \psi(r) e^{-M t} \text { where }\langle 0| J(x ; \vec{r}) \mid \text { gnd }\right\rangle \approx \psi(r)
\end{aligned}
$$

Schrödinger Equation Approach

hAL QCD Collaboration, S. Aoki et al. [arXiv:1206.5088]
Schrödinger equation used to "reverse engineer" the potential, $V(r)$, given the Nambu- Bethe-Salpeter wavefunction, $\psi(r)$:

$$
\begin{array}{cccc}
& \text { input } & \text { input } \\
& \downarrow & \downarrow & \downarrow \\
\left(\frac{p^{2}}{2 M}+V(r)\right) & \psi(r)=E & \psi(r) \\
\downarrow & & \\
\text { output } & &
\end{array}
$$

$\psi(r)$ is determined from correlators of non-local operators,

$$
\begin{aligned}
J(x ; \vec{r}) & =q(x) \Gamma U(x, x+\vec{r}) \bar{q}(x+\vec{r}) \\
C(\vec{r}, t) & =\sum_{\vec{x}}\langle J(0 ; \vec{r}=\overrightarrow{0}) J(x ; \vec{r})\rangle \\
& \left.\longrightarrow \psi(r) e^{-M t} \text { where }\langle 0| J(x ; \vec{r}) \mid \text { gnd }\right\rangle \approx \psi(r)
\end{aligned}
$$

hal qCD Time Dependent Method

SOURCE SINK

$$
J_{\Gamma}(x ; \mathbf{r})=\bar{q}(x)\ulcorner U(x, x+\mathbf{r}) q(x+\mathbf{r})
$$

Local Extended Correlation Functions

$$
J_{\Gamma}(\mathbf{x}, \tau ; \mathbf{r})
$$

$$
C_{\Gamma}(\mathbf{r}, \tau)=\sum_{\mathbf{x}}\left\langle J_{\Gamma}(\mathbf{x}, \tau ; \mathbf{r}) J_{\Gamma}^{\dagger}(0 ; \mathbf{0})\right\rangle
$$

$$
C_{\Gamma}(\mathbf{r}, \tau)=\sum_{j} \frac{\psi_{j}^{*}(\mathbf{0}) \psi_{j}(\mathbf{r})}{2 E_{j}}\left(e^{-E_{j} \tau}+e^{-E_{j}\left(N_{\tau}-\tau\right)}\right) \approx \sum_{j} \psi_{j}(\mathbf{r}) e^{-E_{j} \tau} \quad \begin{aligned}
& \text { ignoring } \\
& \text { backward mover }
\end{aligned}
$$

$$
\text { Schrödinger Eqn } \quad E_{j} \Psi_{j}(r)=\left(-\frac{\nabla_{r}^{2}}{2 \mu}+V_{\Gamma}(r)\right) \Psi_{j}(r)
$$

$$
\begin{aligned}
\frac{\partial C_{\Gamma}(\mathbf{r}, \tau)}{\partial \tau}=-\sum_{j} E_{j} \Psi_{j}(\mathbf{r}) e^{-E_{j} \tau} & =\sum_{j}\left(\frac{\nabla_{r}^{2}}{2 \mu}-V_{\Gamma}(r)\right) \Psi_{j}(r) e^{-E_{j} \tau} \\
\frac{\partial C_{\Gamma}(\mathbf{r}, \tau)}{\partial \tau} & =\left(\frac{\nabla_{r}^{2}}{2 \mu}-V_{\Gamma}(r)\right) C_{\Gamma}(\mathbf{r}, \tau)
\end{aligned}
$$

HAL QCD Time Dependent Method

SOURCE SINK

$J_{\Gamma}(x ; \mathbf{r})=\bar{q}(x)\ulcorner U(x, x+\mathbf{r}) q(x+\mathbf{r})$
Local Extended Correlation Functions

$$
J_{\Gamma}(\mathbf{x}, \tau ; \mathbf{r})
$$

$$
C_{\Gamma}(\mathbf{r}, \tau)=\sum_{\mathbf{x}}\left\langle J_{\Gamma}(\mathbf{x}, \tau ; \mathbf{r}) J_{\Gamma}^{\dagger}(0 ; \mathbf{0})\right\rangle
$$

