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Disconnected contributions to matrix elements
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Proton Spin Structure

The proton is a spin—% baryon

Where does this spin come from?

The proton is a complex object
» Bound state of 3 spin-1 quarks (u, u,d)
» Quarks interact via spin-1 gluons
> These all have orbital angular momentum

We can break up the total spin into 3 contributions

1 1
» AY — quark spin

» Ly — quark orbital angular momentum

» Jg — gluon angular momentum

Can we calculate these spin fractions using lattice QCD?
¢ July 2015 3/35
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Proton Spin Structure

Yes and no

Lattice has seen varying success in calculations of these spin fractions

Quark Spin AX

» Experimentally around 30%

» Lattice usually gets around 50-60%
Could still be unresolved systematic errors?

» Chiral extrapolation, volume dependence, etc.
Strange contribution As could be large

» Disconnected contributions are difficult to calculate

Gluon Angular Momentum J,
» Difficult to access purely disconnected contributions

Running theme: Complete calculations in both cases require
access to disconnected contributions
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Disconnected Contributions

J. Green, S. Meinel et al.

0.012
0.010
0.008
0.006
0.004
0.002
0.000
—0.002

—0.004

0.00
L —0.01
L —0.02
L —0.03 |-
5

r —0.04

—0.05
F §  strange 0.06 §  strange
| £ light disconnected | | ) % light disconnected

L L n n n —0.07 L L n n n
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0
0 (GeV?) 0 (GeV?)

Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann



Disconnected Contributions

Two groups of contributions to matrix elements

Connected Disconnected

) —

1 1

(H'| O |H) (H'| O |H)
» Straightforward to calculate » All-to-all propagators unfeasible
» Methods used are very » Some success with stochastic
well-established estimation

» Lots of room for improvement

Feynman-Hellmann method can access both contributions
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Feynman-Hellmann Recipe

Want to calculate some forward matrix element

(H(p)|O(0) | H(p))
1. Include an extra term in the QCD Lagrangian

L— L+ XO

» ) is a parameter you control
2. Measure energy of your hadron state while changing )\
» Use standard lattice spectroscopy techniques
3. Calculate matrix element from energy shifts with respect to \

OE 1 - 5
S|~ e H®) 00| )

Calculation of matrix element — hadron spectroscopy
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Where exactly do we modify the Lagrangian?

In lattice we estimate path-integrals with weighted sums

N
1 - - S 7 1 r
7 [ PADIDY OlA Gyl —, L >~ 0|

Gauge fields are generated with weighting
det[D(A)] e %Al

—
Propagators in O are calculated by inverting Dirac matrix

Sah(x,y) = [DB(x.y)]

Modification to can be made during
gauge field generation and/or propagator calculation

Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann ¢ July 2015 9/35



Feynman-Hellmann Recipe

Modification location determines the contributions we access

Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann 23" July 2015 10 / 35



Feynman-Hellmann Recipe

Modification location determines the contributions we access

Modify Dirac matrix before inversion

S30ey) = [Py

Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann 23" July 2015 10 / 35



Feynman-Hellmann Recipe

Modification location determines the contributions we access

Modify Dirac matrix before inversion

S30ey) = [Py

Access connected
contributions

=

Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann 23" July 2015 10 / 35



Feynman-Hellmann Recipe

Modification location determines the contributions we access

Modify Dirac matrix before inversion

S30ey) = [DBeen)]

Access connected
contributions

=

» Operator insertion encoded in
quark propagator

Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann 23" July 2015 10 / 35



Feynman-Hellmann Recipe

Modification location determines the contributions we access

Modify Dirac matrix before inversion

S30ey) = [DBeen)]

Access connected
contributions

=

» Operator insertion encoded in
quark propagator

» Easy to implement
Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann 23" July 2015 10 / 35



Feynman-Hellmann Recipe

Modification location determines the contributions we access

Modify Dirac matrix before inversion  Modify field weighting during HMC

S30ey) = [Py det{D(U)] =51V

Access connected
contributions

=

» Operator insertion encoded in
quark propagator

» Easy to implement
Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann 23" July 2015 10 / 35



Feynman-Hellmann Recipe

Modification location determines the contributions we access

Modify Dirac matrix before inversion  Modify field weighting during HMC

—1
Sah(x.y) = |Db(x.)| det[D(U)] e~ SeU!
Access connected Access disconnected
contributions contributions

