Evolution of the $\bar{K}N - \pi\Sigma$ system with M_{π}^2 in a box from U χ PT

R. Molina¹, M. Doering¹

¹The George Washington University Corcoran Hall, 725 21st Street NW, Washington, DC, 20052, United States

Outline

Introduction

- 2 The $\Lambda(1405)$ as dynamically generated resonance in the infinite volume
- Formalism in the finite volume
- Meson decay constants from SU(3) U χ PT extrapolation

5 Results

6 Conclusions

Introduction

- The Λ(1405) has strong influence in the low energy *KN* scattering data [1,2].
- This resonance lies between the $\pi\Sigma$ and $\bar{K}N$ thresholds, therefore, a couple channel treatment is appropriated.
- All the unitary frameworks based in chiral Lagrangians for the study of the s wave meson baryon interaction lead to the generation of the Λ(1405) [3-7...].
- Within the U_χPT approach, two poles close to the mass of the Λ(1405) appear. Experimental evidence of the two pole structure has been found [8-13].

Introduction

- [1] Y. A. Chao, R. W. Kraemer, D. W. Thomas and B. R. Martin, Nucl. Phys. B 56, 46 (1973).
 - [2] T. L. Trueman, Nucl. Phys. 26, 57 (1961).
 - [3] N. Kaiser, T. Waas and W. Weise, Nucl. Phys. A 612, 297 (1997)
 - [4] J. A. Oller and U. G. Meissner, Phys. Lett. B 500, 263 (2001)
 - [5] E. Oset, A. Ramos and C. Bennhold, Phys. Lett. B 527, 99 (2002)
 - [6] D. Jido, A. Hosaka, J. C. Nacher, E. Oset and A. Ramos, Phys. Rev. C 66, 025203 (2002)
 - [7] Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881, 98 (2012)
 - [8] M. Bazzi, G. Beer, L. Bombelli, A. M. Bragadireanu, M. Cargnelli, G. Corradi, C. Curceanu (Petrascu) and A. d'Uffizi et al., Phys. Lett. B 704, 113 (2011)
 - [9] L. S. Geng and E. Oset, Eur. Phys. J. A 34, 405 (2007)
 - [10] V. K. Magas, E. Oset and A. Ramos, Phys. Rev. Lett. 95, 052301 (2005).
 - [11] S. Prakhov et al. [Crystall Ball Collaboration], Phys. Rev. C 70, 034605 (2004).
 - [12] T. Hyodo, A. Hosaka, E. Oset, A. Ramos and M. J. Vicente Vacas, Phys. Rev. C 68, 065203 (2003)
 - [13] T. Hyodo, A. Hosaka, M. J. Vicente Vacas and E. Oset, Phys. Lett. B 593, 75 (2004)

The $\Lambda(1405)$ as dynamically generated resonance in the infinite volume

 In the chiral unitary approach, the Λ(1405) resonance is dynamically generated in *s*-wave meson-baryon scattering. Channels: *K̄N*, πΣ, ηΛ and *K*Ξ.

$$T = (1 - VG)^{-1} V , \qquad (1)$$

 V is is given by the lowest order of the chiral perturbation theory (the Weinberg-Tomozawa interaction) projected in s-wave:

$$V_{ij}(W) = -C_{ij} \frac{1}{4f_i f_j} (2W - M_i - M_j) \sqrt{\frac{M_i + E_i}{2M_i}} \sqrt{\frac{M_j + E_j}{2M_j}}$$
 (2)

 M_i , M_j , E_i , E_j , masses and energies of the baryons in the channels $i, j: P_i B_i \rightarrow P_j B_j$. *W* is the c.m. energy.

The f_i, f_j for P_iB_i → P_jB_j are obtained from the SU(3) chiral extrapolation [14]:

m_{π}	m _K	m_{η}	m _N	m_{Λ}	mΣ	m _Ξ	f_{π}	f _K	f_{η}
138.0	495.7	547.9	938.9	1115.7	1193.2	1318.3	92.4	112.7	122.4

Table : Masses and decay constants for the physical masses(PDG average masses).

