

Hadron Structure using the Feynman-Hellmann Theorem

Alexander Chambers Ross Young & James Zanotti QCDSF-UKQCD/CSSM Collaborations

University of Adelaide

23rd July 2015

Want to demonstrate how a Feynman-Hellmann approach can be used to tackle two important problems in lattice QCD

Want to demonstrate how a Feynman-Hellmann approach can be used to tackle two important problems in lattice QCD

Disconnected contributions to matrix elements

Want to demonstrate how a Feynman-Hellmann approach can be used to tackle two important problems in lattice QCD

Disconnected contributions to matrix elements

High-momentum form factors

The proton is a spin- $\frac{1}{2}$ baryon

The proton is a spin- $\frac{1}{2}$ baryon

Where does this spin come from?

The proton is a spin- $\frac{1}{2}$ baryon

Where does this spin come from?

The proton is a complex object

The proton is a spin- $\frac{1}{2}$ baryon

Where does this spin come from?

The proton is a complex object

• Bound state of 3 spin- $\frac{1}{2}$ quarks (u, u, d)

The proton is a spin- $\frac{1}{2}$ baryon

Where does this spin come from?

The proton is a complex object

- Bound state of 3 spin- $\frac{1}{2}$ quarks (u, u, d)
- Quarks interact via spin-1 gluons

The proton is a spin- $\frac{1}{2}$ baryon

Where does this spin come from?

The proton is a complex object

- Bound state of 3 spin- $\frac{1}{2}$ quarks (u, u, d)
- Quarks interact via spin-1 gluons
- These all have orbital angular momentum

The proton is a spin- $\frac{1}{2}$ baryon

Where does this spin come from?

The proton is a complex object

- Bound state of 3 spin- $\frac{1}{2}$ quarks (u, u, d)
- Quarks interact via spin-1 gluons
- These all have orbital angular momentum

We can break up the total spin into 3 contributions

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + J_g$$

The proton is a spin- $\frac{1}{2}$ baryon

Where does this spin come from?

The proton is a complex object

- Bound state of 3 spin- $\frac{1}{2}$ quarks (u, u, d)
- Quarks interact via spin-1 gluons
- These all have orbital angular momentum

We can break up the total spin into 3 contributions

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + J_g$$

• $\Delta\Sigma \longrightarrow \text{quark spin}$

The proton is a spin- $\frac{1}{2}$ baryon

Where does this spin come from?

The proton is a complex object

- Bound state of 3 spin- $\frac{1}{2}$ quarks (u, u, d)
- Quarks interact via spin-1 gluons

These all have orbital angular momentum

We can break up the total spin into 3 contributions

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + J_g$$

• $\Delta\Sigma \longrightarrow \text{quark spin}$

• $L_q \longrightarrow$ quark orbital angular momentum

The proton is a spin- $\frac{1}{2}$ baryon

Where does this spin come from?

The proton is a complex object

- Bound state of 3 spin- $\frac{1}{2}$ quarks (u, u, d)
- Quarks interact via spin-1 gluons

These all have orbital angular momentum

We can break up the total spin into 3 contributions

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + J_g$$

• $\Delta\Sigma \longrightarrow \text{quark spin}$

• $L_q \longrightarrow$ quark orbital angular momentum

• $J_g \longrightarrow$ gluon angular momentum

The proton is a spin- $\frac{1}{2}$ baryon

Where does this spin come from?

The proton is a complex object

- Bound state of 3 spin- $\frac{1}{2}$ quarks (u, u, d)
- Quarks interact via spin-1 gluons

These all have orbital angular momentum

We can break up the total spin into 3 contributions

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + J_g$$

• $\Delta\Sigma \longrightarrow \text{quark spin}$

• $L_q \longrightarrow$ quark orbital angular momentum

 $\blacktriangleright \quad J_g \quad \longrightarrow \text{gluon angular momentum}$

Can we calculate these spin fractions using lattice QCD?

Yes and no

Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann

Lattice has seen varying success in calculations of these spin fractions

Lattice has seen varying success in calculations of these spin fractions

Quark Spin $\Delta\Sigma$

Lattice has seen varying success in calculations of these spin fractions

Quark Spin $\Delta\Sigma$

Experimentally around 30%

Lattice has seen varying success in calculations of these spin fractions

Quark Spin $\Delta\Sigma$

- Experimentally around 30%
- Lattice usually gets around 50-60%

Lattice has seen varying success in calculations of these spin fractions

Quark Spin $\Delta\Sigma$

- Experimentally around 30%
- Lattice usually gets around 50-60%

Could still be unresolved systematic errors?

Lattice has seen varying success in calculations of these spin fractions

Quark Spin $\Delta\Sigma$

- Experimentally around 30%
- Lattice usually gets around 50-60%

Could still be unresolved systematic errors?

Chiral extrapolation, volume dependence, etc.

Lattice has seen varying success in calculations of these spin fractions

Quark Spin $\Delta\Sigma$

- Experimentally around 30%
- Lattice usually gets around 50-60%

Could still be unresolved systematic errors?

Chiral extrapolation, volume dependence, etc.

Strange contribution Δs could be large

Lattice has seen varying success in calculations of these spin fractions

Quark Spin $\Delta\Sigma$

- Experimentally around 30%
- Lattice usually gets around 50-60%

Could still be unresolved systematic errors?

Chiral extrapolation, volume dependence, etc.

Strange contribution Δs could be large

Disconnected contributions are difficult to calculate

Lattice has seen varying success in calculations of these spin fractions

Quark Spin $\Delta\Sigma$

- Experimentally around 30%
- Lattice usually gets around 50-60%

Could still be unresolved systematic errors?

Chiral extrapolation, volume dependence, etc.

Strange contribution Δs could be large

Disconnected contributions are difficult to calculate

Gluon Angular Momentum J_g

Lattice has seen varying success in calculations of these spin fractions

Quark Spin $\Delta\Sigma$

- Experimentally around 30%
- Lattice usually gets around 50-60%

Could still be unresolved systematic errors?

Chiral extrapolation, volume dependence, etc.

Strange contribution Δs could be large

Disconnected contributions are difficult to calculate

Gluon Angular Momentum J_g

Difficult to access purely disconnected contributions

Lattice has seen varying success in calculations of these spin fractions

Quark Spin $\Delta\Sigma$

- Experimentally around 30%
- Lattice usually gets around 50-60%

Could still be unresolved systematic errors?

Chiral extrapolation, volume dependence, etc.