- <

» Operator insertion encoded in
quark propagator

» Easy to implement
Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann 23" July 2015 10 / 35



Feynman-Hellmann Recipe

Modification location determines the contributions we access

Modify Dirac matrix before inversion  Modify field weighting during HMC

—1
Sah(x.y) = |Db(x.)| det[D(U)] e~ SeU!
Access connected Access disconnected
contributions contributions

- <

» Operator insertion encoded in » Operator insertion encoded in
quark propagator gauge fields

» Easy to implement
Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann 23" July 2015 10 / 35



Feynman-Hellmann Recipe

Modification location determines the contributions we access

Modify Dirac matrix before inversion  Modify field weighting during HMC

—1
Sah(x.y) = |Db(x.)| det[D(U)] e~ SeU!
Access connected Access disconnected
contributions contributions

- <

» Operator insertion encoded in » Operator insertion encoded in
quark propagator gauge fields
» Easy to implement > Generate new gauge ensembles
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Nucleon Axial Charges (Connected)

Demonstrate technique by calculating
connected contributions to nucleon axial charges

Want to calculate forward matrix elements of the axial operator
(5.513(0)7,75q(0) | 5.5) = 2i5,Aq
Make modification to the Lagrangian (one flavour at a time)
L — L —iAgy3759

Choose projection matrices to project positive parity spin-up/down states
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Nucleon Axial Charges (Connected)

Demonstrate technique by calculating
connected contributions to nucleon axial charges

Want to calculate forward matrix elements of the axial operator
(5.513(0)7,75q(0) | 5.5) = 2i5,Aq
Make modification to the Lagrangian (one flavour at a time)
L — L —iAgy3759

Choose projection matrices to project positive parity spin-up/down states
1 1 .
e =2 (1+78)5(1 F i)
Feynman-Hellmann relation gives

OE Energy shifts are proportional
53N = £ Adconn. to the quark axial charges
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Nucleon Axial Charges (Connected)

my ~ 470 MeV 350 configs 323 x 64
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Nucleon Axial Charges (Connected)

my ~ 470 MeV 350 configs 323 x 64

> lgnore quadratic behaviour
» Extract linear shift at A =10
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Nucleon Axial Charges (Connected)

m; ~ 470 MeV 350 configs 323 x 64

> lgnore quadratic behaviour
» Extract linear shift at A =10

FH 3-pt.
Auconn.  0.83(13)  0.821(14)
Adeonn.  -0.22(12)  -0.2353(48]
A¥ onn.  1.05(18) 1.056(15)
8Aconn. 0'61(18) 0.586(15)

[

0.46

0.44

0.42

0.40

~0.06 ~0.04 ~0.02 0.00 0.02 0.04 506 3—pt. results on same ensemble,
A .
but 1500 (x5 more) configs
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Nucleon Axial Charges (Connected)

m; ~ 470 MeV 350 configs 323 x 64

> lgnore quadratic behaviour
» Extract linear shift at A =10

FH 3-pt.
Auconn.  0.83(13)  0.821(14)
Adeonn.  -0.22(12)  -0.2353(48]
A¥ onn.  1.05(18) 1.056(15)
8Aconn. 0'61(18) 0.586(15)

[

0.46

0.44

0.42

0.40

~0.06 ~0.04 ~0.02 0.00 0.02 0.04 506 3-pt results on same ensemble,
A .
but 1500 (x5 more) configs

Feynman-Hellmann approach in perfect agreement with
existing methods

Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann 23" July 2015 12 / 35
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Long term behaviour of the correlation functions is given by
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Nucleon Axial Charges (Connected)

Can we improve the signal?
Long term behaviour of the correlation functions is given by
COA t) ZEE A(N)e EOVE

We are only interested in energy shifts

Take ratios of spin-up/down correlators at for zero and non-zero A

C(A, t) C(0,t) targe £, A(+)‘)e—2AE(>\)t
C+(0,t) Cy (A, t) "A(-)N)

We can extract energy shifts directly

Improve signal by allowing statistical fluctuations to cancel
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Nucleon Axial Charges (Connected)

my =~ 470 MeV 350 configs

aAE
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Nucleon Axial Charges (Connected)

my ~ 470 MeV 350 configs 323 x 64

> Even order terms in A are
T completely removed

aAE
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Nucleon Axial Charges (Connected)

my ~ 470 MeV 350 configs 323 x 64

» Even order terms in \ are

oo T completely removed

- j FH 3-pt.