• These a_i constants are fitted to obtain similar amplitudes for the $f'_i s$ above than in [5] where a common value $f = 1.123 f_{\pi}$ for all the reactions is used.

$$a_{ar{K}N}=-2.2, \quad a_{\pi\Sigma}=-1.6, \quad a_{\eta\Lambda}=-2.5, \quad a_{K\Xi}=-2.9$$

[14] J. Nebreda and J. R. Pelaez., Phys. Rev. D 81, 054035 (2010) The couplings of the three poles found are, (close to a pole, $T_{ij} \simeq g_i g_j / (\sqrt{s} - \sqrt{s_0})$):

$\sqrt{s_0}$	ĒΝ	$\pi\Sigma$	$\eta \Lambda$	KΞ
1379 – 71 <i>i</i>	2.2	3.1	0.8	0.5
1412 – 20 <i>i</i>	3.1	1.7	1.5	0.3
1672 – 18 <i>i</i>	0.8	0.3	1.1	3.4

Table : Coupling constants $|g_i|$ to the meson-baryon channels obtained as the residua of the scattering amplitude at the pole position.

Formalism in the finite volume

This "V" is the kernel of the scattering equation:

$$T = T + VGT \longrightarrow T = [I - VG]^{-1}V$$
, with (4)

One can evaluate the loop function G with a cuttoff,

$$G = G^{co}(E) = \int_{q < q_{max}} \frac{d^3q}{(2\pi)^3} \frac{\omega_1 + \omega_2}{2\omega_1\omega_2} \frac{2M_i}{E^2 - (\omega_1 + \omega_2)^2 + i\epsilon}$$
(5)

where $\omega_i = \sqrt{m_i^2 + |\vec{q_i}|^2}$ is the energy and \vec{q} stands for the momentum of the meson in the channel *i*. In the finite volume, the momenta is quantized,

$$\vec{q}_i = \frac{2\pi}{L}\vec{n}_i; \qquad T \longrightarrow \tilde{T}; \qquad G(E) \longrightarrow \tilde{G}(E) , \qquad (6)$$

where [15]

$$\tilde{G}(E) = \frac{2M_i}{L^3} \sum_{\vec{q}_i} I(E, \vec{q}_i) , \qquad (7)$$

with

$$I(E, \vec{q}_i) = \frac{\omega_1(\vec{q}_i) + \omega_2(\vec{q}_i)}{2\omega_1(\vec{q}_i)\omega_2(\vec{q}_i)} \frac{1}{(E)^2 - (\omega_1(\vec{q}_i) + \omega_2(\vec{q}_i))^2}$$
(8)

This form produces a degeneracy, $n_x^2 + n_y^2 + n_z^2 = m$, such that $q_i^2 = \frac{4\pi^2}{L^2}m_i$. The sum over the momenta is done till q_{max} . As in the infinite volume, the formalism should also be made independent of q_{max} and related to α [16].

$$\tilde{G} = G^{DR} + \lim_{q_{max} \to \infty} \left(\frac{1}{L^3} \sum_{q < q_{max}} I(E, \vec{q}) - \int_{q < q_{max}} \frac{d^3 q}{(2\pi^3)} I(E, \vec{q}) \right)$$

$$\equiv G^{DR} + \lim_{q_{max} \to \infty} \delta G, \qquad (9)$$

where $\delta G \equiv \tilde{G} - G^{co}$, and G^{co} can be taken from [17]. Here $I(E, \vec{q})$ is the factor given in Eq. (8). δG converges as $q_{max} \rightarrow \infty$. The Bethe-Salpeter equation in finite volume, can be written as,

$$\tilde{T}^{-1} = V^{-1} - \tilde{G} \tag{10}$$

The energy levels in the box in the presence of interaction V correspond to the condition

$$det(I - V\tilde{G}) = 0. \tag{11}$$

For one channel, the amplitude in infinite volume T

$$T = (\tilde{G}(E_i) - G(E_i))^{-1}.$$
 (12)

[15] M. Doring, U. G. Meissner, E. Oset and A. Rusetsky, Eur. Phys. J. A 48, 114 (2012)

[16] A. Martinez Torres, L. R. Dai, C. Koren, D. Jido and E. Oset, Phys. Rev. D 85, 014027 (2012)

[17] J. A. Oller, E. Oset and J. R. Pelaez, Phys. Rev. D 59, 074001 (1999) [Erratum-ibid. D 60, 099906 (1999)] [Erratum-ibid. D 75, 099903 (2007)] [hep-ph/9804209].

