Examining the evidence for exotic hadrons

Adam Szczepaniak (Indiana U.)

Renaissance of QCD and hadron spectroscopy

RHIC : QCD super-fluid, highly correlated, low viscosity liquid

Belle, CLEO, Babar: new heavy quark states, possibly meson-molecules or hybrids

CERN (Crystal Barrel) : scalar glueball

BNL (E852) : hybrid mesons

Spring8, Jlab, and others : pentaquark

In this talk:

J^{PC} exotic : hybrid mesons

flavor exotic : pentaquarks

Mesons with $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}$: Exotic Quantum Numbers

Determine J^{PC} through Partial Wave Analysis

No need for muti-quarks (which have fall apart modes) Can be formed from excitations of the confining (gluon) field → Probe of the confinement mechanism Exciting (exotic) meson resonances

E852: $E_{\pi} = 18 \text{GeV}$

Peripheral production on the "meson cloud"

It is important to determine dependence on all kinematical variables, s,t,M_{ab} Ω

Extraction of amplitudes

Regge and low-energy phenomenology via FMSR determine dependence on channel variables, s_{ii}

Backgrounds should be understood

Inelastic diffraction, (W > 2 GeV)

A.Szczurek, AS.

What's new

- Unprecedented statistics
- Computational resources
- New theoretical developments : low energy, (chiral) phenomenology QCD, lattice
- High quality photon beams (exotic searches)

Theoretical expectations

Light quark 1 ⁻⁺					
Ref.	Method	N_f	M (GeV)		
UKQCD 97	SW	0	1.87(20)		
MILC 97	W	0	1.97(9)(30)		
MILC 99	SW	0	2.11(10)		
LaSch 99	W	2	1.9(2)		

Calculation of lightest 1⁻⁺ Exotic suggests mass $\sim 2 \text{GeV}$

Charmonium 1 ⁻⁺					
Ref.	Method	ΔM (GeV)			
MILC 97	W	1.34(8)(20)			
MILC 99	SW	1.22(15)			
CP-PACS 99	NR	1.323(13)			
JKM 99	LBO	1.19			
Excitations in excess of 1GeV					

Lattice predictions

- $J^{PC} = 1^{-+}$ lowest state
- Higher masses difficult to resolve
- Chiral extrapolations 100-200 MeV

Thomas.AS

Decays

Normal widths !

In large N_C same as for ordinary mesons $O(1/N_{C})$ T. Cohen (98)

Exotic story	ν π⁻p->ηπ ⁰ Ν ->ηπ⁻p	(ηπ ⁰) in P-wave has J ^{PC} =1+!
π [−] p → ηπ [−] p	$M = 1370 \pm 16^{+50}_{-30} \text{ MeV } / \text{c}^2$ $\Gamma = 385 \pm 40^{+65}_{-105} \text{ MeV } / \text{c}^2$	BNL (E852) Confirmed by Crystal Barrel similar mass, width
π [−] p → ηπ ⁰ n	New results: No consister interpretation for the P-w P-wave consistent with m rescattering (Final State I	nt B-W resonance ave eson-meson interactions)
$\pi^- p \rightarrow \eta' \pi^- p$	$M = 1597 \pm 10^{+45}_{-10} \text{ MeV } / \text{c}^2$ $\Gamma = 340 \pm 40^{+50}_{-50} \text{ MeV } / \text{c}^2$	
$\pi^{-}p \rightarrow \rho^{0}\pi^{-}p$ $\pi^{-}p \rightarrow b_{1}\pi p$ $\pi^{-}p \rightarrow f_{1}\pi p$	$M = 1593 \pm 8^{+29}_{-47} \text{ MeV } / \text{c}^2$ $\Gamma = 168 \pm 20^{+150}_{-12} \text{ MeV } / \text{c}^2$	Confirmed by VES More E852 3π data to be analyzed

$\eta\pi$ Production

$$\pi^{-}(18 \text{ GeV})p \rightarrow \begin{cases} \eta \pi^{0}n\\ \eta \pi^{-}p \end{cases}$$

Neutral vs charged production:

- ✓ C is a good quantum number
- \checkmark a₀ and a₂ are produced
- ✓ only one detector involved

Assume BW resonance in all, M=-1,+1,0, P-waves

 $\pi_1(900 - 5 \text{GeV})$ emerges

Intensity in the weak P-waves is strongly affected by the $a_2(1320)$, strong wave due to acceptance corrections

Clear P-wave in $\eta'\pi$

Results of coupled channel analysis of $\pi^- p \rightarrow \eta \pi^- p$

 $\pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$

Based on 250K events Currently analyzing IOM events!

