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Overview

Want to demonstrate how a Feynman-Hellmann approach can
be used to tackle two important problems in lattice QCD

Disconnected contributions to matrix elements

High-momentum form factors
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Proton Spin Structure

The proton is a spin- 1
2 baryon

Where does this spin come from?

The proton is a complex object

I Bound state of 3 spin- 1
2 quarks (u, u, d)

I Quarks interact via spin-1 gluons

I These all have orbital angular momentum

We can break up the total spin into 3 contributions

1

2
=

1

2
∆Σ + Lq + Jg

I ∆Σ −→ quark spin

I Lq −→ quark orbital angular momentum

I Jg −→ gluon angular momentum

Can we calculate these spin fractions using lattice QCD?
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Proton Spin Structure

Yes and no

Lattice has seen varying success in calculations of these spin fractions

Quark Spin ∆Σ
I Experimentally around 30%
I Lattice usually gets around 50-60%

Could still be unresolved systematic errors?
I Chiral extrapolation, volume dependence, etc.

Strange contribution ∆s could be large
I Disconnected contributions are difficult to calculate

Gluon Angular Momentum Jg
I Difficult to access purely disconnected contributions

Running theme: Complete calculations in both cases require
access to disconnected contributions
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Disconnected Contributions

Two groups of contributions to matrix elements

Connected

〈H ′ | O |H 〉

I Straightforward to calculate

I Methods used are very
well-established

Disconnected

〈H ′ | O |H 〉

I All-to-all propagators unfeasible

I Some success with stochastic
estimation

I Lots of room for improvement
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Disconnected Contributions

J. Green, S. Meinel et al.
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Disconnected Contributions

Two groups of contributions to matrix elements

Connected

〈H ′ | O |H 〉

I Straightforward to calculate

I Methods used are very
well-established

Disconnected

〈H ′ | O |H 〉

I All-to-all propagators unfeasible

I Some success with stochastic
estimation

I Lots of room for improvement

Feynman-Hellmann method can access both contributions
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Feynman-Hellmann Recipe

Want to calculate some forward matrix element

〈H(~p) | O(0) |H(~p) 〉

1. Include an extra term in the QCD Lagrangian

L → L+ λO

I λ is a parameter you control

2. Measure energy of your hadron state while changing λ

I Use standard lattice spectroscopy techniques

3. Calculate matrix element from energy shifts with respect to λ

∂E

∂λ

∣∣∣∣
λ=0

=
1

2E
〈H(~p) | O(0) |H(~p) 〉

Calculation of matrix element → hadron spectroscopy
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Feynman-Hellmann Recipe

Where exactly do we modify the Lagrangian?

In lattice we estimate path-integrals with weighted sums

1

Z

∫
DADψ̄Dψ O[A, ψ̄, ψ] e−S[A,ψ̄,ψ] −→ 1

N

N∑
i=1

O[A(i)]

Gauge fields are generated with weighting

det[D(A)] e−Sg [A]

Propagators in O are calculated by inverting Dirac matrix

Sab
αβ(x , y) =

[
Dab
αβ(x , y)

]−1

Modification to can be made during
gauge field generation and/or propagator calculation
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Feynman-Hellmann Recipe

Modification location determines the contributions we access

Modify Dirac matrix before inversion

Sab
αβ(x , y) =

[
Dab
αβ(x , y)

]−1

Access connected
contributions

I Operator insertion encoded in
quark propagator

I Easy to implement

Modify field weighting during HMC

det[D(U)] e−Sg [U]

Access disconnected
contributions

I Operator insertion encoded in
gauge fields

I Generate new gauge ensembles
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Nucleon Axial Charges (Connected)

Demonstrate technique by calculating
connected contributions to nucleon axial charges

Want to calculate forward matrix elements of the axial operator

〈 ~p, ~s | q̄(0)γµγ5q(0) | ~p, ~s 〉 = 2isµ∆q

Make modification to the Lagrangian (one flavour at a time)

L → L− iλq̄γ3γ5q

Choose projection matrices to project positive parity spin-up/down states

Γ± =
1

2
(1 + γ4)

1

2
(1∓ iγ3γ5)

Feynman-Hellmann relation gives

∂E

∂λ

∣∣∣∣
λ=0

= ±∆qconn.

Energy shifts are proportional
to the quark axial charges
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Nucleon Axial Charges (Connected)

mπ ≈ 470 MeV 350 configs 323 × 64

0.06 0.04 0.02 0.00 0.02 0.04 0.06

λ

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

a
E

u
d

λ=0

I Ignore quadratic behaviour

I Extract linear shift at λ = 0

FH 3-pt.
∆uconn. 0.83(13) 0.821(14)
∆dconn. -0.22(12) -0.2353(48)
∆Σconn. 1.05(18) 1.056(15)
gAconn. 0.61(18) 0.586(15)

3-pt. results on same ensemble,
but 1500 (×5 more) configs

Feynman-Hellmann approach in perfect agreement with
existing methods
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Nucleon Axial Charges (Connected)

Can we improve the signal?