Strange contribution Δs could be large

Disconnected contributions are difficult to calculate

Gluon Angular Momentum J_g

Difficult to access purely disconnected contributions

Running theme: Complete calculations in both cases require access to disconnected contributions

Disconnected Contributions

Two groups of contributions to matrix elements

Connected

Connected

Straightforward to calculate

Connected

 $\langle H' \mid \mathcal{O} \mid H \rangle$

- Straightforward to calculate
- Methods used are very well-established

Connected

 $\langle H' \mid \mathcal{O} \mid H \rangle$

Disconnected

- Straightforward to calculate
- Methods used are very well-established

Connected

 $\langle H' \mid \mathcal{O} \mid H \rangle$

- Straightforward to calculate
- Methods used are very well-established

All-to-all propagators unfeasible

Connected

 $\langle H' \mid \mathcal{O} \mid H \rangle$

- Straightforward to calculate
- Methods used are very well-established

- All-to-all propagators unfeasible
- Some success with stochastic estimation

Connected

 $\langle H' \mid \mathcal{O} \mid H \rangle$

- Straightforward to calculate
- Methods used are very well-established

- All-to-all propagators unfeasible
- Some success with stochastic estimation
- Lots of room for improvement

Disconnected Contributions

J. Green, S. Meinel et al.

Disconnected Contributions

Two groups of contributions to matrix elements

Connected

- $\langle H' \mid \mathcal{O} \mid H \rangle$
- Straightforward to calculate
- Methods used are very well-established

- All-to-all propagators unfeasible
- Some success with stochastic estimation
- Lots of room for improvement

Feynman-Hellmann method can access both contributions

Want to calculate some forward matrix element

 $\langle H(\vec{p}) \,|\, \mathcal{O}(0) \,|\, H(\vec{p}) \,\rangle$

Want to calculate some forward matrix element

 $\langle H(\vec{p}) | O(0) | H(\vec{p}) \rangle$

1. Include an extra term in the QCD Lagrangian

Want to calculate some forward matrix element

 $\langle H(\vec{p}) | O(0) | H(\vec{p}) \rangle$

1. Include an extra term in the QCD Lagrangian

$$\mathcal{L}
ightarrow \mathcal{L} + \lambda \mathcal{O}$$

 \blacktriangleright λ is a parameter you control

Want to calculate some forward matrix element

 $\langle H(\vec{p}) | O(0) | H(\vec{p}) \rangle$

1. Include an extra term in the QCD Lagrangian

- \blacktriangleright λ is a parameter you control
- 2. Measure energy of your hadron state while changing λ

Want to calculate some forward matrix element

 $\langle H(\vec{p}) | O(0) | H(\vec{p}) \rangle$

1. Include an extra term in the QCD Lagrangian

- λ is a parameter you control
- 2. Measure energy of your hadron state while changing $\boldsymbol{\lambda}$
 - Use standard lattice spectroscopy techniques

Want to calculate some forward matrix element

 $\langle H(\vec{p}) | O(0) | H(\vec{p}) \rangle$

1. Include an extra term in the QCD Lagrangian

- \blacktriangleright λ is a parameter you control
- 2. Measure energy of your hadron state while changing λ
 - Use standard lattice spectroscopy techniques
- 3. Calculate matrix element from energy shifts with respect to $\boldsymbol{\lambda}$

$$\frac{\partial E}{\partial \lambda}\Big|_{\lambda=0} = \frac{1}{2E} \langle H(\vec{p}) | \mathcal{O}(0) | H(\vec{p}) \rangle$$

Want to calculate some forward matrix element

 $\langle H(\vec{p}) | O(0) | H(\vec{p}) \rangle$

1. Include an extra term in the QCD Lagrangian

 $\mathcal{L}
ightarrow \mathcal{L} + \lambda \mathcal{O}$

- λ is a parameter you control
- 2. Measure energy of your hadron state while changing λ
 - Use standard lattice spectroscopy techniques
- 3. Calculate matrix element from energy shifts with respect to $\boldsymbol{\lambda}$

$$\frac{\partial E}{\partial \lambda}\Big|_{\lambda=0} = \frac{1}{2E} \langle H(\vec{p}) | \mathcal{O}(0) | H(\vec{p}) \rangle$$

Calculation of matrix element \rightarrow hadron spectroscopy

In lattice we estimate path-integrals with weighted sums

$$\frac{1}{Z}\int \mathcal{D}A\,\mathcal{D}\bar{\psi}\,\mathcal{D}\psi\,\mathcal{O}[A,\bar{\psi},\psi]\,e^{-\mathcal{S}[A,\bar{\psi},\psi]}\longrightarrow \frac{1}{N}\sum_{i=1}^{N}\overline{\mathcal{O}}[A_{(i)}]$$

In lattice we estimate path-integrals with weighted sums

$$\frac{1}{Z} \int \mathcal{D}A \, \mathcal{D}\bar{\psi} \, \mathcal{D}\psi \, \mathcal{O}[A, \bar{\psi}, \psi] \, e^{-S[A, \bar{\psi}, \psi]} \longrightarrow \frac{1}{N} \sum_{i=1}^{N} \overline{\mathcal{O}}[A_{(i)}]$$

Gauge fields are generated with weighting

 $\det[D(A)] e^{-S_g[A]}$

In lattice we estimate path-integrals with weighted sums

$$\frac{1}{Z}\int \mathcal{D}A\,\mathcal{D}\bar{\psi}\,\mathcal{D}\psi\,\mathcal{O}[A,\bar{\psi},\psi]\,e^{-\mathcal{S}[A,\bar{\psi},\psi]}\longrightarrow \frac{1}{N}\sum_{i=1}^{N}\overline{\mathcal{O}}[A_{(i)}]$$

Gauge fields are generated with weighting

$$\det[D(A)] e^{-S_g[A]}$$

Propagators in $\overline{\mathcal{O}}$ are calculated by inverting Dirac matrix

$$S^{ab}_{\alpha\beta}(x,y) = \left[D^{ab}_{\alpha\beta}(x,y)\right]^{-1}$$

In lattice we estimate path-integrals with weighted sums

$$\frac{1}{Z}\int \mathcal{D}A\,\mathcal{D}\bar{\psi}\,\mathcal{D}\psi\,\mathcal{O}[A,\bar{\psi},\psi]\,e^{-\mathcal{S}[A,\bar{\psi},\psi]}\longrightarrow \frac{1}{N}\sum_{i=1}^{N}\overline{\mathcal{O}}[A_{(i)}]$$

Gauge fields are generated with weighting

$$\det[D(A)] e^{-S_g[A]}$$

Propagators in $\overline{\mathcal{O}}$ are calculated by inverting Dirac matrix

$$S^{ab}_{\alpha\beta}(x,y) = \left[D^{ab}_{\alpha\beta}(x,y)\right]^{-1}$$

Modification to can be made during gauge field generation

In lattice we estimate path-integrals with weighted sums

$$\frac{1}{Z}\int \mathcal{D}A\,\mathcal{D}\bar{\psi}\,\mathcal{D}\psi\,\mathcal{O}[A,\bar{\psi},\psi]\,e^{-\mathcal{S}[A,\bar{\psi},\psi]}\longrightarrow \frac{1}{N}\sum_{i=1}^{N}\overline{\mathcal{O}}[A_{(i)}]$$