| Aucnn.  0.832(18)  0.821(14)

| Adeonn. -0.260(13) -0.2353(48)
LI | A¥eomn  0572(22)  0.586(15)

SAconn.  1.092(22)  1.056(15)
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my ~ 470 MeV 350 configs 323 x 64

» Even order terms in \ are

oo T completely removed

j FH 3-pt.
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Nucleon Axial Charges (Connected)

my ~ 470 MeV 350 configs 323 x 64

» Even order terms in \ are

oo T completely removed

j FH 3-pt.

| Aucnn.  0.832(18)  0.821(14)

00 | Adeonn. -0.260(13) -0.2353(48)
E | AXconn, 0.572(22)  0.586(15)

B 8Aconn.  1.092(22)  1.056(15)

-0.02 1 Possible discrepancy in Ad

0% o0 eo1 ooz o 003 004 005 006 » Excited state contamination in
3-pt. results?

Very competitive precision, consistent results
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Hadron Axial Charges (Connected)

All the other hadron states come for free!
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Hadron Axial Charges (Connected)

All the other hadron states come for free!
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A. J. Chambers et al., Phys. Rev. D 90, 014510 (2014), 1405.3019
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Nucleon Axial Charges (Disconnected)

To calculate disconnected contributions, we need new gauge ensembles
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Nucleon Axial Charges (Disconnected)

To calculate disconnected contributions, we need new gauge ensembles
But we have a problem. ..
The modification to Lagrangian we made does not satisfy ~5-hermiticity
L — L —i\gy375q

» The fermion matrix determinant is not real
» So we can't use it in a probabilistic weighting for HMC
Let’s make this modification instead

L — L+ Agy3759

Now the energy shifts are imaginary at first order in A

E — E(\) + i(\)
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Nucleon Axial Charges (Disconnected)

To calculate disconnected contributions, we need new gauge ensembles
But we have a problem. ..
The modification to Lagrangian we made does not satisfy ~5-hermiticity
L — L —i\gy375q

» The fermion matrix determinant is not real
» So we can't use it in a probabilistic weighting for HMC
Let’s make this modification instead

L — L+ Agy3759

Now the energy shifts are imaginary at first order in A

) 0
E— E()\) + l¢()\) 8_15 = :tAqdisconn.
A=0
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Nucleon Axial Charges (Disconnected)

To calculate disconnected contributions, we need new gauge ensembles
But we have a problem. ..
The modification to Lagrangian we made does not satisfy ~5-hermiticity
L — L —i\gy375q
» The fermion matrix determinant is not real

» So we can't use it in a probabilistic weighting for HMC
Let's make this modification instead

L — L+ Agy3759

Now the energy shifts are imaginary at first order in A

E— E()\) + I¢()\) % = :tAqdisconn.
We need a strategy to extract signal from imaginary part of
correlation functions
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Disconnected Axial Charges

Energy shifts manifest as a phase in the correlation functions

COM ) TEL A(N) e e TEC)+HisONNe
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Energy shifts manifest as a phase in the correlation functions
COM ) TEL A(N) e e TEC)+HisONNe

» Amplitude may also pick up a phase
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Disconnected Axial Charges

Energy shifts manifest as a phase in the correlation functions
COA 1) 2B A(N)e ) e IEW)FiB(N)]e

» Amplitude may also pick up a phase
Take combinations of real /imaginary parts of spin-up/down projections

Im CT()‘7 t) —Im Ci()\’ t) large ¢
ReG;(Lt) TReC,(Ne) @@t

R\ t) =
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» Amplitude may also pick up a phase
Take combinations of real /imaginary parts of spin-up/down projections

Im CT()‘7 t) —Im Ci()\’ t) large ¢
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Introduce effective phase shift
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Disconnected Axial Charges

Energy shifts manifest as a phase in the correlation functions
COA 1) 2B A(N)e ) e IEW)FiB(N)]e

» Amplitude may also pick up a phase
Take combinations of real /imaginary parts of spin-up/down projections

Im CT()‘7 t) —Im Ci()\’ t) large ¢
ReG;(Lt) TReC,(Ne) @@t

Introduce effective phase shift

R\ t) =

Gerr (A 1) = %afctan[—R(A, A

Ground state saturation will be indicated by phase plateau
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Disconnected Axial Charges