Long term behaviour of the correlation functions is given by

C(λ, t)
large t−−−−→ A(λ)e−E(λ)t

We are only interested in energy shifts

Take ratios of spin-up/down correlators at for zero and non-zero λ

C↑(λ, t)

C↑(0, t)

C↓(0, t)

C↓(λ, t)

large t−−−−→ A(+λ)

A(−λ)
e−2∆E(λ)t

We can extract energy shifts directly

Improve signal by allowing statistical fluctuations to cancel
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Nucleon Axial Charges (Connected)

mπ ≈ 470 MeV 350 configs 323 × 64

0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06

aλ
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0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

a
∆
E

u
d

I Even order terms in λ are
completely removed

FH 3-pt.
∆uconn. 0.832(18) 0.821(14)
∆dconn. -0.260(13) -0.2353(48)
∆Σconn. 0.572(22) 0.586(15)
gAconn. 1.092(22) 1.056(15)

Possible discrepancy in ∆d

I Excited state contamination in
3-pt. results?

Very competitive precision, consistent results
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Hadron Axial Charges (Connected)

All the other hadron states come for free!

A. J. Chambers et al., Phys. Rev. D 90, 014510 (2014), 1405.3019
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Nucleon Axial Charges (Disconnected)

To calculate disconnected contributions, we need new gauge ensembles

But we have a problem. . .

The modification to Lagrangian we made does not satisfy γ5-hermiticity

L → L− iλq̄γ3γ5q

I The fermion matrix determinant is not real
I So we can’t use it in a probabilistic weighting for HMC

Let’s make this modification instead

L → L+ λq̄γ3γ5q

Now the energy shifts are imaginary at first order in λ

E → E (λ) + iφ(λ)
∂φ

∂λ

∣∣∣∣
λ=0

= ±∆qdisconn.

We need a strategy to extract signal from imaginary part of
correlation functions
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correlation functions
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Disconnected Axial Charges

Energy shifts manifest as a phase in the correlation functions

C(λ, t)
large t−−−−→ A(λ)e iδ(λ)e−[E(λ)+iφ(λ)]t

I Amplitude may also pick up a phase

Take combinations of real/imaginary parts of spin-up/down projections

R(λ, t) =
ImC↑(λ, t)− ImC↓(λ, t)

ReC↑(λ, t) + ReC↓(λ, t)

large t−−−−→ − tan(φt)

Introduce effective phase shift

φeff.(λ, t) =
1

t
arctan[−R(λ, t)]

large t−−−−→ φ

Ground state saturation will be indicated by phase plateau

Demonstrate procedure by recalculating
connected contributions to nucleon axial charges
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Nucleon Axial Charges (Connected - Imaginary Signal)

mπ ≈ 470 MeV λu = 0.05 350 configs 323 × 64

0 5 10 15 20 25 30

t/a
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Nucleon Axial Charges (Connected - Imaginary Signal)

mπ ≈ 470 MeV 350 configs 323 × 64

0.02 0.00 0.02 0.04 0.06 0.08 0.10

aλ

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

a
φ

u (imag signal)
d (imag signal)

Imag.

Real

∆uconn. 0.811(24)

0.832(18)

∆dconn. -0.232(24)

-0.260(13)

∆Σconn. 0.579(34)

0.572(22)

gAconn. 1.043(34)

1.092(22)

Reliable extraction from imaginary signal
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Nucleon Axial Charges (Disconnected)

Let’s do the disconnected for real now

Generate new ensembles with a modification to the Lagrangian

L → L+ λ
∑
q

q̄γ3γ5q

I We’re testing all flavours simultaneously

I A stronger signal should be easier to extract

Feynman-Hellmann relation gives phase shifts

E → E (λ) + iφ(λ)
∂φ

∂λ

∣∣∣∣
λ=0

= ∆Σdisconn.

Shift in phase with respect to λ gives total disconnected
quark spin contribution
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Nucleon Axial Charges (Disconnected)

Flavour symmetric point
mπ ≈ 470 MeV 323 × 64

500 configs each

0.04 0.02 0.00 0.02 0.04

λ

0.010

0.005

0.000

0.005

0.010

a
∆
φ

∆Σdisconn. = −0.057(23)

∆qdisconn. = −0.019(8)

mπ ≈ 310 MeV 323 × 64
750 configs each

0.06 0.04 0.02 0.00 0.02 0.04 0.06

λ

0.010

0.005

0.000

0.005

0.010

a
∆
φ

∆Σdisconn. = 0.009(21)

Statistics too low, λ too small?
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Nucleon Axial Charges (Disconnected)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

m 2
π [GeV2 ]

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

∆
s

JLQCD '15 (Overlap, Nf =2 +1)

PNDME '15 (DWF, Nf =2 +1 +1)

QCDSF '11 (Clover, Nf =2)

Engelhardt '12 (DWF/asqtad, Nf =2 +1)

ETMC '13 (TMF, Nf =2 +1 +1)

CSSM/QCDSF '15 (Clover, Nf =2 +1, FH)

χQCD '14 (DWF, Nf =2 +1)
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Overview

Want to demonstrate how a Feynman-Hellmann approach can
be used to tackle two important problems in lattice QCD

Disconnected contributions to matrix elements

High-momentum form factors
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Pion and Nucleon Form Factors

Hadrons are not point-like particles

I They have a spatial distribution encoded by form factors

There is precise experimental and lattice data for low-momentum
form-factors, but. . .

High-momentum form factor calculations are limited by low
signal-to-noise ratios

Elastic Scattering - Polarisation Transfer
Polarisation transfer experiments at JLab revealed a surprising behaviour for GE/GM  

Precise results now available up to 8-9 GeV2 

What is the origin of the linear fall-off? 

Does         change sign?

