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Correlation Matrix Techniques

Begin by constructing an N × N basis of cross correlation
functions

G±ij (~p, t) =
∑
~x

e−i~p·~x Trsp

[
Γ±
〈

Ω
∣∣χi (~x , t)χj(~0, tsrc)

∣∣Ω
〉 ]

=
∑
α

λαi λ̄
α
j e
−mαt

α enumerates the energy eigenstates of mass mα and parity ±
that we have projected with Γ± = (γ0 ± 1)/2, λαi and λ̄αj are
the couplings of our creation and annihiliation operators χj

and χi at the source and sink respectively.
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Correlation Matrix Techniques (cont.)

We then search for a linear combinations of operators

φα =
∑
i

χiv
α
i and φ̄αj =

∑
j

χ̄ju
α
j

such that φ and φ̄ couple to a single energy eigenstate.
One can then see from our cross correlation matrix equation
that

Gij(t0 + ∆t)uαj = e−mα∆tGij(t0)uαj

Hence the required values for uαj and vαi can be obtained from
solving the eigenvalue equations[

G−1(t0)G(t0 + ∆t)
]
ij
uαj = cαuαi

vαi
[
G(t0 + ∆t)G−1(t0)

]
ij

= cαvαj ,

where the eigenvalue cα = e−mα∆t .
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Correlation Matrix Techniques (cont.)

As our correlation matrix is diagonalised at t0 and t0 + ∆t by
the eigenvectors uαj and vαi we can obtain the eigenstate
projected correlator

Gα± = vαi G±ij uαj

which is then use to extract a mass.
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Typical mass fit
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3-Quark Operator Results

χ1 = εabc(uaTCγ5d
b)uc and χ2 = εabc(uaTCdb)γ5u

c

M. S. Mahbub et al. [CSSM Lattice Collaboration], Phys. Rev. D 87, 011501 (2013).
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3-Quark Operator Results (cont.)

M. S. Mahbub, W. Kamleh, D. B. Leinweber and A. G. Williams, Annals Phys. 342, 270 (2014)
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3-Quark Operator Results (cont.)

t0 4t tmax M1 M2 λ1 λ2 χ2/dof

18 1 28 1.54(25) 2.45(41) 1.83(1.95) 6.22(1.23) 0.50
18 2 28 1.53(39) 2.36(50) 1.60(2.83) 6.19(2.02) 0.48
18 3 28 1.56(43) 2.37(60) 1.75(3.38) 6.02(2.48) 0.48
18 1 29 1.49(30) 2.38(40) 1.48(2.02) 6.43(1.28) 0.47
18 2 29 1.43(49) 2.26(41) 1.00(2.53) 6.60(1.77) 0.36
18 3 29 1.45(56) 2.25(49) 1.05(3.04) 6.52(2.20) 0.35
19 1 28 0.91(85) 1.95(11) 0.12(0.77) 16.25(0.97) 0.11
19 2 28 1.06(99) 1.97(20) 0.25(2.54) 16.31(1.58) 0.16
19 1 29 0.71(68) 1.93(06) 0.04(0.20) 16.05(0.92) 0.10
19 2 29 0.78(85) 1.93(08) 0.06(0.40) 16.09(1.03) 0.10

→ no prediction
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Toy Model

Consider a simple 2-component toy model with QCD
eigen-states given by

|a〉 = cos θ |1〉+ sin θ |2〉
|b〉 = − sin θ |1〉+ cos θ |2〉

where |1〉 and |2〉 denote a single-hadron and meson-baryon
type component respectively, while θ is some arbitrary mixing.
Now suppose we have a three quark operator χ3 that has
substantial overlap with |1〉 but not |2〉〈

Ω
∣∣χ3

∣∣ 1〉 ∝ C and
〈
Ω
∣∣χ3

∣∣ 2〉 � C .

So χ̄3 acting on the vacuum creates∣∣ 1
〉

= cos θ
∣∣ a〉− sin θ

∣∣ b〉 .
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Toy Model (cont.)

No operator sensitive to |2〉 → no way to disentangle
energy-eigenstates.

Concern of not being able to see states with high |2〉
component and contamination of extracted state.

In our work we therefore utilize 5-quark operators which are
expected to have higher overlap with meson-baryon type
states.
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Toy Model (cont.)

It is now known (from meson studies for example) that
scattering states can be extracted by explicitly projecting the
momentum of interest of each state. Rather than performing
this projection, the question we endeavour to address is what
role do five-quark operators (without explicitly projected
momentum) have on the mass spectrum?
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5-quark operators

Using the Clebsch-Gordan coefficients we can therefore write
down five quark operators

χ5(x) =

√
2

3

∣∣∣nπ+
〉
−
√

1

3

∣∣∣p3π
0
〉

=
1

2
√

3
εabc

{
2
(
uTa(x) Γ1 d

b(x)
)

Γ2d
c(x)

[
d̄e(x) γ5 u

e(x)
]

−
(
uTa(x) Γ1 d

b(x)
)

Γ2u
c(x)

[
d̄e(x) γ5 d

e(x)
]

+
(
uTa(x) Γ1 d

b(x)
)

Γ2u
c(x)

[
ū(x)e γ5 u

e(x)
]}
,

where χ5 and χ′5 correspond to (Γ1, Γ2) = (Cγ5, I) and
(Γ1, Γ2) = (C , γ5) respectively.
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5-quark operators (cont.)