Gauge fields are generated with weighting

$$\det[D(A)] e^{-S_g[A]}$$

Propagators in $\overline{\mathcal{O}}$ are calculated by inverting Dirac matrix

$$S^{ab}_{\alpha\beta}(x,y) = \left[D^{ab}_{\alpha\beta}(x,y)
ight]^{-1}$$

Modification to can be made during gauge field generation and/or propagator calculation

Modify Dirac matrix before inversion

 $S_{\alpha\beta}^{ab}(x,y) = \left[D_{\alpha\beta}^{ab}(x,y)\right]^{-1}$

Modify Dirac matrix before inversion

$$S^{ab}_{lphaeta}(x,y) = \left[D^{ab}_{lphaeta}(x,y)
ight]^{-1}$$

Access <u>connected</u> contributions

Modify Dirac matrix before inversion

$$S^{ab}_{lphaeta}(x,y) = \left[D^{ab}_{lphaeta}(x,y)
ight]^{-1}$$

Access <u>connected</u> contributions

 Operator insertion encoded in quark propagator

Modify Dirac matrix before inversion

$$S^{ab}_{lphaeta}(x,y) = \left[D^{ab}_{lphaeta}(x,y)
ight]^{-1}$$

Access <u>connected</u> contributions

- Operator insertion encoded in quark propagator
- Easy to implement

Modify Dirac matrix before inversion $S^{ab}_{\alpha\beta}(x,y) = \left[D^{ab}_{\alpha\beta}(x,y)\right]^{-1}$ Modify field weighting during HMC

 $\det[D(U)]\,e^{-S_g[U]}$

Access <u>connected</u> contributions

- Operator insertion encoded in quark propagator
- Easy to implement

Modify Dirac matrix before inversion $S^{ab}_{\alpha\beta}(x,y) = \left[D^{ab}_{\alpha\beta}(x,y)\right]^{-1}$

> Access <u>connected</u> contributions

Modify field weighting during HMC

 $\det[D(U)]\,e^{-S_g[U]}$

Access <u>disconnected</u> contributions

- Operator insertion encoded in quark propagator
- Easy to implement

Modify Dirac matrix before inversion $S^{ab}_{\alpha\beta}(x,y) = \left[D^{ab}_{\alpha\beta}(x,y)\right]^{-1}$

> Access <u>connected</u> contributions

- Operator insertion encoded in quark propagator
- Easy to implement

Modify field weighting during HMC

 $\det[D(U)]\,e^{-S_g[U]}$

Access <u>disconnected</u> contributions

 Operator insertion encoded in gauge fields

Modify Dirac matrix before inversion $S^{ab}_{\alpha\beta}(x,y) = \left[D^{ab}_{\alpha\beta}(x,y)\right]^{-1}$

> Access <u>connected</u> contributions

- Operator insertion encoded in quark propagator
- Easy to implement

Modify field weighting during HMC

 $\det[D(U)]\,e^{-S_g[U]}$

Access <u>disconnected</u> contributions

- Operator insertion encoded in gauge fields
- Generate new gauge ensembles

Demonstrate technique by calculating <u>connected contributions</u> to nucleon axial charges

Demonstrate technique by calculating <u>connected contributions</u> to nucleon axial charges

Want to calculate forward matrix elements of the axial operator

 $\langle \, ec{p}, ec{s} \, | \, ec{q}(0) \gamma_\mu \gamma_5 q(0) \, | \, ec{p}, ec{s} \,
angle = 2 \textit{is}_\mu \Delta q$

Demonstrate technique by calculating <u>connected contributions</u> to nucleon axial charges

Want to calculate forward matrix elements of the axial operator

 $\langle \, ec{p}, ec{s} \, | \, ec{q}(0) \gamma_\mu \gamma_5 q(0) \, | \, ec{p}, ec{s} \,
angle = 2 \textit{is}_\mu \Delta q$

Make modification to the Lagrangian (one flavour at a time)

 ${\cal L}
ightarrow {\cal L} - i\lambda ar q \gamma_3 \gamma_5 q$

Demonstrate technique by calculating <u>connected contributions</u> to nucleon axial charges

Want to calculate forward matrix elements of the axial operator

$$\langle \, ec{p}, ec{s} \, | \, ar{q}(0) \gamma_\mu \gamma_5 q(0) \, | \, ec{p}, ec{s} \,
angle = 2 \textit{is}_\mu \Delta q$$

Make modification to the Lagrangian (one flavour at a time)

$${\cal L}
ightarrow {\cal L} - i\lambda ar q \gamma_3 \gamma_5 q$$

Choose projection matrices to project positive parity spin-up/down states

$$\Gamma_{\pm}=\frac{1}{2}(1+\gamma_4)\frac{1}{2}(1\mp i\gamma_3\gamma_5)$$

Demonstrate technique by calculating <u>connected contributions</u> to nucleon axial charges

Want to calculate forward matrix elements of the axial operator

$$\langle \, ec{p}, ec{s} \, | \, ar{q}(0) \gamma_\mu \gamma_5 q(0) \, | \, ec{p}, ec{s} \,
angle = 2 \textit{is}_\mu \Delta q$$

Make modification to the Lagrangian (one flavour at a time)

$$\mathcal{L}
ightarrow \mathcal{L} - i\lambda \bar{q} \gamma_3 \gamma_5 q$$

Choose projection matrices to project positive parity spin-up/down states

$$\Gamma_{\pm}=\frac{1}{2}(1+\gamma_4)\frac{1}{2}(1\mp i\gamma_3\gamma_5)$$

Feynman-Hellmann relation gives

$$\left. \frac{\partial E}{\partial \lambda} \right|_{\lambda=0} = \pm \Delta q_{\text{conn.}}$$

Energy shifts are proportional to the quark axial charges

 $m_{\pi} \approx 470 \text{ MeV}$ 350 configs $32^3 \times 64$

 $m_\pi \approx 470 \text{ MeV}$ 350 configs $32^3 \times 64$

Ignore quadratic behaviour

 $m_\pi \approx 470 \text{ MeV}$ 350 configs $32^3 \times 64$

- Ignore quadratic behaviour
- Extract linear shift at $\lambda = 0$

 $m_{\pi} \approx 470 \text{ MeV}$ 350 configs $32^3 \times 64$

Ignore quadratic behaviour

• Extract linear shift at $\lambda = 0$

3-pt. results on same ensemble, but 1500 (\times 5 more) configs

 $m_\pi pprox 470 \,\,{
m MeV}$

0.54 0.52 0.50 0.48 ^{3}E 0.46 0.44 0.42 d $\lambda = 0$ 0.40 0.06 0.00 0.02 0.04 -0.04-0.02-0.06λ

Ignore quadratic behaviour

 $32^3 \times 64$

• Extract linear shift at $\lambda = 0$

3-pt. results on same ensemble, but 1500 (\times 5 more) configs

Feynman-Hellmann approach in perfect agreement with existing methods

350 configs

Can we improve the signal?