26

coupled integral equations for QCD’s Green functions
that provide access to emergent phenomena of non-
perturbative QCD, such as dynamical chiral symme-
try breaking and confinement [98]. The DSEs admit a
symmetry-preserving truncation scheme that enables a
unified description of meson and baryon properties. The
approach has already achieved considerable success in
the pseudoscalar meson sector [19]. The prediction of
nucleon form factors in the DSE approach involves the
solution of a Poincaré-covariant Faddeev equation. In
the calculations of [17], dressed quarks form the elemen-
tary degrees of freedom and correlations between them
are expressed via scalar and axial vector diquarks. The
only variable parameters in this approach are the diquark
masses, fixed to reproduce the nucleon and ∆ masses,
and a diquark charge radius r+

1 embodying the electro-
magnetic structure of the diquark correlations. A dif-
ferent approach to DSE-based form factor calculations
effects binding of the nucleon through a single dressed
gluon exchange between any two quarks [18] without ex-
plicit diquark degrees of freedom. In this calculation, the
only parameters are a scale fixed to reproduce the pion
decay constant and a dimensionless width parameter η
describing the infrared behavior of the effective coupling
strength of the quark-quark interaction.

The predictions of several DSE-based calculations for
the proton Sachs form factor ratio R = µpG

p
E/Gp

M are
shown in Figure 16. The quark-diquark model calcula-
tion [17] underpredicts the data at low Q2 but agrees rea-
sonably well at higher Q2. The disagreement at low Q2 is
attributed to the omission of meson cloud effects. The ad-
dition of dynamically generated, momentum-dependent
dressed-quark anomalous magnetic moments [99] that be-
come large at infrared momenta improves the description
of R at low Q2. The three-quark model calculation [18]
agrees with the data at low Q2, but underpredicts the
data at higher Q2, becoming numerically unreliable for
Q2 ! 7 GeV2.

The deficiencies of the DSE approach, including the ap-
proximation schemes required to make the calculations
analytically tractable and the omission of meson-cloud
effects, are evident in the disagreement between the pre-
dicted form factors and the experimental data, which is
more severe than in the various models described above,
which have more adjustable parameters. The advantage
of the approach is that it provides a systematically im-
provable framework for the ab initio evaluation of hadron
properties in continuum non-perturbative QCD, that is
complementary to discretized lattice simulations. As fun-
damental measurable properties of nucleon structure, the
electromagnetic form factors are essential to the feedback
between theory and experiment required to make further
progress in this direction.

)2 (GeV2Q
0 5 10

p M
/Gp E

 G p
µ

-0.5

0.0

0.5

1.0

 = 0.8 fm+
1t09, reClo

qκChang11, add 
 = 1.8ηEichmann11, 
 = 2.0ηEichmann11, 

FIG. 16. (color online) Predictions of DSE-based calcula-
tions for R = µpGp

E/Gp
M compared to experimental data

from cross section [5, 80, 81] (empty circles) and polariza-
tion [1, 2, 25] (filled circles) experiments, where the results of
[2] are replaced by those of the present work. The results of
[17] (Cloët09) are shown for a particular choice of the diquark
charge radius. The curve from [99] (Chang11) is that of [17]
with the addition of dressed quark anomalous magnetic mo-
ments. The results of [18] (Eichmann11) are shown for two
values of η, showing the weak sensitivity of the form factor
results to this parameter.

7. AdS/QCD

In the past decade, theoretical activity has flourished
in modeling QCD from the conjecture of the anti-de
Sitter space/conformal field theory (AdS/CFT) corre-
spondence [133–135], a mapping between weakly coupled
gravitational theories in curved five-dimensional space-
time and strongly coupled gauge theories in flat four-
dimensional space-time. Since QCD is not a conformal
field theory, the symmetry of the anti-de Sitter space
is broken by applying a boundary condition. Brodsky
and de Teramond [136] have calculated F1 for the pro-
ton and neutron and emphasized the agreement of the
predicted Q2F1 dependence with the data. Abidin and
Carlson [137] have calculated both proton and neutron F1

and F2 along with the tensor form factors using both hard
and soft wall boundary conditions. This model predicts
the same asymptotic Q2 dependence as the dimensional
scaling of pQCD, but does not reproduce the detailed
features of the data in the presently measured Q2 region.

[JLab, Hall A, PRC85 (2012) 045203]

Gp
E

High momentum form factors are interesting
for a number of reasons

I Nucleon form factor zero crossing

I Pion form factor asymptotic behaviour

I Chance for lattice to lead experiment

Want to extend Feynman-Hellmann
approach to non-forward matrix

elements
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Q2 ! 7 GeV2.

The deficiencies of the DSE approach, including the ap-
proximation schemes required to make the calculations
analytically tractable and the omission of meson-cloud
effects, are evident in the disagreement between the pre-
dicted form factors and the experimental data, which is
more severe than in the various models described above,
which have more adjustable parameters. The advantage
of the approach is that it provides a systematically im-
provable framework for the ab initio evaluation of hadron
properties in continuum non-perturbative QCD, that is
complementary to discretized lattice simulations. As fun-
damental measurable properties of nucleon structure, the
electromagnetic form factors are essential to the feedback
between theory and experiment required to make further
progress in this direction.
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tion [1, 2, 25] (filled circles) experiments, where the results of
[2] are replaced by those of the present work. The results of
[17] (Cloët09) are shown for a particular choice of the diquark
charge radius. The curve from [99] (Chang11) is that of [17]
with the addition of dressed quark anomalous magnetic mo-
ments. The results of [18] (Eichmann11) are shown for two
values of η, showing the weak sensitivity of the form factor
results to this parameter.