Energy shifts manifest as a phase in the correlation functions
COM 1) BT A(N) ) g [EC)Fio(N]e

» Amplitude may also pick up a phase
Take combinations of real /imaginary parts of spin-up/down projections

Im CT()‘7 t) —Im Ci()“ t) large ¢
ReG;(Lt) TReC,(Ne) @@t

Introduce effective phase shift

R\ t) =

1
derr (A, 1) = Larctan[-R(), )] large t
Ground state saturation will be indicated by phase plateau

Demonstrate procedure by recalculating
connected contributions to nucleon axial charges
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Nucleon Axial Charges (Connected - Imaginary Signal)

my ~ 470 MeV Ay = 0.05 350 configs 323 x 64
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Nucleon Axial Charges (Connected - Imaginary Signal)
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Nucleon Axial Charges (Connected - Imaginary Signal)

my ~ 470 MeV Ay = 0.05 350 configs 323 x 64
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Nucleon Axial Charges (Connected - Imaginary Signal)

my; ~ 470 MeV 350 configs 323 x 64
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Nucleon Axial Charges (Connected - Imaginary Signal)

my ~ 470 MeV 350 configs 323 x 64

0.10

¥ u (ivv{ag signal)
4 u(real signal)
0.08f ¥ d(imag signal)
4 d(real signal)
0.06 g Imag Real
s | Auconn. 0.811(24)  0.832(18)
2 Adeonn.  -0.232(24) -0.260(13)
t AY conn.  0.579(34)  0.572(22)
SAconn,  1.043(34)  1.002(22)
_0'9%,02 0.00 0.02 0.04 0.06 0.08 0.10
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Nucleon Axial Charges (Connected - Imaginary Signal)

my; =~ 470 MeV 350 configs 323 x 64

0.10

¥ u (ivv{ag signal)
$  u(real signal)

0.08// ¥ d (imag signal)

4 d(real signal)

0.06 g Imag Real
5 | Auconn. 0.811(24)  0.832(18)
2 Adeonn.  -0.232(24) -0.260(13
3 o AYconn.  0.579(34)  0.572(22)

SAconn.  1.043(34)  1.002(22)

a\

Reliable extraction from imaginary signal
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Nucleon Axial Charges (Disconnected)

Let’s do the disconnected for real now
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Nucleon Axial Charges (Disconnected)

Let's do the disconnected for real now

Generate new ensembles with a modification to the Lagrangian

L—L+X) G179
q

» We're testing all flavours simultaneously
» A stronger signal should be easier to extract

Feynman-Hellmann relation gives phase shifts

99

E = E(\) + ip()\) o

= Azdisconn.
A=0

Shift in phase with respect to )\ gives total disconnected
quark spin contribution
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Nucleon Axial Charges (Disconnected)

Flavour symmetric point
my &~ 470 MeV 323 x 64
500 configs each

0.010
0.005|
3 oo
| \}\
—0.005]
=0.0: 0.04 -0.02 0.00 0.02 0.04
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Nucleon Axial Charges (Disconnected)

Flavour symmetric point
my &~ 470 MeV 323 x 64
500 configs each

0.010,

0.005|

35 oom

—0.005]

-0.04 -0.02 0.00 0.02 0.04

Azdisconn. = _0057(23)
Aqdisconn. = _0019(8)
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Nucleon Axial Charges (Disconnected)

Flavour symmetric point

my = 470 MeV 323 x 64 my ~ 310 MeV 323 x 64
500 configs each 750 configs each
% . \}\ % 0 ”{__—
-0 -0.04 -0.02 0.00 0.02 0.04 _o'ol‘ﬁ,oa -0.04 —-0.02 0.00 0.02 0.04 0.06
AY gisconn. = —0.057(23) AY gisconn. = 0.009(21)

Aqdisconn. = _0019(8)

Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann 23" July 2015 21 /35



Nucleon Axial Charges (Disconnected)

Flavour symmetric point

my ~ 470 MeV 323 x 64 m; ~ 310 MeV 323 x 64
500 configs each 750 configs each
o | T
-o01 -0.04 -0.02 0.00 0.02 0.04 _0'0]—“6,06 -0.04 -0.02 0.00 0.02 0.04 0.06
AY gisconn. = —0.057(23) AY gisconn. = 0.009(21)
Adgisconn. = —0.019(8) Statistics too low, )\ too small?
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Nucleon Axial Charges (Disconnected)
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Overview

Want to demonstrate how a Feynman-Hellmann approach can
be used to tackle two important problems in lattice QCD

Disconnected contributions to matrix elements

High-momentum form factors
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Pion and Nucleon Form Factors

Hadrons are not point-like particles
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Pion and Nucleon Form Factors

Hadrons are not point-like particles

» They have a spatial distribution encoded by form factors
There is precise experimental and lattice data for low-momentum
form-factors, but. ..