Now need to calculate the more computationally intense loop
propagators S(x , x).
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Methodology

Proceed by generating an ensemble of random independent Z4

noise vectors η1 . . . ηN performing full dilution in spin, colour,
and time as a means of variance reduction

ηaα(~x , t) =
∑
b,β,t′

ηab,t
′

αβ (~x , t).

where

ηab,t
′

αβ (~x , t) = δαβδ
abδtt′η

a
α(~x , t). (No summation).

The stochastic estimate of S(y , x) for a single noise vector is
then given by

Sca
γα(~y , ~x) =

∑
b,β,t′

χcb,t′

γβ (~y , t)η†ab,t
′

αβ (~x , t).
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Test Results

We now test the robustness of method by calculating
correlators with stochastically estimated propagators and
comparing them with correlators that use standard S(x , 0)
propagators.

Replace only one of the propagators present with a stochastic
one.

Smearing of stochastically estimated propagators can be done
post inversion.
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Pion Correlator
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Nucleon Correlator
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Configuration Details

PACS-CS 2 + 1 flavour dynamical-fermion configurations
made available through the ILDG

Non-perturbatively O(a)-improved Wilson fermion action, and
the Iwasaki gauge action.

Lattice size is 323 × 64 with a spacing of 0.0907 fm providing
a volume of ≈ (2.90 fm)3.

β = 1.90, the light quark mass is set by the hopping parameter
κud = 0.13770 which gives a pion mass of mπ = 293 MeV,
while the strange quark mass is set by κs = 0.13640.

Make use of 720 configurations.
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Table of Operators

Basis Number Operators Used

1 χ1, χ2

2 χ1, χ2, χ5

3 χ1, χ2, χ′5
4 χ1, χ2, χ5, χ′5
5 χ1, χ5, χ′5
6 χ2, χ5, χ′5
7 χ5, χ′5
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Correlation Matrix Results

1 2 3 4 5 6 7
Basis Number

1

2

3

4

5

M
(G

eV
)

1 → χ1 + χ2
2 → χ1 + χ2 + χ5
3 → χ1 + χ2 + χ′5
4 → χ1 + χ2 + χ5 + χ′5
5 → χ1 + χ5 + χ′5
6 → χ2 + χ5 + χ′5
7 → χ5 + χ′5

ns = 35 + 200

P-wave N + π
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Correlation Matrix Results (cont.)
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Correlation Matrix Results (cont.)
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Correlation Matrix Results (cont.)
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Correlation Matrix Results (cont.)
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Correlation Matrix Results (cont.)
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Correlation Matrix Results (cont.)
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Correlation Matrix Results (cont.)
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Correlation Matrix Results

1 2 3 4 5 6 7
Basis Number

1

2

3

4

5

6

M
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eV
)

1 → χ1 + χ2
2 → χ1 + χ2 + χ5
3 → χ1 + χ2 + χ′5
4 → χ1 + χ2 + χ5 + χ′5
5 → χ1 + χ5 + χ′5
6 → χ2 + χ5 + χ′5
7 → χ5 + χ′5

ns = 35 + 200

S-wave N + π
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Correlation Matrix Results (cont.)
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Correlation Matrix Results (cont.)
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Correlation Matrix Results (cont.)

1 2 3 4 5 6 7
Basis Number/Variational Parameters

−1.0

−0.5

0.0

0.5

1.0

E
ig

en
ve

ct
or

C
om

p
on

en
t

State 2

uχ1

35

uχ1

200

uχ2

35

uχ2

200

uχ5

35

uχ5

200

u
χ5′
35

u
χ5′
200



37/41

c

Introduction
Motivation

Stochastic techniques

Results
Summary and further work

Positive-parity nucleon spec-
trum
Eigen-vectors
Mass comparison

Negative-parity nucleon spec-
trum
Eigen-vectors
Mass comparison

Correlation Matrix Results (cont.)
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Correlation Matrix Results (cont.)
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Correlation Matrix Results (cont.)
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Summary

Developed method to smear stochastically estimated loop
propagators.

Introduced five-quark operators and performed correlation
matrix analyses with them.

χ′5 seems to be important in accessing energies in the region
of scattering states.

Fitting a single state ansatz to eigenstate projected correlators
enables reliable extraction of energies across qualitatively
different variational bases. In particular, using the techniques
described herein, one doesn’t need access to low-lying states
in order to reliably extract energies closely related to the
resonances of Nature.
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Future Work

Further work will include explicitly specifying the momentum
of particles present in scattering states and analysis in other
channels.

Thanks for Listening!
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