7. AdS/QCD

In the past decade, theoretical activity has flourished
in modeling QCD from the conjecture of the anti-de
Sitter space/conformal field theory (AdS/CFT) corre-
spondence [133–135], a mapping between weakly coupled
gravitational theories in curved five-dimensional space-
time and strongly coupled gauge theories in flat four-
dimensional space-time. Since QCD is not a conformal
field theory, the symmetry of the anti-de Sitter space
is broken by applying a boundary condition. Brodsky
and de Teramond [136] have calculated F1 for the pro-
ton and neutron and emphasized the agreement of the
predicted Q2F1 dependence with the data. Abidin and
Carlson [137] have calculated both proton and neutron F1

and F2 along with the tensor form factors using both hard
and soft wall boundary conditions. This model predicts
the same asymptotic Q2 dependence as the dimensional
scaling of pQCD, but does not reproduce the detailed
features of the data in the presently measured Q2 region.
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coupled integral equations for QCD’s Green functions
that provide access to emergent phenomena of non-
perturbative QCD, such as dynamical chiral symme-
try breaking and confinement [98]. The DSEs admit a
symmetry-preserving truncation scheme that enables a
unified description of meson and baryon properties. The
approach has already achieved considerable success in
the pseudoscalar meson sector [19]. The prediction of
nucleon form factors in the DSE approach involves the
solution of a Poincaré-covariant Faddeev equation. In
the calculations of [17], dressed quarks form the elemen-
tary degrees of freedom and correlations between them
are expressed via scalar and axial vector diquarks. The
only variable parameters in this approach are the diquark
masses, fixed to reproduce the nucleon and ∆ masses,
and a diquark charge radius r+

1 embodying the electro-
magnetic structure of the diquark correlations. A dif-
ferent approach to DSE-based form factor calculations
effects binding of the nucleon through a single dressed
gluon exchange between any two quarks [18] without ex-
plicit diquark degrees of freedom. In this calculation, the
only parameters are a scale fixed to reproduce the pion
decay constant and a dimensionless width parameter η
describing the infrared behavior of the effective coupling
strength of the quark-quark interaction.

The predictions of several DSE-based calculations for
the proton Sachs form factor ratio R = µpG

p
E/Gp

M are
shown in Figure 16. The quark-diquark model calcula-
tion [17] underpredicts the data at low Q2 but agrees rea-
sonably well at higher Q2. The disagreement at low Q2 is
attributed to the omission of meson cloud effects. The ad-
dition of dynamically generated, momentum-dependent
dressed-quark anomalous magnetic moments [99] that be-
come large at infrared momenta improves the description
of R at low Q2. The three-quark model calculation [18]
agrees with the data at low Q2, but underpredicts the
data at higher Q2, becoming numerically unreliable for
Q2 ! 7 GeV2.

The deficiencies of the DSE approach, including the ap-
proximation schemes required to make the calculations
analytically tractable and the omission of meson-cloud
effects, are evident in the disagreement between the pre-
dicted form factors and the experimental data, which is
more severe than in the various models described above,
which have more adjustable parameters. The advantage
of the approach is that it provides a systematically im-
provable framework for the ab initio evaluation of hadron
properties in continuum non-perturbative QCD, that is
complementary to discretized lattice simulations. As fun-
damental measurable properties of nucleon structure, the
electromagnetic form factors are essential to the feedback
between theory and experiment required to make further
progress in this direction.
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tions for R = µpGp
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M compared to experimental data

from cross section [5, 80, 81] (empty circles) and polariza-
tion [1, 2, 25] (filled circles) experiments, where the results of
[2] are replaced by those of the present work. The results of
[17] (Cloët09) are shown for a particular choice of the diquark
charge radius. The curve from [99] (Chang11) is that of [17]
with the addition of dressed quark anomalous magnetic mo-
ments. The results of [18] (Eichmann11) are shown for two
values of η, showing the weak sensitivity of the form factor
results to this parameter.

7. AdS/QCD

In the past decade, theoretical activity has flourished
in modeling QCD from the conjecture of the anti-de
Sitter space/conformal field theory (AdS/CFT) corre-
spondence [133–135], a mapping between weakly coupled
gravitational theories in curved five-dimensional space-
time and strongly coupled gauge theories in flat four-
dimensional space-time. Since QCD is not a conformal
field theory, the symmetry of the anti-de Sitter space
is broken by applying a boundary condition. Brodsky
and de Teramond [136] have calculated F1 for the pro-
ton and neutron and emphasized the agreement of the
predicted Q2F1 dependence with the data. Abidin and
Carlson [137] have calculated both proton and neutron F1

and F2 along with the tensor form factors using both hard
and soft wall boundary conditions. This model predicts
the same asymptotic Q2 dependence as the dimensional
scaling of pQCD, but does not reproduce the detailed
features of the data in the presently measured Q2 region.
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masses, fixed to reproduce the nucleon and ∆ masses,
and a diquark charge radius r+

1 embodying the electro-
magnetic structure of the diquark correlations. A dif-
ferent approach to DSE-based form factor calculations
effects binding of the nucleon through a single dressed
gluon exchange between any two quarks [18] without ex-
plicit diquark degrees of freedom. In this calculation, the
only parameters are a scale fixed to reproduce the pion
decay constant and a dimensionless width parameter η
describing the infrared behavior of the effective coupling
strength of the quark-quark interaction.