Figure 5. PWA on artificial data sample without acceptance correction and with insufficient number of waves. Notice how leakage shows up in all exotic waves.

PHYSICAL REVIEW D

VOLUME 48, NUMBER 7

Further results from charge-exchange photoproduction

G. T. Condo, T. Handler, W. M. Bugg, G. R. Blackett, M. Pisharody, and K. A. Danyo Department of Physics, University of Tennessee, Knoxville, Tennessee 37996-1200 (Received 3 August 1992; revised manuscript received 1 March 1993)

Role of Photons

So only parallel quark spins lead to exotic J^{PC}

the pentaquark story

Work done in part in collaboration with Alex Dzierba and Curtis Meyer

5q: positive results

Table 1. Positive signals for pentaquark states. Please see the text regarding the final state neutron in the LEPS, CLAS and SAPHIR experiments.

Experiment	Reaction	State	Mode	Reference
LEPS(1)	$\gamma C_{12} \rightarrow K^+ K^- X$	θ^+	K^+n	[4]
LEPS(2)	$\gamma d \rightarrow K^+ K^- X$	θ^+	K^+n	[5]
CLAS(d)	$\gamma d \rightarrow K^+ K^-(n) p$	θ^+	K^+n	[6]
CLAS(p)	$\gamma p \rightarrow K^+ K^- \pi^+(n)$	θ^+	K^+n	[7]
SAPHIR	$\gamma p \rightarrow K_S^0 K^+(n)$	θ^+	K^+n	[8]
COSY	$pp \rightarrow \Sigma^+ K^0_S p$	θ^+	$K_{S}^{0}p$	[9]
JINR	$p(C_3H_8) \rightarrow K_S^0 pX$	θ^+	$K_S^0 p$	[10]
SVD	$pA \rightarrow K_S^0 pX$	θ^+	$K_{S}^{\overline{0}}p$	[11]
DIANA	$K^+Xe \rightarrow K^0_S p(Xe)'$	θ^+	$K_S^0 p$	[12]
νBC	$\nu A \rightarrow K_S^0 p X$	θ^+	$K_{S}^{\overline{0}}p$	[13]
NOMAD	$\nu A \rightarrow K_S^0 p X$	θ^+	$K_S^0 p$	[14]
HERMES	quasi-real photoproduction	θ^+	$K_{S}^{0}p$	[15]
ZEUS	$ep \rightarrow K^0_S pX$	θ^+	$K_S^0 p$	[16]
NA49	$pp \rightarrow \Xi \pi X$	Ξ_5	$\Xi\pi$	[17]
H1	$ep \rightarrow (D^*p)X$	θ_c	D^*p	[18]

Dzierba, Meyer, AS

5q: negative results

Table 2. Recent negative searches for pentaquark states. For each pentaquark state (P) we indicated with a - that the state was not included in the search while \Downarrow indicates that the state was searched for and not observed and \uparrow indicates that the state was searched for and observed.

Experiment	Search Reaction	θ^+	Ξ_5	θ_c	Reference
ALEPH	Hadronic Z decays	₩	\downarrow	₩	[19]
BaBar	$e^+e^- \rightarrow \Upsilon(4S)$	↓	\downarrow	_	[20]
BELLE	$KN \rightarrow PX$	↓	_	↓	[21]
BES	$e^+e^- \rightarrow J/\psi(\psi(2S) \rightarrow \theta\bar{\theta}$	↓	_	↓	[22]
CDF	$p\bar{p} \rightarrow PX$	\downarrow	₩	↓	[23]
COMPASS	$\mu^+(^6LiD) \rightarrow PX$	\downarrow	₩	_	[24]
DELPHI	Hadronic Z decays	↓	_	_	[25]
E690	$pp \rightarrow PX$	\downarrow	₩	_	[26]
FOCUS	$\gamma p \rightarrow PX$	↓	₩	↓	[27]
HERA-B	$pA \rightarrow PX$	\downarrow	₩	_	[28]
HyperCP	$(\pi^+, K^+, p)Cu \rightarrow PX$	↓	_	_	[29]
LASS	$K^+p \rightarrow K^+n\pi^+$	↓	_	_	[30]
L3	$\gamma \gamma \rightarrow \theta \overline{\theta}$	\downarrow	—	_	[25, 31]
PHENIX	$AuAu \rightarrow PX$	↓	_	_	[32]
SELEX	$(\pi, p, \Sigma)p \to PX$	\downarrow	—	_	[33]
SPHINX	$pC(N) \rightarrow \theta^+C(N)$	↓	_	_	[34]
WA89	$\Sigma^- N \to P X$	_	₩	_	[36]
ZEUS	$ep \rightarrow PX$	↑	\downarrow	₩	[16, 37, 38]