$C_{\Gamma}(\mathbf{r}, \tau)=\sum_{j} \frac{\psi_{j}^{*}(\mathbf{0}) \psi_{j}(\mathbf{r})}{2 E_{j}}\left(e^{-E_{j} \tau}+e^{-E_{j}\left(N_{\tau}-\tau\right)}\right) \approx \sum_{j} \psi_{j}(\mathbf{r}) e^{-E_{j} \tau} \quad \begin{aligned} & \quad \text { ignoring } \\ & \quad \text { backward mover }\end{aligned}$
Schrödinger Eqn $\quad E_{j} \Psi_{j}(r)=\left(-\frac{\nabla_{r}^{2}}{2 \mu}+V_{\Gamma}(r)\right) \Psi_{j}(r)$

$$
\begin{aligned}
\frac{\partial C_{\Gamma}(\mathbf{r}, \tau)}{\partial \tau}=-\sum_{j} E_{j} \Psi_{j}(\mathbf{r}) e^{-E_{j} \tau} & =\sum_{j}\left(\frac{\nabla_{r}^{2}}{2 \mu}-V_{\Gamma}(r)\right) \Psi_{j}(r) e^{-E_{j} \tau} \\
\frac{\partial C_{\Gamma}(\mathbf{r}, \tau)}{\partial \tau} & =\left(\frac{\nabla_{r}^{2}}{2 \mu}-V_{\Gamma}(r)\right) C_{\Gamma}(\mathbf{r}, \tau)
\end{aligned}
$$

Correlation Functions

PS channel $0.76 T_{C}\left(N_{\tau}=40\right)$

Central Potentials - cold

Central Potentials - hot

$$
V_{\Gamma}(\mathbf{r})=V_{\mathrm{C}}(\mathbf{r})+V_{\mathrm{S}}(\mathbf{r}) s_{1} \cdot s_{2} \quad \longrightarrow \quad V_{\mathrm{C}}(\mathbf{r})=\frac{1}{4} V_{\mathrm{PS}}+\frac{3}{4} V_{\mathrm{V}} \quad V_{\mathrm{S}}(\mathbf{r})=V_{\mathrm{V}}-V_{\mathrm{PS}}
$$

Fitting Ranges

$T / T_{\mathrm{C}} \quad N_{\tau}$ Best Range Lower Range

0.24	128	$30-63$	$15-19$
0.76	40	$15-19$	$12-17$
0.84	36	$12-17$	$11-15$
0.95	32	$11-15$	$11-13$
1.09	28	$11-13$	$9-11$
1.27	24	$9-11$	N/A

Central Potential Results

Cornell Potential Comparison

Karsch, hep-ph/0512217, "Continuum Cornell": $\alpha=\pi / 12, \sqrt{\sigma}=445 \mathrm{GeV}$

String Tension

$$
V(r)=-\frac{\alpha_{\mathrm{c}}}{r}+\sigma r+C
$$

Debye Screening

Karsch, Mehr, Satz, Z.Phys. C37 (1988) 617

$$
V(r, T)=-\frac{\alpha_{s}}{r} e^{-m_{D}(T) r}+\frac{\sigma}{m_{D}(T)}\left(1-e^{-m_{D}(T) r}\right)+C
$$

$m_{D}(T)=$ the Debye screening mass.
$\sigma=434 \mathrm{MeV}$ (i.e. fixed to "zero" temperature value)

Spin-Dependent Potentials

$V_{\Gamma}(\mathbf{r})=V_{\mathrm{C}}(\mathbf{r})+V_{\mathrm{S}}(\mathbf{r}) s_{1} \cdot s_{2} \quad \longrightarrow \quad V_{\mathrm{C}}(\mathbf{r})=\frac{1}{4} V_{\mathrm{PS}}+\frac{3}{4} V_{\mathrm{V}} \quad V_{\mathrm{S}}(\mathbf{r})=V_{\mathrm{V}}-V_{\mathrm{PS}}$