Can we improve the signal?

Long term behaviour of the correlation functions is given by

$$\mathcal{C}(\lambda, t) \xrightarrow{\text{large } t} A(\lambda) e^{-E(\lambda)t}$$

Can we improve the signal?

Long term behaviour of the correlation functions is given by

$$\mathcal{C}(\lambda, t) \xrightarrow{\text{large } t} \mathcal{A}(\lambda) e^{-\mathcal{E}(\lambda)t}$$

We are only interested in energy shifts
Can we improve the signal?

Long term behaviour of the correlation functions is given by

$$\mathcal{C}(\lambda, t) \xrightarrow{\text{large } t} \mathcal{A}(\lambda) e^{-\mathcal{E}(\lambda)t}$$

We are only interested in energy shifts

Take ratios of spin-up/down correlators at for zero and non-zero λ

$$\frac{\mathcal{C}_{\uparrow}(\lambda,t)}{\mathcal{C}_{\uparrow}(0,t)} \frac{\mathcal{C}_{\downarrow}(0,t)}{\mathcal{C}_{\downarrow}(\lambda,t)} \xrightarrow{\text{large } t} \frac{A(+\lambda)}{A(-\lambda)} e^{-2\Delta E(\lambda)t}$$

Can we improve the signal?

Long term behaviour of the correlation functions is given by

$$\mathcal{C}(\lambda, t) \xrightarrow{\text{large } t} \mathcal{A}(\lambda) e^{-E(\lambda)t}$$

We are only interested in energy shifts

Take ratios of spin-up/down correlators at for zero and non-zero λ

$$\frac{\mathcal{C}_{\uparrow}(\lambda,t)}{\mathcal{C}_{\uparrow}(0,t)} \frac{\mathcal{C}_{\downarrow}(0,t)}{\mathcal{C}_{\downarrow}(\lambda,t)} \xrightarrow{\text{large } t} \frac{\mathcal{A}(+\lambda)}{\mathcal{A}(-\lambda)} e^{-2\Delta E(\lambda)t}$$

We can extract energy shifts directly

Can we improve the signal?

Long term behaviour of the correlation functions is given by

$$\mathcal{C}(\lambda, t) \xrightarrow{\text{large } t} \mathcal{A}(\lambda) e^{-\mathcal{E}(\lambda)t}$$

We are only interested in energy shifts

Take ratios of spin-up/down correlators at for zero and non-zero λ

$$\frac{\mathcal{C}_{\uparrow}(\lambda,t)}{\mathcal{C}_{\uparrow}(0,t)} \frac{\mathcal{C}_{\downarrow}(0,t)}{\mathcal{C}_{\downarrow}(\lambda,t)} \xrightarrow{\text{large } t} \frac{\mathcal{A}(+\lambda)}{\mathcal{A}(-\lambda)} e^{-2\Delta E(\lambda)t}$$

We can extract energy shifts directly

Improve signal by allowing statistical fluctuations to cancel

 $m_{\pi} \approx 470 \text{ MeV}$ 350 configs $32^3 \times 64$

 ΔE

 ΔE

 ΔE

Very competitive precision, consistent results

Hadron Axial Charges (Connected)

All the other hadron states come for free!

Hadron Axial Charges (Connected)

All the other hadron states come for free!

Hadron Axial Charges (Connected)

All the other hadron states come for free!

A. J. Chambers et al., Phys. Rev. D 90, 014510 (2014), 1405.3019

To calculate disconnected contributions, we need new gauge ensembles

To calculate disconnected contributions, we need new gauge ensembles
But we have a problem...

To calculate disconnected contributions, we need new gauge ensembles But we have a problem...

The modification to Lagrangian we made does not satisfy γ_5 -hermiticity

 ${\cal L}
ightarrow {\cal L} - i\lambda ar q \gamma_3 \gamma_5 q$

To calculate disconnected contributions, we need new gauge ensembles
But we have a problem...

The modification to Lagrangian we made does not satisfy $\gamma_5\text{-hermiticity}$

$$\mathcal{L}
ightarrow \mathcal{L} - i\lambda \bar{q} \gamma_3 \gamma_5 q$$

The fermion matrix determinant is not real

To calculate disconnected contributions, we need new gauge ensembles
But we have a problem...

The modification to Lagrangian we made does not satisfy $\gamma_5\text{-hermiticity}$

$$\mathcal{L}
ightarrow \mathcal{L} - i\lambda \bar{q}\gamma_3\gamma_5 q$$

The fermion matrix determinant is not real

So we can't use it in a probabilistic weighting for HMC

To calculate disconnected contributions, we need new gauge ensembles But we have a problem...

The modification to Lagrangian we made does not satisfy $\gamma_5\text{-hermiticity}$

$$\mathcal{L}
ightarrow \mathcal{L} - i\lambda \bar{q} \gamma_3 \gamma_5 q$$

The fermion matrix determinant is not real

So we can't use it in a probabilistic weighting for HMC

Let's make this modification instead

$$\mathcal{L}
ightarrow \mathcal{L} + \lambda ar{q} \gamma_3 \gamma_5 q$$

To calculate disconnected contributions, we need new gauge ensembles But we have a problem...

The modification to Lagrangian we made does not satisfy γ_5 -hermiticity

$$\mathcal{L}
ightarrow \mathcal{L} - i\lambda \bar{q} \gamma_3 \gamma_5 q$$

The fermion matrix determinant is not real

So we can't use it in a probabilistic weighting for HMC

Let's make this modification instead

$$\mathcal{L}
ightarrow \mathcal{L} + \lambda \bar{q} \gamma_3 \gamma_5 q$$

Now the energy shifts are imaginary at first order in $\boldsymbol{\lambda}$

 $E \to E(\lambda) + i\phi(\lambda)$

To calculate disconnected contributions, we need new gauge ensembles But we have a problem...

The modification to Lagrangian we made does not satisfy γ_5 -hermiticity

$$\mathcal{L}
ightarrow \mathcal{L} - i\lambda \bar{q} \gamma_3 \gamma_5 q$$

The fermion matrix determinant is not real

So we can't use it in a probabilistic weighting for HMC

Let's make this modification instead

$$\mathcal{L} \to \mathcal{L} + \lambda \bar{q} \gamma_3 \gamma_5 q$$

Now the energy shifts are imaginary at first order in $\boldsymbol{\lambda}$

$$E \to E(\lambda) + i\phi(\lambda)$$
 $\left. \frac{\partial \phi}{\partial \lambda} \right|_{\lambda=0} = \pm \Delta q_{\text{disconn.}}$

To calculate disconnected contributions, we need new gauge ensembles But we have a problem...