The predictions of several DSE-based calculations for
the proton Sachs form factor ratio R = µpG
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M are
shown in Figure 16. The quark-diquark model calcula-
tion [17] underpredicts the data at low Q2 but agrees rea-
sonably well at higher Q2. The disagreement at low Q2 is
attributed to the omission of meson cloud effects. The ad-
dition of dynamically generated, momentum-dependent
dressed-quark anomalous magnetic moments [99] that be-
come large at infrared momenta improves the description
of R at low Q2. The three-quark model calculation [18]
agrees with the data at low Q2, but underpredicts the
data at higher Q2, becoming numerically unreliable for
Q2 ! 7 GeV2.

The deficiencies of the DSE approach, including the ap-
proximation schemes required to make the calculations
analytically tractable and the omission of meson-cloud
effects, are evident in the disagreement between the pre-
dicted form factors and the experimental data, which is
more severe than in the various models described above,
which have more adjustable parameters. The advantage
of the approach is that it provides a systematically im-
provable framework for the ab initio evaluation of hadron
properties in continuum non-perturbative QCD, that is
complementary to discretized lattice simulations. As fun-
damental measurable properties of nucleon structure, the
electromagnetic form factors are essential to the feedback
between theory and experiment required to make further
progress in this direction.
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tions for R = µpGp
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from cross section [5, 80, 81] (empty circles) and polariza-
tion [1, 2, 25] (filled circles) experiments, where the results of
[2] are replaced by those of the present work. The results of
[17] (Cloët09) are shown for a particular choice of the diquark
charge radius. The curve from [99] (Chang11) is that of [17]
with the addition of dressed quark anomalous magnetic mo-
ments. The results of [18] (Eichmann11) are shown for two
values of η, showing the weak sensitivity of the form factor
results to this parameter.
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In the past decade, theoretical activity has flourished
in modeling QCD from the conjecture of the anti-de
Sitter space/conformal field theory (AdS/CFT) corre-
spondence [133–135], a mapping between weakly coupled
gravitational theories in curved five-dimensional space-
time and strongly coupled gauge theories in flat four-
dimensional space-time. Since QCD is not a conformal
field theory, the symmetry of the anti-de Sitter space
is broken by applying a boundary condition. Brodsky
and de Teramond [136] have calculated F1 for the pro-
ton and neutron and emphasized the agreement of the
predicted Q2F1 dependence with the data. Abidin and
Carlson [137] have calculated both proton and neutron F1

and F2 along with the tensor form factors using both hard
and soft wall boundary conditions. This model predicts
the same asymptotic Q2 dependence as the dimensional
scaling of pQCD, but does not reproduce the detailed
features of the data in the presently measured Q2 region.
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that provide access to emergent phenomena of non-
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try breaking and confinement [98]. The DSEs admit a
symmetry-preserving truncation scheme that enables a
unified description of meson and baryon properties. The
approach has already achieved considerable success in
the pseudoscalar meson sector [19]. The prediction of
nucleon form factors in the DSE approach involves the
solution of a Poincaré-covariant Faddeev equation. In
the calculations of [17], dressed quarks form the elemen-
tary degrees of freedom and correlations between them
are expressed via scalar and axial vector diquarks. The
only variable parameters in this approach are the diquark
masses, fixed to reproduce the nucleon and ∆ masses,
and a diquark charge radius r+

1 embodying the electro-
magnetic structure of the diquark correlations. A dif-
ferent approach to DSE-based form factor calculations
effects binding of the nucleon through a single dressed
gluon exchange between any two quarks [18] without ex-
plicit diquark degrees of freedom. In this calculation, the
only parameters are a scale fixed to reproduce the pion
decay constant and a dimensionless width parameter η
describing the infrared behavior of the effective coupling
strength of the quark-quark interaction.

The predictions of several DSE-based calculations for
the proton Sachs form factor ratio R = µpG

p
E/Gp

M are
shown in Figure 16. The quark-diquark model calcula-
tion [17] underpredicts the data at low Q2 but agrees rea-
sonably well at higher Q2. The disagreement at low Q2 is
attributed to the omission of meson cloud effects. The ad-
dition of dynamically generated, momentum-dependent
dressed-quark anomalous magnetic moments [99] that be-
come large at infrared momenta improves the description
of R at low Q2. The three-quark model calculation [18]
agrees with the data at low Q2, but underpredicts the
data at higher Q2, becoming numerically unreliable for
Q2 ! 7 GeV2.

The deficiencies of the DSE approach, including the ap-
proximation schemes required to make the calculations
analytically tractable and the omission of meson-cloud
effects, are evident in the disagreement between the pre-
dicted form factors and the experimental data, which is
more severe than in the various models described above,
which have more adjustable parameters. The advantage
of the approach is that it provides a systematically im-
provable framework for the ab initio evaluation of hadron
properties in continuum non-perturbative QCD, that is
complementary to discretized lattice simulations. As fun-
damental measurable properties of nucleon structure, the
electromagnetic form factors are essential to the feedback
between theory and experiment required to make further
progress in this direction.
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FIG. 16. (color online) Predictions of DSE-based calcula-
tions for R = µpGp
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M compared to experimental data

from cross section [5, 80, 81] (empty circles) and polariza-
tion [1, 2, 25] (filled circles) experiments, where the results of
[2] are replaced by those of the present work. The results of
[17] (Cloët09) are shown for a particular choice of the diquark
charge radius. The curve from [99] (Chang11) is that of [17]
with the addition of dressed quark anomalous magnetic mo-
ments. The results of [18] (Eichmann11) are shown for two
values of η, showing the weak sensitivity of the form factor
results to this parameter.