Comparison with 1st generation

Comparison with Static Quark Potential

$$
\frac{F_{1}(r, T)}{T}=-\log \left[\operatorname{Tr}\left(L_{\mathrm{ren}}(0) L_{\mathrm{ren}}(r)\right)\right] \quad L_{\mathrm{ren}}=\text { renormalised Polyakov loop }
$$

Kaczmarek, arXiv:0710.0498

Charmonia Properties from the Potential: Radii

Using the parameterised screened potential from Lattice

$$
V(r, T)=-\frac{\alpha_{s}}{r} e^{-m_{D}(T) r}+\frac{\sigma}{m_{D}(T)}\left(1-e^{-m_{D}(T) r}\right)+C
$$

and solve Schrödinger Equation

Preliminary

Charmonia Properties from Potential: Binding Energy

Binding Energy $=M(T)-V(r \rightarrow \infty, T)=M(T)-\frac{m_{D}}{\sigma}-C$

- 1P melts $\lesssim 1.2 T_{C}$
- 1 S remains bound up to at least $1.2 T_{C}$

Charmonia Properties from Potential: Binding Energy

Binding Energy $=M(T)-V(r \rightarrow \infty, T)=M(T)-\frac{m_{D}}{\sigma}-C$

- 1P melts $\lesssim 1.2 T_{C}$
- 1 S remains bound up to at least $1.2 T_{C}$

Conductivity \& Light Quark Diffusivity

arXiv:1412.6411, arXiv:1307.6763

Electrical conductivity on the lattice

$$
\text { EM current: } \quad j_{\mu}^{\mathrm{em}}=\frac{2 e}{3} j_{\mu}^{\mathrm{u}}-\frac{e}{3} j_{\mu}^{\mathrm{d}}-\frac{e}{3} j_{\mu}^{\mathrm{s}}
$$

EM Correlator: $\quad G_{\mu \nu}^{\mathrm{em}}(\tau)=\int d^{3} x\left\langle j_{\mu}^{\mathrm{em}}(\tau, \mathbf{x}) j_{\nu}^{\mathrm{em}}(0,0)^{\dagger}\right\rangle$
Spectral decomposition:

$$
G_{\mu \nu}^{\mathrm{em}}(\tau)=\int_{0}^{\infty} \frac{d \omega}{2 \pi} K(\tau, \omega) \rho_{\mu \nu}^{\mathrm{em}}(\omega) \quad \text { with } K(\tau, \omega)=\frac{\cosh [\omega(\tau-1 / 2 T)]}{\sinh [\omega / 2 T]}
$$

Conductivity: $\quad \frac{\sigma}{T}=\frac{1}{6 T} \lim _{\omega \rightarrow 0} \frac{\rho^{\mathrm{em}}(\omega)}{\omega}$
Relationship to Diffusivity: $D_{\chi Q}=\sigma$

Conserved (lattice) vector current used for j_{μ}^{jem}

$$
V_{\mu}^{\subset}(x)=\left[\bar{\psi}(x+\hat{\mu})\left(1+\gamma_{\mu}\right) U_{\mu}^{\dagger}(x) \psi(x)-\bar{\psi}(x)\left(1-\gamma_{\mu}\right) U_{\mu}(x) \psi(x+\hat{\mu})\right]
$$

Example Spectral Functions

$$
G_{2}(t) \sim \int \rho(\omega) e^{-\omega t} d \omega
$$

Conserved Vector Correlators

Vector Spectral Function

Using default model: $\quad m(\omega)=m_{0}(b+\omega) \omega$

Vector Spectral Functions

Recall $\sigma \sim \lim _{\omega \rightarrow 0} \frac{\rho(\omega)}{\omega}$

Conductivity Result

Useful to factor out charge:
$C_{\mathrm{em}}=e^{2} \sum_{f} q_{f}^{2}$

Rectangles = default model systematic (i.e. b). Recall :
$m(\omega)=m_{0}(b+\omega) \omega$
Whiskers = statistical error