The modification to Lagrangian we made does not satisfy $\gamma_5\text{-hermiticity}$

$$\mathcal{L}
ightarrow \mathcal{L} - i\lambda \bar{q} \gamma_3 \gamma_5 q$$

The fermion matrix determinant is not real

So we can't use it in a probabilistic weighting for HMC

Let's make this modification instead

$$\mathcal{L} \to \mathcal{L} + \lambda \bar{q} \gamma_3 \gamma_5 q$$

Now the energy shifts are imaginary at first order in $\boldsymbol{\lambda}$

$$E o E(\lambda) + i\phi(\lambda)$$
 $\left. \frac{\partial \phi}{\partial \lambda} \right|_{\lambda=0} = \pm \Delta q_{\text{disconn.}}$

We need a strategy to extract signal from imaginary part of correlation functions

Energy shifts manifest as a phase in the correlation functions

$$\mathcal{C}(\lambda, t) \xrightarrow{\text{large } t} A(\lambda) e^{i\delta(\lambda)} e^{-[E(\lambda)+i\phi(\lambda)]t}$$

Energy shifts manifest as a phase in the correlation functions

$$\mathcal{C}(\lambda, t) \xrightarrow{\text{large } t} \mathcal{A}(\lambda) e^{i\delta(\lambda)} e^{-[\mathcal{E}(\lambda) + i\phi(\lambda)]t}$$

Amplitude may also pick up a phase

Energy shifts manifest as a phase in the correlation functions

$$\mathcal{C}(\lambda, t) \xrightarrow{\mathsf{large } t} \mathcal{A}(\lambda) e^{i\delta(\lambda)} e^{-[\mathcal{E}(\lambda) + i\phi(\lambda)]t}$$

Amplitude may also pick up a phase

Take combinations of real/imaginary parts of spin-up/down projections

$$\mathcal{R}(\lambda,t) = \frac{\operatorname{Im} C_{\uparrow}(\lambda,t) - \operatorname{Im} C_{\downarrow}(\lambda,t)}{\operatorname{Re} C_{\uparrow}(\lambda,t) + \operatorname{Re} C_{\downarrow}(\lambda,t)} \xrightarrow{\operatorname{large} t} - \operatorname{tan}(\phi t)$$

Energy shifts manifest as a phase in the correlation functions

$$\mathcal{C}(\lambda, t) \xrightarrow{\mathsf{large } t} \mathcal{A}(\lambda) e^{i\delta(\lambda)} e^{-[E(\lambda)+i\phi(\lambda)]t}$$

Amplitude may also pick up a phase

Take combinations of real/imaginary parts of spin-up/down projections

$$\mathcal{R}(\lambda,t) = \frac{\mathsf{Im}\ C_{\uparrow}(\lambda,t) - \mathsf{Im}\ C_{\downarrow}(\lambda,t)}{\mathsf{Re}\ C_{\uparrow}(\lambda,t) + \mathsf{Re}\ C_{\downarrow}(\lambda,t)} \xrightarrow{\mathsf{large}\ t} - \mathsf{tan}(\phi t)$$

Introduce effective phase shift

$$\phi_{\text{eff.}}(\lambda, t) = \frac{1}{t} \arctan[-\mathcal{R}(\lambda, t)] \xrightarrow{\text{large } t} \phi$$

Energy shifts manifest as a phase in the correlation functions

$$\mathcal{C}(\lambda, t) \xrightarrow{\mathsf{large } t} \mathcal{A}(\lambda) e^{i\delta(\lambda)} e^{-[E(\lambda)+i\phi(\lambda)]t}$$

Amplitude may also pick up a phase

Take combinations of real/imaginary parts of spin-up/down projections

$$\mathcal{R}(\lambda,t) = \frac{\operatorname{Im} C_{\uparrow}(\lambda,t) - \operatorname{Im} C_{\downarrow}(\lambda,t)}{\operatorname{Re} C_{\uparrow}(\lambda,t) + \operatorname{Re} C_{\downarrow}(\lambda,t)} \xrightarrow{\operatorname{large} t} - \operatorname{tan}(\phi t)$$

Introduce effective phase shift

$$\phi_{\text{eff.}}(\lambda, t) = \frac{1}{t} \arctan[-\mathcal{R}(\lambda, t)] \xrightarrow{\text{large } t} \phi$$

Ground state saturation will be indicated by phase plateau

Energy shifts manifest as a phase in the correlation functions

$$\mathcal{C}(\lambda, t) \xrightarrow{\mathsf{large } t} \mathcal{A}(\lambda) e^{i\delta(\lambda)} e^{-[E(\lambda)+i\phi(\lambda)]t}$$

Amplitude may also pick up a phase

Take combinations of real/imaginary parts of spin-up/down projections

$$\mathcal{R}(\lambda,t) = \frac{\operatorname{Im} C_{\uparrow}(\lambda,t) - \operatorname{Im} C_{\downarrow}(\lambda,t)}{\operatorname{Re} C_{\uparrow}(\lambda,t) + \operatorname{Re} C_{\downarrow}(\lambda,t)} \xrightarrow{\operatorname{large} t} - \operatorname{tan}(\phi t)$$

Introduce effective phase shift

$$\phi_{\text{eff.}}(\lambda, t) = \frac{1}{t} \arctan[-\mathcal{R}(\lambda, t)] \xrightarrow{\text{large } t} \phi$$

Ground state saturation will be indicated by phase plateau

Demonstrate procedure by recalculating <u>connected contributions</u> to nucleon axial charges

Reliable extraction from imaginary signal

23^{ra} July 2015 19 / 35

Let's do the disconnected for real now

Let's do the disconnected for real now

Generate new ensembles with a modification to the Lagrangian

$$\mathcal{L}
ightarrow \mathcal{L} + \lambda \sum_{m{q}} ar{m{q}} \gamma_3 \gamma_5 m{q}$$
Let's do the disconnected for real now

Generate new ensembles with a modification to the Lagrangian

$$\mathcal{L}
ightarrow \mathcal{L} + \lambda \sum_{q} ar{q} \gamma_{3} \gamma_{5} q$$

We're testing all flavours simultaneously

Let's do the disconnected for real now

Generate new ensembles with a modification to the Lagrangian

$$\mathcal{L}
ightarrow \mathcal{L} + \lambda \sum_{q} ar{q} \gamma_{3} \gamma_{5} q$$

- We're testing all flavours simultaneously
- A stronger signal should be easier to extract

Let's do the disconnected for real now

Generate new ensembles with a modification to the Lagrangian

$$\mathcal{L}
ightarrow \mathcal{L} + \lambda \sum_{q} ar{q} \gamma_3 \gamma_5 q$$

- We're testing all flavours simultaneously
- A stronger signal should be easier to extract

Feynman-Hellmann relation gives phase shifts

$$E o E(\lambda) + i\phi(\lambda)$$
 $\left. \frac{\partial \phi}{\partial \lambda} \right|_{\lambda=0} = \Delta \Sigma_{\text{disconn.}}$