Meson decay constants from SU(3) U χ PT extrapolation

The physical masses can be expressed as a function the leading order masses (M_0), LEC's (L') and pseudoscalar decay constants (f).

$$M_{\pi}^{2} = M_{0\,\pi}^{2} \left[1 + \mu_{\pi} - \frac{\mu_{\eta}}{3} + \frac{16M_{0\,K}^{2}}{f_{0}^{2}} \left(2L_{6}^{\prime} - L_{4}^{\prime} \right) + \frac{8M_{0\,\pi}^{2}}{f_{0}^{2}} \left(2L_{6}^{\prime} + 2L_{8}^{\prime} - L_{4}^{\prime} - L_{5}^{\prime} \right) \right], \quad (13)$$

$$M_{K}^{2} = M_{0 K}^{2} \left[1 + \frac{2\mu_{\eta}}{3} + \frac{8M_{0 \pi}^{2}}{f_{0}^{2}} \left(2L_{6}^{r} - L_{4}^{r} \right) + \frac{8M_{0 K}^{2}}{f_{0}^{2}} \left(4L_{6}^{r} + 2L_{8}^{r} - 2L_{4}^{r} - L_{5}^{r} \right) \right],$$
(14)

$$M_{\eta}^{2} = M_{0 \eta}^{2} \left[1 + 2\mu_{K} - \frac{4}{3}\mu_{\eta} + \frac{8M_{0 \eta}^{2}}{t_{0}^{2}} (2L_{8}^{\prime} - L_{5}^{\prime}) + \frac{8}{t_{0}^{2}} (2M_{0 K}^{2} + M_{0 \pi}^{2})(2L_{6}^{\prime} - L_{4}^{\prime}) \right]$$

$$+M_{0\pi}^{2}\left[-\mu_{\pi}+\frac{2}{3}\mu_{K}+\frac{1}{3}\mu_{\eta}\right]+\frac{128}{9f_{0}^{2}}(M_{0K}^{2}-M_{0\pi}^{2})^{2}(3L_{7}+L_{8}^{r}),$$
(15)

$$\mu_P = \frac{M_{0\,P}^2}{32\pi^2 f_0^2} \log \frac{M_{0\,P}^2}{\mu^2}, \qquad P = \pi, K, \eta , \qquad (16)$$

where f_0 is the pion decay constant in the chiral limit, $4\pi f_0 \simeq 1.2$ GeV, μ is the regularization scale.

L

Meson decay constants from SU(3) U χ PT extrapolation

The decay constants evaluated to one loop in the SU(3) $U\chi PT$,

$$f_{\pi} = f_{0} \left[1 - 2\mu_{\pi} - \mu_{K} + \frac{4M_{0\pi}^{2}}{f_{0}^{2}} (L_{4}^{r} + L_{5}^{r}) + \frac{8M_{0K}^{2}}{f_{0}^{2}} L_{4}^{r} \right], \quad (17)$$

$$f_{K} = f_{0} \left[1 - \frac{3\mu_{\pi}}{4} - \frac{3\mu_{K}}{2} - \frac{3\mu_{\eta}}{4} + \frac{4M_{0\pi}^{2}}{f_{0}^{2}} L_{4}^{r} + \frac{4M_{0K}^{2}}{f_{0}^{2}} (2L_{4}^{r} + L_{5}^{r}) \right], \quad (18)$$

$$f_{\eta} = f_0 \left[1 - 3\mu_K + \frac{4L_4^r}{f_0^2} \left(M_{0\pi}^2 + 2M_{0K}^2 \right) + \frac{4M_{0\eta}^2}{f_0^2} L_5^r \right] .$$
(19)

[14] J. Nebreda and J. R. Pelaez., Phys. Rev. D 81, 054035 (2010)