7. AdS/QCD

In the past decade, theoretical activity has flourished
in modeling QCD from the conjecture of the anti-de
Sitter space/conformal field theory (AdS/CFT) corre-
spondence [133–135], a mapping between weakly coupled
gravitational theories in curved five-dimensional space-
time and strongly coupled gauge theories in flat four-
dimensional space-time. Since QCD is not a conformal
field theory, the symmetry of the anti-de Sitter space
is broken by applying a boundary condition. Brodsky
and de Teramond [136] have calculated F1 for the pro-
ton and neutron and emphasized the agreement of the
predicted Q2F1 dependence with the data. Abidin and
Carlson [137] have calculated both proton and neutron F1

and F2 along with the tensor form factors using both hard
and soft wall boundary conditions. This model predicts
the same asymptotic Q2 dependence as the dimensional
scaling of pQCD, but does not reproduce the detailed
features of the data in the presently measured Q2 region.
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try breaking and confinement [98]. The DSEs admit a
symmetry-preserving truncation scheme that enables a
unified description of meson and baryon properties. The
approach has already achieved considerable success in
the pseudoscalar meson sector [19]. The prediction of
nucleon form factors in the DSE approach involves the
solution of a Poincaré-covariant Faddeev equation. In
the calculations of [17], dressed quarks form the elemen-
tary degrees of freedom and correlations between them
are expressed via scalar and axial vector diquarks. The
only variable parameters in this approach are the diquark
masses, fixed to reproduce the nucleon and ∆ masses,
and a diquark charge radius r+

1 embodying the electro-
magnetic structure of the diquark correlations. A dif-
ferent approach to DSE-based form factor calculations
effects binding of the nucleon through a single dressed
gluon exchange between any two quarks [18] without ex-
plicit diquark degrees of freedom. In this calculation, the
only parameters are a scale fixed to reproduce the pion
decay constant and a dimensionless width parameter η
describing the infrared behavior of the effective coupling
strength of the quark-quark interaction.

The predictions of several DSE-based calculations for
the proton Sachs form factor ratio R = µpG

p
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M are
shown in Figure 16. The quark-diquark model calcula-
tion [17] underpredicts the data at low Q2 but agrees rea-
sonably well at higher Q2. The disagreement at low Q2 is
attributed to the omission of meson cloud effects. The ad-
dition of dynamically generated, momentum-dependent
dressed-quark anomalous magnetic moments [99] that be-
come large at infrared momenta improves the description
of R at low Q2. The three-quark model calculation [18]
agrees with the data at low Q2, but underpredicts the
data at higher Q2, becoming numerically unreliable for
Q2 ! 7 GeV2.

The deficiencies of the DSE approach, including the ap-
proximation schemes required to make the calculations
analytically tractable and the omission of meson-cloud
effects, are evident in the disagreement between the pre-
dicted form factors and the experimental data, which is
more severe than in the various models described above,
which have more adjustable parameters. The advantage
of the approach is that it provides a systematically im-
provable framework for the ab initio evaluation of hadron
properties in continuum non-perturbative QCD, that is
complementary to discretized lattice simulations. As fun-
damental measurable properties of nucleon structure, the
electromagnetic form factors are essential to the feedback
between theory and experiment required to make further
progress in this direction.
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FIG. 16. (color online) Predictions of DSE-based calcula-
tions for R = µpGp
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M compared to experimental data

from cross section [5, 80, 81] (empty circles) and polariza-
tion [1, 2, 25] (filled circles) experiments, where the results of
[2] are replaced by those of the present work. The results of
[17] (Cloët09) are shown for a particular choice of the diquark
charge radius. The curve from [99] (Chang11) is that of [17]
with the addition of dressed quark anomalous magnetic mo-
ments. The results of [18] (Eichmann11) are shown for two
values of η, showing the weak sensitivity of the form factor
results to this parameter.

7. AdS/QCD

In the past decade, theoretical activity has flourished
in modeling QCD from the conjecture of the anti-de
Sitter space/conformal field theory (AdS/CFT) corre-
spondence [133–135], a mapping between weakly coupled
gravitational theories in curved five-dimensional space-
time and strongly coupled gauge theories in flat four-
dimensional space-time. Since QCD is not a conformal
field theory, the symmetry of the anti-de Sitter space
is broken by applying a boundary condition. Brodsky
and de Teramond [136] have calculated F1 for the pro-
ton and neutron and emphasized the agreement of the
predicted Q2F1 dependence with the data. Abidin and
Carlson [137] have calculated both proton and neutron F1

and F2 along with the tensor form factors using both hard
and soft wall boundary conditions. This model predicts
the same asymptotic Q2 dependence as the dimensional
scaling of pQCD, but does not reproduce the detailed
features of the data in the presently measured Q2 region.
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the calculations of [17], dressed quarks form the elemen-
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masses, fixed to reproduce the nucleon and ∆ masses,
and a diquark charge radius r+

1 embodying the electro-
magnetic structure of the diquark correlations. A dif-
ferent approach to DSE-based form factor calculations
effects binding of the nucleon through a single dressed
gluon exchange between any two quarks [18] without ex-
plicit diquark degrees of freedom. In this calculation, the
only parameters are a scale fixed to reproduce the pion
decay constant and a dimensionless width parameter η
describing the infrared behavior of the effective coupling
strength of the quark-quark interaction.