Shift in phase with respect to λ gives total disconnected quark spin contribution

Flavour symmetric point $m_{\pi} \approx 470 \text{ MeV}$ $32^3 \times 64$ 500 configs each

Flavour symmetric point $m_{\pi} \approx 470 \text{ MeV}$ $32^3 \times 64$ 500 configs each

 $\begin{array}{l} \textbf{Flavour symmetric point} \\ m_{\pi} \approx 470 \ \text{MeV} \qquad 32^3 \times 64 \\ 500 \ \text{configs each} \end{array}$

 $m_\pi pprox 310 \; {
m MeV} \qquad 32^3 imes 64 \ 750 \; {
m configs \; each}$

 $\begin{array}{l} \textbf{Flavour symmetric point} \\ m_{\pi} \approx 470 \ \text{MeV} \qquad 32^3 \times 64 \\ 500 \ \text{configs each} \end{array}$

 $m_\pi pprox 310 \; {
m MeV} \qquad 32^3 imes 64 \ 750 \; {
m configs} \; {
m each}$

Want to demonstrate how a Feynman-Hellmann approach can be used to tackle two important problems in lattice QCD

Disconnected contributions to matrix elements

High-momentum form factors

Hadrons are not point-like particles

Hadrons are not point-like particles

They have a spatial distribution encoded by form factors

Hadrons are not point-like particles

► They have a spatial distribution encoded by form factors There is precise experimental and lattice data for low-momentum form-factors, but...

Hadrons are not point-like particles

► They have a spatial distribution encoded by form factors There is precise experimental and lattice data for low-momentum form-factors, but...

High-momentum form factor calculations are limited by low signal-to-noise ratios

Hadrons are not point-like particles

► They have a spatial distribution encoded by form factors There is precise experimental and lattice data for low-momentum form-factors, but...

High-momentum form factor calculations are limited by low signal-to-noise ratios

High momentum form factors are interesting for a number of reasons

Hadrons are not point-like particles

► They have a spatial distribution encoded by form factors There is precise experimental and lattice data for low-momentum form-factors, but...

High-momentum form factor calculations are limited by low signal-to-noise ratios

High momentum form factors are interesting for a number of reasons

Nucleon form factor zero crossing

Hadrons are not point-like particles

► They have a spatial distribution encoded by form factors There is precise experimental and lattice data for low-momentum form-factors, but...

High-momentum form factor calculations are limited by low signal-to-noise ratios

High momentum form factors are interesting for a number of reasons

- Nucleon form factor zero crossing
- Pion form factor asymptotic behaviour

Hadrons are not point-like particles

► They have a spatial distribution encoded by form factors There is precise experimental and lattice data for low-momentum form-factors, but...

High-momentum form factor calculations are limited by low signal-to-noise ratios

High momentum form factors are interesting for a number of reasons

- Nucleon form factor zero crossing
- Pion form factor asymptotic behaviour
- Chance for lattice to lead experiment

Hadrons are not point-like particles

► They have a spatial distribution encoded by form factors There is precise experimental and lattice data for low-momentum form-factors, but...

High-momentum form factor calculations are limited by low signal-to-noise ratios

High momentum form factors are interesting for a number of reasons

- Nucleon form factor zero crossing
- Pion form factor asymptotic behaviour
- Chance for lattice to lead experiment

Want to extend Feynman-Hellmann approach to non-forward matrix elements

Want to calculate some non-forward matrix element

 $\langle H(\vec{p}') \,|\, \mathcal{O}(0) \,|\, H(\vec{p}) \,\rangle$

Want to calculate some non-forward matrix element

 $\langle H(\vec{p}') \, | \, \mathcal{O}(0) \, | \, H(\vec{p}) \, \rangle$

1. Include an extra term in the QCD Lagrangian

 $\mathcal{L}(y)
ightarrow \mathcal{L}(y) + \lambda e^{i \vec{q} \cdot (\vec{y} - \vec{x})} \mathcal{O}(y)$

Want to calculate some non-forward matrix element

 $\langle H(\vec{p}') \, | \, \mathcal{O}(0) \, | \, H(\vec{p}) \, \rangle$

1. Include an extra term in the QCD Lagrangian

 $\mathcal{L}(y)
ightarrow \mathcal{L}(y) + \lambda e^{i \vec{q} \cdot (\vec{y} - \vec{x})} \mathcal{O}(y)$

• Choose the momentum \vec{q} , fix source location to x

Want to calculate some non-forward matrix element

 $\langle \, H(ec{p}') \, | \, \mathcal{O}(0) \, | \, H(ec{p}) \, \rangle$

1. Include an extra term in the QCD Lagrangian

 $\mathcal{L}(y)
ightarrow \mathcal{L}(y) + \lambda e^{i \vec{q} \cdot (\vec{y} - \vec{x})} \mathcal{O}(y)$

- Choose the momentum \vec{q} , fix source location to x
- 2. Measure energy of your hadron state while changing $\boldsymbol{\lambda}$

Want to calculate some non-forward matrix element

 $\langle H(\vec{p}') \, | \, \mathcal{O}(0) \, | \, H(\vec{p}) \, \rangle$

1. Include an extra term in the QCD Lagrangian

 $\mathcal{L}(y)
ightarrow \mathcal{L}(y) + \lambda e^{i \vec{q} \cdot (\vec{y} - \vec{x})} \mathcal{O}(y)$

- Choose the momentum \vec{q} , fix source location to x
- 2. Measure energy of your hadron state while changing $\boldsymbol{\lambda}$
 - Project sink to momentum \vec{p}' such that interaction is Breit frame

$$\vec{p}+\vec{q}=\vec{p}'$$
 $E(\vec{p})=E(\vec{p}')$

Want to calculate some non-forward matrix element

 $\langle H(\vec{p}') \, | \, \mathcal{O}(0) \, | \, H(\vec{p}) \, \rangle$

1. Include an extra term in the QCD Lagrangian

 $\mathcal{L}(y)
ightarrow \mathcal{L}(y) + \lambda e^{i \vec{q} \cdot (\vec{y} - \vec{x})} \mathcal{O}(y)$

• Choose the momentum \vec{q} , fix source location to x

- 2. Measure energy of your hadron state while changing $\boldsymbol{\lambda}$
 - Project sink to momentum \vec{p}' such that interaction is Breit frame

$$\vec{p}+\vec{q}=\vec{p}'$$
 $E(\vec{p})=E(\vec{p}')$

3. Calculate matrix element from energy shifts with respect to $\boldsymbol{\lambda}$

$$\frac{\partial E}{\partial \lambda}\Big|_{\lambda=0} = \frac{1}{2E} \langle H(\vec{p}') | \mathcal{O}(0) | H(\vec{p}) \rangle$$

Breit Frame Kinematics

Quick digression about Breit Frame kinematics...