High-momentum form factor calculations are limited by low
signal-to-noise ratios
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» They have a spatial distribution encoded by form factors
There is precise experimental and lattice data for low-momentum
form-factors, but. ..

High-momentum form factor calculations are limited by low
signal-to-noise ratios

A S L g . . .
I % _ High momentum form factors are interesting
1.05 -
x%:l%%% % % - for a number of reasons
'\ ] .
I AN - » Nucleon form factor zero crossing
Tos Nl - . . .
st \\Ei - » Pion form factor asymptotic behaviour
S AN ~‘\\\ % 4
L SN il
00 e ]
L — - Cloét09,r7 =0.8 fm N 4
[ —— Changll,add x, NN il
I Eichmannll,n=1.38 \\ N -
-~ Eichmannll,n=2.0 N>
05
0 5 10

Q (GeV?)

Alexander Chambers (University of Adelaide). Hadron Structure & Feynman-Hellmann 23" July 2015 24 / 35



Pion and Nucleon Form Factors

Hadrons are not point-like particles

» They have a spatial distribution encoded by form factors
There is precise experimental and lattice data for low-momentum
form-factors, but. ..

High-momentum form factor calculations are limited by low
signal-to-noise ratios

A S L g . . .
I % _ High momentum form factors are interesting
1.05 -
x%:l%%% % % - for a number of reasons
'\ ] .
I AN - » Nucleon form factor zero crossing
Tos Nl - . . .
st \\Ei - » Pion form factor asymptotic behaviour
e | N ] . .
i N - » Chance for lattice to lead experiment
00 e ]
L — - Cloét09,r7 =0.8 fm N 4
[ —— Changll,add x, NN il
I Eichmannll,n=1.38 \\ N -
-~ Eichmannll,n=2.0 N>
05
0 5 10

Q (GeV?)

Alexander Chambers (University of Adelaide). Hadron Structure & Feynman-Hellmann 23" July 2015 24 / 35



Pion and Nucleon Form Fact

Hadrons are not point-like particles
» They have a spatial distribution encoded by form factors

There is precise experimental and lattice data for low-momentum
form-factors, but. ..

High-momentum form factor calculations are limited by low
signal-to-noise ratios

T High momentum form factors are interesting

for a number of reasons
» Nucleon form factor zero crossing

» Pion form factor asymptotic behaviour

E
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» Chance for lattice to lead experiment
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Feynman-Hellmann Recipe (Non-Forward Case)

Want to calculate some non-forward matrix element

(H(p")1O(0) | H(p) )
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Feynman-Hellmann Recipe (Non-Forward Case)

Want to calculate some non-forward matrix element

(H(p")|O(0) | H(p))
1. Include an extra term in the QCD Lagrangian

L(y) = L(y) + ATV O(y)
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Feynman-Hellmann Recipe (Non-Forward Case)

Want to calculate some non-forward matrix element
(H(p")10(0) | H(p))
1. Include an extra term in the QCD Lagrangian
L(y) = L(y) + 2T 0(y)

» Choose the momentum ¢, fix source location to x
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Feynman-Hellmann Recipe (Non-Forward Case)

Want to calculate some non-forward matrix element
(H(p")|O(0) | H(p))
1. Include an extra term in the QCD Lagrangian
L(y) = L(y) + 2TV 0(y)
» Choose the momentum ¢, fix source location to x

2. Measure energy of your hadron state while changing A
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Feynman-Hellmann Recipe (Non-Forward Case)

Want to calculate some non-forward matrix element
(H(p")|O(0) | H(p))
1. Include an extra term in the QCD Lagrangian
L(y) = L(y) + 2TV 0(y)
» Choose the momentum ¢, fix source location to x

2. Measure energy of your hadron state while changing A

» Project sink to momentum p’ such that interaction is Breit frame

p+a=p E(5) = E(5")
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Feynman-Hellmann Recipe (Non-Forward Case)