Diffusion Coefficient

Relationship to Diffusivity: $\quad D=\sigma / \chi_{Q}$

Summary 1

Baryonic Parity Restoration

- Signicant thermal effects in -ve parity nucleon
- No observed thermal modification of + ve parity mass below T_{C}
- Degeneracy in ground state of baryonic parity partners above T_{c}
- Finite temperature baryonic spectral functions determined

ω

Summary 2

Charmonium Potential

- Relativistic quarks rather than static quarks
- Finite temperature rather than $T=0$
- Clear temperature dependent effect

- Matches Debye-screened formula with $m_{D} \approx 0$ for $T<T_{C}$

Conductivity \& Light Quark Diffusivity

- 2+1 flavour conductivity calculated as function of temperature
- Finite temperature diffusion coefficient determined

Physics/lattice parameters

2nd Generation

2+1 flavours
larger volume: $(3 \mathrm{fm})^{3}-(4 \mathrm{fm})^{3}$ finer lattices: $a_{s}=0.123 \mathrm{fm}$ quark mass: $M_{\pi} / M_{\rho} \sim 0.45$
temporal cut-off: $a_{\tau} \sim 5.6 \mathrm{GeV}$

N_{s}	N_{τ}	$T(\mathrm{MeV})$	T / T_{c}
24,32	16	352	1.90
24	20	281	1.52
24,32	24	235	1.27
24,32	28	201	1.09
24,32	32	176	0.95
24	36	156	0.84
24	40	141	0.76
32	48	117	0.63
16	128	44	0.24

3rd Generation

2+1 flavours

larger volume: $(3 \mathrm{fm})^{3}-(4 \mathrm{fm})^{3}$ finer lattices: $a_{s}=0.123 \mathrm{fm}$ quark mass: $M_{\pi} / M_{\rho} \sim 0.45$ temporal cut-off: $a_{\tau} \sim 11.2 \mathrm{GeV}$
$N_{s} \quad N_{\tau} \quad T(\mathrm{MeV}) T / T_{c}$

Particle Data Book

~ 1,500 pages
zero pages on Quark-Gluon Plasma...

SLIDES TO HELP ME ANSWER DUMB QUESTIONS

SLIDES TO HELP ME ANSWER TRICKY QUESTIONS

Physics/lattice parameters

1st Generation

2 flavours

smaller volume: $(2 \mathrm{fm})^{3}$ coarser lattices: $a_{s}=0.167 \mathrm{fm}$ quark mass: $M_{\pi} / M_{\rho} \sim 0.55$ temporal cut-off: $a_{\tau} \sim 7.4 \mathrm{GeV}$

$$
N_{s} N_{\tau} T(\mathrm{MeV}) T / T_{c}
$$

N_{S}	N_{τ}	$T(\mathrm{MeV})$	T / T_{c}
12	16	460	2.09
12	18	409	1.86
12	20	368	1.68
12	24	306	1.40
12	28	263	1.20
12	32	230	1.05
12	80	90	0.42

2nd Generation

2+1 flavours

larger volume: $(3 \mathrm{fm})^{3}-(4 \mathrm{fm})^{3}$ finer lattices: $a_{s}=0.123 \mathrm{fm}$ quark mass: $M_{\pi} / M_{\rho} \sim 0.45$ temporal cut-off: $a_{\tau} \sim 5.6 \mathrm{GeV}$

N_{s}	N_{τ}	$T(\mathrm{MeV})$	T / T_{C}
24,32	16	352	1.90
24	20	281	1.52
24,32	24	235	1.27
24,32	28	201	1.09
24,32	32	176	0.95
24	36	156	0.84
24	40	141	0.76
32	48	117	0.63
16	128	44	0.24