Restricted to Breit frame kinematics for Feynman-Hellmann method

$$E(\vec{p}) = E(\vec{p}') \longrightarrow \vec{p}^2 = \vec{p}'^2$$

Restricted to Breit frame kinematics for Feynman-Hellmann method

$$E(\vec{p}) = E(\vec{p}') \longrightarrow \vec{p}^2 = \vec{p}'^2$$

This allows only certain momentum insertions

$$\vec{q}^2 = 2n\left(\frac{2\pi a}{L}\right)^2 \qquad n \in \mathbb{Z}$$

Restricted to Breit frame kinematics for Feynman-Hellmann method

$$E(\vec{p}) = E(\vec{p}') \longrightarrow \vec{p}^2 = \vec{p}'^2$$

This allows only certain momentum insertions

$$\vec{q}^2 = 2n\left(\frac{2\pi a}{L}\right)^2 \qquad n \in \mathbb{Z}$$

We get the best signal-to-noise ratio for minimal sink momentum projections

Restricted to Breit frame kinematics for Feynman-Hellmann method

$$E(\vec{p}) = E(\vec{p}') \longrightarrow \vec{p}^2 = \vec{p}'^2$$

This allows only certain momentum insertions

$$\vec{q}^2 = 2n\left(\frac{2\pi a}{L}\right)^2 \qquad n \in \mathbb{Z}$$

We get the best signal-to-noise ratio for minimal sink momentum projections

So we prefer to use kinematics corresponding to

$$\vec{p}' = -\vec{p}$$

Pion form factor defined by non-forward matrix element

$$\langle\,ec{p}^{\,\prime}\,|\,ec{q}(0)\gamma_{\mu}q(0)\,|\,ec{p}\,
angle=(p_{\mu}+p_{\mu}^{\prime})\mathcal{F}_{\pi}(Q^2)$$

Pion form factor defined by non-forward matrix element

$$\langle \, ec{p}^{\prime} \, | \, ec{q}(0) \gamma_{\mu} q(0) \, | \, ec{p} \,
angle = (p_{\mu} + p_{\mu}^{\prime}) F_{\pi}(Q^2)$$

Make modification to the Lagrangian

$$\mathcal{L}(y)
ightarrow \mathcal{L}(y) + \lambda \, e^{i ec{q} \cdot (ec{y} - ec{x})} \, ar{q}(y) \, \gamma_\mu \, q(y)$$

Pion form factor defined by non-forward matrix element

$$\langle\,ec{p}^{\,\prime}\,|\,ec{q}(0)\gamma_{\mu}q(0)\,|\,ec{p}\,
angle=(p_{\mu}+p_{\mu}^{\prime})F_{\pi}(Q^2)$$

Make modification to the Lagrangian

$$\mathcal{L}(y)
ightarrow \mathcal{L}(y) + \lambda \, e^{i \vec{q} \cdot (\vec{y} - \vec{x})} \, \bar{q}(y) \, \gamma_{\mu} \, q(y)$$

Feynman-Hellmann relation gives

$$\left. \frac{\partial E}{\partial \lambda} \right|_{\lambda=0} = \left[\frac{p_{\mu} + p'_{\mu}}{2E} \right] F_{\pi}(Q^2)$$

Pion form factor defined by non-forward matrix element

$$\langle\,ec{p}^{\,\prime}\,|\,ec{q}(0)\gamma_{\mu}q(0)\,|\,ec{p}\,
angle=(p_{\mu}+p_{\mu}^{\prime})F_{\pi}(Q^2)$$

Make modification to the Lagrangian

$$\mathcal{L}(y)
ightarrow \mathcal{L}(y) + \lambda \, e^{i \vec{q} \cdot (\vec{y} - \vec{x})} \, \bar{q}(y) \, \gamma_{\mu} \, q(y)$$

Feynman-Hellmann relation gives

$$\left. rac{\partial E}{\partial \lambda} \right|_{\lambda=0} = \left[rac{p_\mu + p'_\mu}{2E}
ight] F_\pi(Q^2)$$

For $\mu = i = 1, 2, 3$

$$\left.\frac{\partial E}{\partial \lambda}\right|_{\lambda=0} = \left[\frac{p_i + p_i'}{2E}\right] F_{\pi}(Q^2)$$

For μ

Demonstrate technique by calculating pion form factor

Pion form factor defined by non-forward matrix element

$$\langle \, ec{p}^{\prime} \, | \, ec{q}(0) \gamma_{\mu} q(0) \, | \, ec{p} \,
angle = (p_{\mu} + p_{\mu}^{\prime}) F_{\pi}(Q^2)$$

Make modification to the Lagrangian

$$\mathcal{L}(y)
ightarrow \mathcal{L}(y) + \lambda \, e^{i \vec{q} \cdot (\vec{y} - \vec{x})} \, \bar{q}(y) \, \gamma_{\mu} \, q(y)$$

Feynman-Hellmann relation gives

$$\frac{\partial E}{\partial \lambda}\Big|_{\lambda=0} = \left[\frac{p_{\mu} + p'_{\mu}}{2E}\right] F_{\pi}(Q^{2})$$

$$= i = 1, 2, 3 \qquad \qquad \text{For } \mu = 4$$

$$\frac{\partial E}{\partial \lambda}\Big|_{\lambda=0} = \left[\frac{p_{i} + p'_{i}}{2E}\right] F_{\pi}(Q^{2}) \qquad \qquad \frac{\partial E}{\partial \lambda}\Big|_{\lambda=0} = F_{\pi}(Q^{2})$$

Pion form factor defined by non-forward matrix element

$$\langle \, ec{p}^{\prime} \, | \, ec{q}(0) \gamma_{\mu} q(0) \, | \, ec{p} \,
angle = (p_{\mu} + p_{\mu}^{\prime}) F_{\pi}(Q^2)$$

Make modification to the Lagrangian

$$\mathcal{L}(y)
ightarrow \mathcal{L}(y) + \lambda \, e^{i ec{q} \cdot (ec{y} - ec{x})} \, ec{q}(y) \, \gamma_\mu \, q(y)$$

Feynman-Hellmann relation gives

$$\begin{aligned} \frac{\partial E}{\partial \lambda} \Big|_{\lambda=0} &= \left[\frac{p_{\mu} + p'_{\mu}}{2E} \right] F_{\pi}(Q^2) \end{aligned}$$
For $\mu = i = 1, 2, 3$
For $\mu = 4$

$$\begin{aligned} \frac{\partial E}{\partial \lambda} \Big|_{\lambda=0} &= \left[\frac{p_i + p'_i}{2E} \right] F_{\pi}(Q^2) \qquad \qquad \frac{\partial E}{\partial \lambda} \Big|_{\lambda=0} = F_{\pi}(Q^2) \end{aligned}$$