Want to calculate some non-forward matrix element
(H(p")|O(0) | H(p))
1. Include an extra term in the QCD Lagrangian
L(y) = L(y) + 2TV 0(y)
» Choose the momentum ¢, fix source location to x

2. Measure energy of your hadron state while changing A
» Project sink to momentum p’ such that interaction is Breit frame

p+d=p" E(p) = E(p")
3. Calculate matrix element from energy shifts with respect to \
0E 1

| = 2EHE) 100) H(P)
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Breit Frame Kinematics

Quick digression about Breit Frame kinematics. . .
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Breit Frame Kinematics

Quick digression about Breit Frame kinematics. . .

Restricted to Breit frame kinematics for Feynman-Hellmann method

E(p)=E(") — p*=p"?
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Breit Frame Kinematics

Quick digression about Breit Frame kinematics. . .
Restricted to Breit frame kinematics for Feynman-Hellmann method
E(R)=E(") — p*=p"

This allows only certain momentum insertions

-2 2mwa 2
q =2n T neZ
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Breit Frame Kinematics

Quick digression about Breit Frame kinematics. . .
Restricted to Breit frame kinematics for Feynman-Hellmann method
E(R)=E(") — p*=p"

This allows only certain momentum insertions

-2 2mwa 2
q =2n T neZ

We get the best signal-to-noise ratio for minimal sink
momentum projections
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Breit Frame Kinematics

Quick digression about Breit Frame kinematics. . .

Restricted to Breit frame kinematics for Feynman-Hellmann method
- - ) 12
EpP)=EPF) — P =P
This allows only certain momentum insertions

-2 2mwa 2
q =2n T neZ

We get the best signal-to-noise ratio for minimal sink
momentum projections

So we prefer to use kinematics corresponding to

5/ —

p'=—p
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Pion Form Factor

Demonstrate technique by calculating pion form factor
Pion form factor defined by non-forward matrix element
(B"13(0)7.q(0) | B) = (pu + P} ) Fr(Q%)
Make modification to the Lagrangian
L{y) = L) + 2T g(y) v, 9(y)
Feynman-Hellmann relation gives

OE

OE Pu+ P,
oA

Lo @)
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Pion Form Factor

Demonstrate technique by calculating pion form factor
Pion form factor defined by non-forward matrix element
(B"13(0)7.q(0) | B) = (pu + P} ) Fr(Q%)
Make modification to the Lagrangian
L{y) = L) + 2T g(y) v, 9(y)
Feynman-Hellmann relation gives

OE

OE Pu+ P,
oA

Lo @)

Foru=i=1,2,3

. Pi‘f'P; 2
,\:o_[ 2E ]Fﬂ(Q)

0E
O
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Pion Form Factor

Demonstrate technique by calculating pion form factor
Pion form factor defined by non-forward matrix element

(B"13(0)7.q(0) | B) = (pu + P} ) Fr(Q%)
Make modification to the Lagrangian

L(y) = L(y) + ATV G(y) v, q(y)

Feynman-Hellmann relation gives

OE Pu+ P, )
= = | _"HIF,
o L e @)
FOI’;L:I.:].,2,3 ForM:4
OE pi + P 2 9E 2
av - ! FTl' AN — F7r
I =0 [ 2E ] (@) I |x=o (@
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Pion Form Factor

Demonstrate technique by calculating pion form factor
Pion form factor defined by non-forward matrix element

(B"13(0)7.q(0) | B) = (pu + P} ) Fr(Q%)
Make modification to the Lagrangian

L(y) = L(y) + ATV G(y) v, q(y)

Feynman-Hellmann relation gives

OE Pu+ P, )
= = | _"HIF,
o L e @)
FOI’;L:I.:].,2,3 ForM:4
OE pi + P 2 9E 2
av - ! FTl' AN — F7r
I =0 [ 2E ] (@) I |x=o (@

Choose this option
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Pion Form Factor

my; ~ 470 MeV 500 configs 323 x 64
Q? = 0.5 GeV?

0.010f

aAE

~0.005|

~0.010)

Zo0z oot 000 001 002
A
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Pion Form Factor

my; ~ 470 MeV 500 configs 323 x 64
Q? = 0.5 GeV?

0.010f

aAE

~0.005|

~0.010)

Zo0z oot 000 001 002
A

Q% =1.6 GeV?