Effects of Smearing

Above results used Gaussian smearing with sources/sinks, η smeared with:
$\eta^{\prime}=C(1+\kappa H)^{n} \eta$ using $\kappa=8.7$ and $n=140$ Capitani et al [arXiv:1205.0180]
Systematics checks of smearing

- vary n
- vary τ-range

Effects of Smearing

Above results used Gaussian smearing with sources/sinks, η smeared with:
$\eta^{\prime}=C(1+\kappa H)^{n} \eta$ using $\kappa=8.7$ and $n=140$ Capitani et al [arXiv:1205.0180]
Systematics checks of smearing:

- vary n
- vary τ-range

Baryonic Spectral Functions - Systematic Checks

Checking systematics by using MEM on fixed τ windows:

$$
\tau=1,2, \ldots 7, N_{\tau}-7, N_{\tau}-6, \ldots, N_{\tau}-1
$$

Preliminary

Volume Effects

$N_{s}=24$ cf $N_{s}=32$ for $1.27 T_{c}\left(N_{\tau}=24\right)$

Naive Temporal Term in Potential

PS $\quad 0.76 T_{C}$ using the naive form

$$
\frac{\partial}{\partial \tau} f(\tau) \longrightarrow\left[\frac{f\left(\tau+a_{\tau}\right)-f\left(\tau-a_{\tau}\right)}{2 a_{\tau}}\right]
$$

Improved Temporal Term in Potential

PS $0.76 T_{C}$ using the improved form Durr 1203.2560

$$
\tilde{E}_{0}(\tau)=\frac{1}{2} \log \left(\frac{C_{\Gamma}(\tau-1)+\sqrt{C_{\Gamma}(\tau-1)^{2}-C_{\Gamma}\left(N_{\tau} / 2\right)^{2}}}{C_{\Gamma}(\tau+1)+\sqrt{C_{\Gamma}(\tau+1)^{2}-C_{\Gamma}\left(N_{\tau} / 2\right)^{2}}}\right)
$$

Renormalising the Polyakov Loop

Polyakov Loop, L, related to free energy, F, via:

$$
L(T)=e^{-F(T) / T}
$$

But F defined up to addivitive constant $\Delta F=f(\beta, \kappa)$. Imposing renormalisation condition:

$$
L_{R}\left(T_{R}\right) \equiv \text { some number }
$$

gives us
$L_{R}(T)=e^{-F_{R}(T) / T}=e^{-\left(F_{0}(T)+\Delta F\right) / T}=L_{0}(T) e^{-\Delta F / T}=L_{0}(T) Z_{L} N_{\tau}$
and Z_{L} defined from renormalisation condition.
Wuppertal-Budapest, PLB713(2012)342 [1204.4089]

T_{C} from Polyakov Loop

Scheme A: $L_{R}(N t=16)=1.0$
Scheme B: $L_{R}(N t=20)=1.0$
Cubic spline, solid $=32^{3}$, open $=24^{3}$

Scheme C: $L_{R}(N t=20)=0.5$

$$
\longrightarrow \quad N_{\tau}^{\text {crit }}=30.4(7) \text { or } T_{c}=171(4) \mathrm{MeV}
$$

Susceptibilities' Definitions

$$
\begin{gathered}
n_{i}=\frac{T}{V} \frac{\partial \ln Z}{\partial \mu_{i}} \quad \chi_{i j}=\frac{T}{V} \frac{\partial^{2} \ln Z}{\partial \mu_{i} \partial \mu_{j}} \\
Q=\frac{T}{V} \frac{\partial \ln Z}{\partial \mu_{Q}}=\sum_{i=1}^{3} q_{i} n_{i} \quad \chi_{Q}=\frac{\partial Q}{\partial \mu_{Q}}=\sum_{i=1}^{3}\left(q_{i}\right)^{2} \chi_{i i}+\sum_{i \neq j}^{3} q_{i} \\
B=\frac{T}{V} \frac{\partial \ln Z}{\partial \mu_{B}}=\sum_{i=1}^{3} n_{i} \quad \chi_{B}=\frac{\partial B}{\partial \mu_{B}}=\sum_{i=1}^{3} \chi_{i i}+\sum_{i \neq j}^{3} \chi_{i j} \\
\mu_{I}=\mu_{d}-\mu_{U} \quad \chi_{I}=\frac{T}{V} \frac{\partial^{2} \ln Z}{\partial \mu_{I}^{2}}
\end{gathered}
$$