The predictions of several DSE-based calculations for
the proton Sachs form factor ratio R = µpG
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M are
shown in Figure 16. The quark-diquark model calcula-
tion [17] underpredicts the data at low Q2 but agrees rea-
sonably well at higher Q2. The disagreement at low Q2 is
attributed to the omission of meson cloud effects. The ad-
dition of dynamically generated, momentum-dependent
dressed-quark anomalous magnetic moments [99] that be-
come large at infrared momenta improves the description
of R at low Q2. The three-quark model calculation [18]
agrees with the data at low Q2, but underpredicts the
data at higher Q2, becoming numerically unreliable for
Q2 ! 7 GeV2.

The deficiencies of the DSE approach, including the ap-
proximation schemes required to make the calculations
analytically tractable and the omission of meson-cloud
effects, are evident in the disagreement between the pre-
dicted form factors and the experimental data, which is
more severe than in the various models described above,
which have more adjustable parameters. The advantage
of the approach is that it provides a systematically im-
provable framework for the ab initio evaluation of hadron
properties in continuum non-perturbative QCD, that is
complementary to discretized lattice simulations. As fun-
damental measurable properties of nucleon structure, the
electromagnetic form factors are essential to the feedback
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tion [1, 2, 25] (filled circles) experiments, where the results of
[2] are replaced by those of the present work. The results of
[17] (Cloët09) are shown for a particular choice of the diquark
charge radius. The curve from [99] (Chang11) is that of [17]
with the addition of dressed quark anomalous magnetic mo-
ments. The results of [18] (Eichmann11) are shown for two
values of η, showing the weak sensitivity of the form factor
results to this parameter.
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time and strongly coupled gauge theories in flat four-
dimensional space-time. Since QCD is not a conformal
field theory, the symmetry of the anti-de Sitter space
is broken by applying a boundary condition. Brodsky
and de Teramond [136] have calculated F1 for the pro-
ton and neutron and emphasized the agreement of the
predicted Q2F1 dependence with the data. Abidin and
Carlson [137] have calculated both proton and neutron F1

and F2 along with the tensor form factors using both hard
and soft wall boundary conditions. This model predicts
the same asymptotic Q2 dependence as the dimensional
scaling of pQCD, but does not reproduce the detailed
features of the data in the presently measured Q2 region.
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coupled integral equations for QCD’s Green functions
that provide access to emergent phenomena of non-
perturbative QCD, such as dynamical chiral symme-
try breaking and confinement [98]. The DSEs admit a
symmetry-preserving truncation scheme that enables a
unified description of meson and baryon properties. The
approach has already achieved considerable success in
the pseudoscalar meson sector [19]. The prediction of
nucleon form factors in the DSE approach involves the
solution of a Poincaré-covariant Faddeev equation. In
the calculations of [17], dressed quarks form the elemen-
tary degrees of freedom and correlations between them
are expressed via scalar and axial vector diquarks. The
only variable parameters in this approach are the diquark
masses, fixed to reproduce the nucleon and ∆ masses,
and a diquark charge radius r+

1 embodying the electro-
magnetic structure of the diquark correlations. A dif-
ferent approach to DSE-based form factor calculations
effects binding of the nucleon through a single dressed
gluon exchange between any two quarks [18] without ex-
plicit diquark degrees of freedom. In this calculation, the
only parameters are a scale fixed to reproduce the pion
decay constant and a dimensionless width parameter η
describing the infrared behavior of the effective coupling
strength of the quark-quark interaction.

The predictions of several DSE-based calculations for
the proton Sachs form factor ratio R = µpG

p
E/Gp

M are
shown in Figure 16. The quark-diquark model calcula-
tion [17] underpredicts the data at low Q2 but agrees rea-
sonably well at higher Q2. The disagreement at low Q2 is
attributed to the omission of meson cloud effects. The ad-
dition of dynamically generated, momentum-dependent
dressed-quark anomalous magnetic moments [99] that be-
come large at infrared momenta improves the description
of R at low Q2. The three-quark model calculation [18]
agrees with the data at low Q2, but underpredicts the
data at higher Q2, becoming numerically unreliable for
Q2 ! 7 GeV2.

The deficiencies of the DSE approach, including the ap-
proximation schemes required to make the calculations
analytically tractable and the omission of meson-cloud
effects, are evident in the disagreement between the pre-
dicted form factors and the experimental data, which is
more severe than in the various models described above,
which have more adjustable parameters. The advantage
of the approach is that it provides a systematically im-
provable framework for the ab initio evaluation of hadron
properties in continuum non-perturbative QCD, that is
complementary to discretized lattice simulations. As fun-
damental measurable properties of nucleon structure, the
electromagnetic form factors are essential to the feedback
between theory and experiment required to make further
progress in this direction.
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FIG. 16. (color online) Predictions of DSE-based calcula-
tions for R = µpGp

E/Gp
M compared to experimental data

from cross section [5, 80, 81] (empty circles) and polariza-
tion [1, 2, 25] (filled circles) experiments, where the results of
[2] are replaced by those of the present work. The results of
[17] (Cloët09) are shown for a particular choice of the diquark
charge radius. The curve from [99] (Chang11) is that of [17]
with the addition of dressed quark anomalous magnetic mo-
ments. The results of [18] (Eichmann11) are shown for two
values of η, showing the weak sensitivity of the form factor
results to this parameter.