0.010]

Al

~0.005|

—~0.010)

o0z oot 000 001 002
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Pion Form Factor

my; ~ 470 MeV 500 configs 323 x 64
Q2 = 0.5 GeV2 Q? = 4.4 GeV?

0010
001
0.005
0.005
o
9 E
3 {
~0.005|
~o.005]
-0.010]
—~0.010]
50z oy X 56T 5oz
o0z B 500 o1 5oz N
y
001
0.005
9
k]
~o.005]
—~0.010]
Y By 560 [ a0z

A
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Pion Form Factor

my; ~ 470 MeV 500 configs 323 x 64
Q2 = 0.5 GeV2 Q? = 4.4 GeV?

0.010)
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Pion Form Factor

2
(aQ)
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Nucleon Form Factors

Carry out similar analysis for nucleon form factors
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Nucleon Form Factors

Carry out similar analysis for nucleon form factors

Dirac and Pauli form factors defined by
—/ = - — = —( = qll —
(5" 5'13(0),q(0) | 5 ) = 6(5",0") [1uF1(@%) + 0y s F2( Q%) u(p. )

Related to the Sachs electromagnetic form factors by

Ge(@%) = F1(@%) — %5(@2)
Gm(Q%) = F1(Q?) + F(@?)
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Nucleon Form Factors

Carry out similar analysis for nucleon form factors
Dirac and Pauli form factors defined by
(5" 8(0)1u9(0) | 55) = 55", ) [1Fi(@®) + oy o Fo(@)] (5. 0)
Related to the Sachs electromagnetic form factors by

Ge(Q%) = F1(Q%) — %Fg(oz)
Gm(Q%) = F1(Q?) + F(@?)

Make identical modification to the action as for the pion case

L(y) = L(y) + XY q(y)vualy)
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Nucleon Form Factors

Need to choose projection matrices for different currents
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Nucleon Form Factors

Need to choose projection matrices for different currents

For Temporal Current use I'jnpo = %(1 + 7a)

oE
oA

5'——5 m
p'=—p m
A=0 E

Ge(@?)

Alexander Chambers (University of Adelaide) Hadron Structure & Feynman-Hellmann 23" July 2015 31/35



Nucleon Form Factors

Need to choose projection matrices for different currents

For Temporal Current use I'jnpo = %(1 + 7a)

oE
oA

Ty

P=p %GE(Qz)

A=0

For Spatial Current use I+ = 1(1+ 74)1(1F i1545)
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Nucleon Form Factors

Need to choose projection matrices for different currents

For Temporal Current use I'jnpo = %(1 + 7a)

oE
oA

o
PP —Ge(Q?)
A=0 E

For Spatial Current use I+ = 1(1+ 74)1(1F i1545)

oE
oA

pl=—p ,SXq 5
— + G
=0 2mE m(Q)
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Nucleon Form Factors

Need to choose projection matrices for different currents

For Temporal Current use I'jnpo = %(1 + 7a)

L
p=—pP
L

OE

= o 2
X |s_o Ge(@7)

m
E

For Spatial Current use I+ = 1(1+ 74)1(1F i1545)

oE

F'=—F s X q 5
G
o 2mE m(Q7)

Can choose different kinematics
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Nucleon Form Factors

Need to choose projection matrices for different currents

For Temporal Current use ['ynpol = %(1 +74)

=4

OF 5
P==b, %GE(Qz)

2y

For Spatial Current use I+ = 1(1+ 74)1(1F i1545)

OE

p'=—p 5 X q 2
— G

2 E

Can choose different kinematics

Then we get linear combinations of Gg and G,
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Nucleon Form Factors (Electric)

my ~ 470 MeV 500-1000 configs 323 x 64
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Nucleon Form Factors (Magnetic)

my ~ 470 MeV 500-1000 configs 323 x 64

2
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Extraordinary success and exciting results from application of
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Extraordinary success and exciting results from application of
Feynman-Hellmann techniques

Precise determinations of disconnected quantities
» Discussed axial charges here
» Calculations of tensor charges have also been performed

Calculations of pion and nucleon form factors at
unprecedented momentum scales

Other previous work
Determinations of singlet/non-singlet renormalisation factors
Many exciting developments ongoing

Quadratic Feynman-Hellmann for transition matrix elements
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Nucleon Form Factors (Electric)

my ~ 470 MeV 500-1000 configs 323 x 64
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