Set	L(fm)	m_{π}	m _K	m_{η}	m _N	mΛ	m _Σ	m=	f_{π}	f _K	f_{η}
1	2.99	170.29	495.78	563.97	962.2	1135.8	1181.5	1323.6	94.5	113.2	122.1
2	3.04	282.84	523.26	581.72	1058.7	1173.4	1235.5	1332.8	102.5	116.1	122.3
3	3.08	387.81	559.46	605.97	1150.1	1261.0	1292.4	1377.4	109.5	118.5	122.6
4	3.23	515.56	609.75	638.07	1274.5	1333.4	1353.5	1401.8	116.3	120.6	122.4
5	3.27	623.14	670.08	685.01	1420.3	1434.2	1449.8	1472.4	120.1	121.9	122.6

Table. Masses and decay constants for sets 1-5.

Figure. Comparison between the U $_{\chi}$ PT prediction and the Lattice data of [1] done for sets 1 to 5, and the physical set.

[18] J. M. M. Hall, W. Kamleh, D. B. Leinweber, B. J. Menadue, B. J. Owen, A. W. Thomas and R. D. Young, Phys. Rev. Lett 114, 132002 (2015) [hep-lat].

Figure : Couplings $|g_i|$ for the sets of parameters 1 to 4.

Figure : Behaviour of the the $\text{Re}\sqrt{s_p}$ of the poles found from the *T*-matrix in the infinite volume with the M_{π}^2 , for the physical, and 1 to 5 sets.

Infinite v	olume
------------	-------

Finite volume

	Chann	el						Char	nel				
Pole	ĒΝ	πΣ	$\eta \Lambda$	KΞ	b _{ĒN}	$b_{\pi\Sigma}$	Pole	ĒΝ	$\pi\Sigma$	$\eta \Lambda$	KΞ	b _{ĒN}	$b_{\pi\Sigma}$
1379-i 71	2.20	3.1	0.8	0.5	56	-48	1322	0.5	0.6	0.1	0.07	113	9
1412-i 19	3.1	1.7	1.5	0.3	23	-81	1401	2.2	1.0	1.0	0.2	34	-70
1369-i 64	1.9	2.9	0.6	0.5	89	-17	1322	0.6	0.9	0.1	0.1	136	30
1443-i 17	2.6	1.35	1.32	0.3	15	-91	1417	1.9	0.4	0.9	0.06	41	-65
Cusp at 1518 34			-	64	0	-	1489	0.9	1.2	0.3	0.3	93	29
1565-i 19	2.5	1.5	1.4	0.5	17	-47	1541	1.9	0.3	1.0	0.2	41	-23
1671	2.0	1.3	1.1	0.6	39	9	1649	1.4	1.3	0.7	0.5	61	31
1700-i 22	0.6	0.4	1.2	2.9	10	-20	1676	1.5	0.1	0.9	0.06	34	4
1836	1.9	12	1.7	1.8	48	33	1829	1.8	1.2	1.5	1.5	55	40
1875-i 28	1.3	1.2	1.6	1.0	9	-6	1859	0.9	0.5	0.6	0.09	25	10
1009	0.0	0.9	1.0	2.0	02	75	1997	1.0	0.9	1.9	2.9	93	76
2077 (0.5	0.5	0.0	0.3	2.5	12	13	2062	0.9	0.7	0.2	0.9	28	11
2011-10.5	2 .1	0.4	0.5	1.1	13	-4							

Table Pole positions and couplings of the states in the infinite (left) and finite (right) volume.

Conclusions

- For masses m_π ≤ 400 MeV we find very good agreement between the Lattice data of J. M. M. Hall et al. and UχPT.
- The states found in the Lattice for the two first sets correspond to the second energy level of the $\bar{K}N \pi\Sigma$ system in the box.
- For the third set, the energy level found in Lattice is consistent with the first state in the box from U_χPT. For these m_π's, the K̄N component begins to be more dominant than the πΣ component for the first energy level.
- For the first two sets ($m_{\pi} \lesssim 300$ MeV), we find similar properties between the state in the finite volume and the second pole of the $\Lambda(1405)$ from U χ PT.