Choose this option

Nucleon Form Factors

Carry out similar analysis for nucleon form factors

Carry out similar analysis for nucleon form factors

Dirac and Pauli form factors defined by

$$\langle \vec{p}' \vec{s}' | \bar{q}(0) \gamma_{\mu} q(0) | \vec{p} \vec{s} \rangle = \bar{u}(\vec{p}', \sigma') \left[\gamma_{u} F_{1}(Q^{2}) + \sigma_{\mu\nu} \frac{q_{\nu}}{2m} F_{2}(Q^{2}) \right] u(\vec{p}, \sigma)$$

Carry out similar analysis for nucleon form factors

Dirac and Pauli form factors defined by

$$\langle \vec{p}' \vec{s}' | \bar{q}(0) \gamma_{\mu} q(0) | \vec{p} \vec{s} \rangle = \bar{u}(\vec{p}', \sigma') \left[\gamma_{u} F_{1}(Q^{2}) + \sigma_{\mu\nu} \frac{q_{\nu}}{2m} F_{2}(Q^{2}) \right] u(\vec{p}, \sigma)$$

Related to the Sachs electromagnetic form factors by

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m^2}F_2(Q^2)$$
$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

Carry out similar analysis for nucleon form factors

Dirac and Pauli form factors defined by

$$\langle \vec{p}' \vec{s}' | \bar{q}(0) \gamma_{\mu} q(0) | \vec{p} \vec{s} \rangle = \bar{u}(\vec{p}', \sigma') \left[\gamma_{u} F_{1}(Q^{2}) + \sigma_{\mu\nu} \frac{q_{\nu}}{2m} F_{2}(Q^{2}) \right] u(\vec{p}, \sigma)$$

Related to the Sachs electromagnetic form factors by

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m^2}F_2(Q^2)$$
$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

Make identical modification to the action as for the pion case

$$\mathcal{L}(y)
ightarrow \mathcal{L}(y) + \lambda \, e^{i \vec{q} \cdot \vec{y}} \, ar{q}(y) \, \gamma_{\mu} \, q(y)$$

For **Temporal Current** use $\Gamma_{unpol.} = \frac{1}{2}(1 + \gamma_4)$

For **Temporal Current** use $\Gamma_{unpol.} = \frac{1}{2}(1 + \gamma_4)$

$$\left.\frac{\partial E}{\partial \lambda}\right|_{\lambda=0} \xrightarrow{\vec{p}'=-\vec{p}} \frac{m}{E} G_E(Q^2)$$

For **Temporal Current** use $\Gamma_{unpol.} = \frac{1}{2}(1 + \gamma_4)$

$$\frac{\partial E}{\partial \lambda}\Big|_{\lambda=0} \xrightarrow{\vec{p}'=-\vec{p}} \frac{m}{E} G_E(Q^2)$$

For Spatial Current use $\Gamma_{\pm} = \frac{1}{2}(1 + \gamma_4)\frac{1}{2}(1 \mp i\frac{\vec{\gamma}\cdot\vec{s}}{m}\gamma_5)$

For **Temporal Current** use $\Gamma_{unpol.} = \frac{1}{2}(1 + \gamma_4)$

$$\frac{\partial E}{\partial \lambda}\Big|_{\lambda=0} \xrightarrow{\vec{p}'=-\vec{p}} \frac{m}{E} G_E(Q^2)$$

For Spatial Current use $\Gamma_{\pm} = \frac{1}{2}(1 + \gamma_4)\frac{1}{2}(1 \mp i\frac{\vec{\gamma}\cdot\vec{s}}{m}\gamma_5)$

$$\left. \frac{\partial E}{\partial \lambda} \right|_{\lambda=0} \xrightarrow{\vec{p}'=-\vec{p}} \pm \frac{\vec{s} \times \vec{q}}{2mE} G_M(Q^2)$$

For **Temporal Current** use $\Gamma_{unpol.} = \frac{1}{2}(1 + \gamma_4)$

$$\frac{\partial E}{\partial \lambda}\Big|_{\lambda=0} \xrightarrow{\vec{p}'=-\vec{p}} \frac{m}{E} G_E(Q^2)$$

For **Spatial Current** use $\Gamma_{\pm} = \frac{1}{2}(1 + \gamma_4)\frac{1}{2}(1 \mp i\frac{\vec{\gamma}\cdot\vec{s}}{m}\gamma_5)$

$$\left. \frac{\partial E}{\partial \lambda} \right|_{\lambda=0} \xrightarrow{\vec{p}'=-\vec{p}} \pm \frac{\vec{s} \times \vec{q}}{2mE} G_M(Q^2)$$

Can choose different kinematics

For **Temporal Current** use $\Gamma_{unpol.} = \frac{1}{2}(1 + \gamma_4)$

$$\frac{\partial E}{\partial \lambda}\Big|_{\lambda=0} \xrightarrow{\vec{p}'=-\vec{p}} \frac{m}{E} G_E(Q^2)$$

For **Spatial Current** use $\Gamma_{\pm} = \frac{1}{2}(1 + \gamma_4)\frac{1}{2}(1 \mp i\frac{\vec{\gamma}\cdot\vec{s}}{m}\gamma_5)$

$$\left. \frac{\partial E}{\partial \lambda} \right|_{\lambda=0} \xrightarrow{\vec{p}'=-\vec{p}} \pm \frac{\vec{s} \times \vec{q}}{2mE} G_M(Q^2)$$

Can choose different kinematics

Then we get linear combinations of G_E and G_M

Nucleon Form Factors (Electric)

Nucleon Form Factors (Magnetic)

Precise determinations of disconnected quantities

Precise determinations of disconnected quantities

Discussed axial charges here

Precise determinations of disconnected quantities

- Discussed axial charges here
- Calculations of tensor charges have also been performed

Precise determinations of disconnected quantities

- Discussed axial charges here
- Calculations of tensor charges have also been performed

Calculations of pion and nucleon form factors at unprecedented momentum scales

Precise determinations of disconnected quantities

- Discussed axial charges here
- Calculations of tensor charges have also been performed

Calculations of pion and nucleon form factors at unprecedented momentum scales

Other previous work

Precise determinations of disconnected quantities

- Discussed axial charges here
- Calculations of tensor charges have also been performed

Calculations of pion and nucleon form factors at unprecedented momentum scales

Other previous work

Determinations of singlet/non-singlet renormalisation factors

Precise determinations of disconnected quantities

- Discussed axial charges here
- Calculations of tensor charges have also been performed

Calculations of pion and nucleon form factors at unprecedented momentum scales

Other previous work

Determinations of singlet/non-singlet renormalisation factors

Many exciting developments ongoing

Precise determinations of disconnected quantities

- Discussed axial charges here
- Calculations of tensor charges have also been performed

Calculations of pion and nucleon form factors at unprecedented momentum scales

Other previous work

Determinations of singlet/non-singlet renormalisation factors

Many exciting developments ongoing

Quadratic Feynman-Hellmann for transition matrix elements

Nucleon Form Factors (Electric)