Susceptibilities

$\chi_{\mathrm{S} B}$ is Stefan-Boltzman (free) result

Conserved Vector Correlators vs Free

MEM Systematics I

Variation with default model parameter b

Recall $m(\omega)=m_{0}(b+\omega) \omega$

Anisotropy check including:
all or 1 in 2 or 1 in 3 of the τ datapoints

MEM Systematics II

Are we seeing a number-of-datapoints $\left(N_{\tau}\right)$ systematic or a true thermal effect?

MEM systematics

- default model
- time range
- energy discretisation: $\omega=\left\{\omega_{\min }, \omega_{\min }+\Delta \omega \ldots \omega_{\max }\right\}$
- number of configs
- numerical precision
(All true also for BR)

Recall $\mathcal{I}(\rho) \leq N_{t}$ for MEM
Can vary this in free case by varying N_{t}

Feature Resolution

MEM can reproduce features smaller than the characteristic size of its basis functions:

MEM: more than you ever wanted to know

gen2_NRQCD_40 sonia_40_spp_i_000 K=.00000,.00000 \# 2
$\mathrm{t}=2-38 \mathrm{Err}=\mathrm{J}$ Sym=N \#cfgs=502\#cfg/clus= 1

The Task

Given data D

Find fit F by maximising $P(F \mid D)$

Bayes Theorem

Need to maximise $P(F \mid D)$
Bayes Theorem:

$$
P(F \mid D) P(D)=P(D \mid F) P(F)
$$

Bayes Theorem

Need to maximise $P(F \mid D)$
Bayes Theorem:

$$
\begin{aligned}
& P(F \mid D) P(D)=P(D \mid F) P(F) \\
& \text { i.e. } \quad P(F \mid D)=\frac{P(D \mid F) P(F)}{P(D)}
\end{aligned}
$$

But $P(D \mid F) \sim e^{-\chi^{2}} \longrightarrow$ minimising $\chi^{2} \neq$ maximising $P(F \mid D)$ \longrightarrow Maximum Likelihood Method wrong??

No! Since for simple $F(t)=Z e^{-M t}, P(F)=P(Z, M) \sim$ const

Priors

Actually $P(F=$ elephant $) \equiv 0$
\longrightarrow "priors" which encode any additional information
(a.k.a. predisposition, prejudices, impartialities, biases, predilicion, subjectivit, ...)
E.g. in L.G.T. $P(M<0) \equiv 0$

Maximum Likelihood Method applies this prior implicitly
Can encode prior information with "entropy" $=S$ (dis-information)
Define $T(F)=$ "Information content" of F

Priors

Actually $P(F=$ elephant $) \equiv 0$
\longrightarrow "priors" which encode any additional information
(a.k.a. predisposition, prejudices, impartialities, biases, predilicion, subjectivit, ...)
E.g. in L.G.T. $P(M<0) \equiv 0$

Maximum Likelihood Method applies this prior implicitly
Can encode prior information with "entropy" $=S$ (dis-information)
Define $I(F)=$ "Information content" of F
"Bland" F has $I(F) \sim 0$ and $S \gg 0$
"Spiky" F has $\mathcal{I}(F) \gg 0$ and $S \equiv 0$

Entropy

	No Data	Data
No Prior	$\mathcal{I}(F) \equiv 0$	F from min χ^{2}
Prior	$F \equiv$ prior	F from max $P(F \mid D)$
$\qquad P(F)=e^{-S}$		