Table 3. A tabulation of statistics for the observations of the θ^+ . See text for descriptions of the statistical significance as quoted in the three columns of ratios. The column labeled Published is the significance quoted in the publication.

Experiment	Signal	Background	S	ignific	ance	<
-	s	b	Published	$\frac{s}{\sqrt{b}}$	$\frac{s}{\sqrt{s+b}}$	$\frac{s}{\sqrt{s+2b}}$
LEPS(1) [4]	19	17	4.6	4.6	3.2	2.6
LEPS(2) [5]	56	162		4.4	3.8	2.9
CLAS(d) [6]	43	54	5.2	5.9	4.4	3.5
CLAS(p) [7]	41	35	7.8	6.9	4.7	3.9
SAPHIR [8]	55	56	4.8	7.3	5.2	4.3
COSY [9]	57	95	4 - 6	5.9	4.7	3.7
JINR [10]	88	192	5.5	6.4	5.3	4.1
SVD [11]	35	93	5.6	3.6	3.1	2.4
DIANA [12]	29	44	4.4	4.4	3.4	2.7
$\nu BC [13]$	18	9	6.7	6.0	3.5	3.0
NOMAD [14]	33	59	4.3	4.3	3.4	2.7
HERMES [15]	51	150	4.3 - 6.2	4.2	3.6	2.7
ZEUS [16]	230	1080	4.6	7.0	6.4	4.7

nK⁺ Mass Spectrum

the nK⁺ mass spectrum is smooth

▶ no structure is observed at a mass of ~1540 MeV

Compa<u>rison with SAPHIR results</u>

Kinematic reflections

3 body kinematics

$$s_1 + s_2 + s_3 = s - m_1^2 - m_2^2 - m_3^2$$

cos of the helicity angle of 1 in the (12) rest frame

$$s_2 = s_2(s_1, s, x_{12})$$

$$\gamma n \to K^+ K^- n$$

FIG. 1: Boundaries of the m_{KK}^2 versus m_{KN}^2 Dalitz plot for three different values of w, the energy available to the $K\bar{K}N$ system, 2.1, 2.4 and 2.6 GeV. For the data of ref. [2], the observed distribution in w rises from 2.1 GeV, peaks at 2.4 and falls to zero near 2.6 GeV. Horizontal lines denote the region spanned by the f_2 and a_2 mesons defined by their halfwidths and the region of the ρ_3 starting with its central mass less its half-width. The vertical line denotes the square of the Θ mass.

FIG. 3: The calculated (solid line) m_{KN} distribution, as described in the text, compared with the data from [2]

Physical background has structure >> reduces the statistical significance of the signal

Reaction	Beam energy GeV	$\begin{array}{c} {\rm Cross} \; {\rm Section} \\ \mu {\rm b} \end{array}$	Ref
$\gamma p \rightarrow f_2 p$	2.3 - 2.6	1.3 ± 0.37	[6]
$\gamma \mathrm{p} \rightarrow \mathrm{f}_2 \mathrm{p}$	2.6 - 3.25	0.39 ± 0.13	[6]
$\gamma \mathrm{p} \rightarrow \mathrm{f}_2 \mathrm{p}$	3.25 - 4.0	0.19 ± 0.06	[6]
$\gamma p \rightarrow f_2 p$	4.0-6.3	0.1 ± 0.1	[6]
$\gamma p \rightarrow a_2^+ n$	4.2 ± 0.5	1.14 ± 0.43	[7]
$\gamma \mathrm{p} ightarrow \mathrm{a_2^+n}$	5.25 ± 0.55	0.85 ± 0.43	[7]
$\gamma p \rightarrow a_2^+ n$	7.5 ± 0.7	0.43 ± 0.43	[7]
$\gamma p \rightarrow K^+K^-p$	2.8	1.0 ± 0.1	[8]
$\gamma p \rightarrow K^+K^-p$	4.7	0.7 ± 0.1	[8]

TABLE I: Photoproduction cross sections for the $f_2(1275)$ and $a_2(1320)$ resonances and the K^+K^- final state.