7. AdS/QCD

In the past decade, theoretical activity has flourished
in modeling QCD from the conjecture of the anti-de
Sitter space/conformal field theory (AdS/CFT) corre-
spondence [133–135], a mapping between weakly coupled
gravitational theories in curved five-dimensional space-
time and strongly coupled gauge theories in flat four-
dimensional space-time. Since QCD is not a conformal
field theory, the symmetry of the anti-de Sitter space
is broken by applying a boundary condition. Brodsky
and de Teramond [136] have calculated F1 for the pro-
ton and neutron and emphasized the agreement of the
predicted Q2F1 dependence with the data. Abidin and
Carlson [137] have calculated both proton and neutron F1

and F2 along with the tensor form factors using both hard
and soft wall boundary conditions. This model predicts
the same asymptotic Q2 dependence as the dimensional
scaling of pQCD, but does not reproduce the detailed
features of the data in the presently measured Q2 region.

[JLab, Hall A, PRC85 (2012) 045203]
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Feynman-Hellmann Recipe (Non-Forward Case)

Want to calculate some non-forward matrix element

〈H(~p ′) | O(0) |H(~p) 〉

1. Include an extra term in the QCD Lagrangian

L(y)→ L(y) + λe i~q·(~y−~x)O(y)

I Choose the momentum ~q, fix source location to x

2. Measure energy of your hadron state while changing λ

I Project sink to momentum ~p ′ such that interaction is Breit frame

~p + ~q = ~p ′ E (~p) = E (~p ′)

3. Calculate matrix element from energy shifts with respect to λ

∂E

∂λ

∣∣∣∣
λ=0

=
1

2E
〈H(~p ′) | O(0) |H(~p) 〉
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Breit Frame Kinematics

Quick digression about Breit Frame kinematics. . .

Restricted to Breit frame kinematics for Feynman-Hellmann method

E (~p) = E (~p ′) −→ ~p 2 = ~p ′ 2

This allows only certain momentum insertions

~q 2 = 2n

(
2πa

L

)2

n ∈ Z

We get the best signal-to-noise ratio for minimal sink
momentum projections

So we prefer to use kinematics corresponding to

~p ′ = −~p
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Pion Form Factor

Demonstrate technique by calculating pion form factor

Pion form factor defined by non-forward matrix element

〈 ~p ′ | q̄(0)γµq(0) | ~p 〉 = (pµ + p′µ)Fπ(Q2)

Make modification to the Lagrangian

L(y)→ L(y) + λ e i~q·(~y−~x) q̄(y) γµ q(y)

Feynman-Hellmann relation gives

∂E

∂λ

∣∣∣∣
λ=0

=

[
pµ + p′µ

2E

]
Fπ(Q2)

For µ = i = 1, 2, 3

∂E

∂λ

∣∣∣∣
λ=0

=

[
pi + p′i

2E

]
Fπ(Q2)

For µ = 4

∂E

∂λ

∣∣∣∣
λ=0

= Fπ(Q2)

Choose this option
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Pion Form Factor

mπ ≈ 470 MeV 500 configs 323 × 64

Q2 = 0.5 GeV2
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Pion Form Factor
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Pion Form Factor
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Nucleon Form Factors

Carry out similar analysis for nucleon form factors

Dirac and Pauli form factors defined by

〈 ~p ′ ~s ′ | q̄(0)γµq(0) | ~p ~s 〉 = ū(~p ′, σ′)
[
γuF1(Q2) + σµν

qν
2m

F2(Q2)
]
u(~p, σ)

Related to the Sachs electromagnetic form factors by

GE (Q2) = F1(Q2)− Q2

4m2
F2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

Make identical modification to the action as for the pion case

L(y)→ L(y) + λ e i~q·~y q̄(y) γµ q(y)

Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann 23rd July 2015 30 / 35



Nucleon Form Factors

Carry out similar analysis for nucleon form factors

Dirac and Pauli form factors defined by

〈 ~p ′ ~s ′ | q̄(0)γµq(0) | ~p ~s 〉 = ū(~p ′, σ′)
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Nucleon Form Factors

Need to choose projection matrices for different currents

For Temporal Current use Γunpol. = 1
2 (1 + γ4)

∂E

∂λ

∣∣∣∣
λ=0

~p ′=−~p−−−−→ m

E
GE (Q2)

For Spatial Current use Γ± = 1
2 (1 + γ4) 1

2 (1∓ i ~γ·~sm γ5)

∂E

∂λ

∣∣∣∣
λ=0

~p ′=−~p−−−−→ ±
~s × ~q
2mE

GM(Q2)

Can choose different kinematics

Then we get linear combinations of GE and GM
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Nucleon Form Factors (Electric)

mπ ≈ 470 MeV 500-1000 configs 323 × 64
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Nucleon Form Factors (Magnetic)

mπ ≈ 470 MeV 500-1000 configs 323 × 64

0 2 4 6 8 10

Q2  (GeV2 )

0.0

0.5

1.0

1.5

G
M

p
(Q

2
)

3-pt (24x48)
FH (24x48)
3-pt (32x64)
FH (32x64)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
(aQ)2

Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann 23rd July 2015 33 / 35



Summary

Extraordinary success and exciting results from application of
Feynman-Hellmann techniques

Precise determinations of disconnected quantities
I Discussed axial charges here

I Calculations of tensor charges have also been performed

Calculations of pion and nucleon form factors at
unprecedented momentum scales

Other previous work

Determinations of singlet/non-singlet renormalisation factors

Many exciting developments ongoing

Quadratic Feynman-Hellmann for transition matrix elements
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Nucleon Form Factors (Electric)

mπ ≈ 470 MeV 500-1000 configs 323 × 64
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