Fake Peaks

Enhancement is broad - but starting with:

as a parent distribution generate 40 random histograms with 600 events each - 3 of these along with CLAS results appear here

SEARCH FOR THE Z* IN $\pi^- + p \rightarrow K^- + Z^*$ AT 6 AND 8 GeV/c[‡]

E. W. ANDERSON, E. J. BLESER^{‡‡}, H. R. BLIEDEN, G. B. COLLINS, D. GARELICK J. MENES and F. TURKOT

Brookhaven National Laboratory. Upton, New York, USA

$$\pi^{-} + p \rightarrow B^{*-} + p$$

$$\downarrow K^{0} + K^{-}$$

$$\rightarrow B^{*0} + n$$

$$\downarrow K^{+} + K^{-}$$

٠

Curtis Meyer : Argonne talk

CLAS

γ d -> K+K⁻p (n) _{miss}

Reaction is unknown

Independent analysis of the data: energy loss corrections from target 1C-Kinematic fit to final state

Flat confidence level Known resonances get sharper and have the right mass: $\Lambda(1520) \phi(1020)$

Evidence for higher mass Λ , Σ \ddagger s and either the a₂(1320) or f₂(1270) is sharper.

Disturbing Effect on the Θ^+ !

CLAS (proton) $\gamma p \rightarrow \pi^+ K^- K^+ n$

Can generate resonance-like structure in K^+K^-n spectrum and π^+ momentum cut enhances kinematic reflections from decays of $K^+K^$ resonances

correlates n with $K^+ K^-$ helicity ->possible kinematic reflection from $K^+ K^-$ resonance

FIG. 3: The nK^+ mass distribution as described by $\int d\phi_{K+} |Y_{J_X,\lambda_X}(\theta_{K+n},\phi_{K+})|^2$, for $\Delta = \Delta(1232)$ and $J_X = \lambda_X = 2$, $X = f_2$, (solid line), $J_X = \lambda_X = 2$, $X = a_2$, (dashed line), and $J_X = 3$, $\lambda_X = 1$, $X = \rho_3$ (dotted line). The M_{nK+K^-} invariant masses for the three cases are 2.22, 2.27 and 2.64 GeV, respectively.

DIANA (ITEP, Xe bubble chamber, 850MeV K-beam)

 $K^+Xe \to K^0_s pXe'$

no magnetic field

particle identified by their range in Xe

angular cut, p and Ks in the forward direction

M.Zavertyaev, (hep-ph/0311250)

Figure 2: The experimental beam momentum [5] and MC mass spectra distribution corresponding to: b) reaction $K^+Xe \rightarrow K_s^0pXe'$; c) reaction $K^+n \rightarrow K_s^0p$; d) the summ of both b) and c); The histogram in red corresponds to the experimental mass distribution from [5].

Figure 5. Figure (a) is a schematic of the decay $\Lambda^0(1115) \rightarrow \pi^- p$. The effect of spurious *ghost* tracks from the reconstruction software is considered. In this case a π^+ track is generated. When combined with the π^- from the Λ^0 the effective mass clusters about 0.5 GeV/c^2 as in Figure (b) and when the ghost track is combined with the Λ^0 decay products the effective mass clusters around 1.5 GeV/c^2 as seen in Figure (c). In the shaded distributions the " π^+ " $\pi^$ mass is required to be near the K_S^0 . The mean of the shaded portion of the distribution in Figure (c) is 1.54 GeV/ c^2 , the mass of the θ^+ . In this study the Λ^0 momentum in the LAB frame was uniform from 2 to 100 GeV/c.

Hyper CP @ FNAL

Pentaquark sightings come from low statistics, low resolution, low-energy experiments with kinematically constrained final states after complicated cuts are imposed.

> High resolution, high statisitcs, experiments with both low- and highparticle multiplicity do not report the pentaquarks.

K⁻p missing mass in $\Lambda(1520)$ and sideband region.

Nakano QNP2004

Kinematical reflection (II)

Remove $\Lambda(1520)$ contribution

Three Pion Challenges

COSY-TOF $pp \to \Sigma^+ K_S^0 p$

no magnetic filed, PID, pure geometry TOF no used in this analysis !

