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Abstract

Infrared behaviour of the fermion propagator is determined based on
spectral representation and LSZ reduction formula.Our model shows con-
fining property.Mass generation or mass changing effect is shown by su-
perposition of the different mass in dispersion integral.

JHEPO040946;unquenched case;hep-th/0506045

1 Problems in QED;

1 Quenched propagator:massgeneration & condensation
2 effects of vacuum polarization : long range part modified to weak
3 confinement 7 Z; ! high energy behaviour of the propagator
4 Analyticity in Minkowski space

2 Spectral representation of the propagator
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:/dwv-ppl(w)erpz(W)

P2 —w?+ie
2
235(0) = [ TS0 ~ )y 5o (VD) + VTV

=7 -pp1(p) + p2(p),
Sr(x) = (TP ()P (0)|€) .



The field 1 is renormalized and is taken to be a spinor with mass m.Here we
introduce intermediate states that contribute the spectral function

p(p) = 7pp1(p)+p2(p) = 2m)2 Y 6% (p—pn) / d*x exp(ip-z) (Qe(2)|N) (N[2(0)|€2) .
(4)

Total three-momentum of the state | N) is p/y. The only intermediates N contain
one spinor and an arbitrary number of photons.Setting

IN) = |rika, ... kn), (5)
where r is the momentum of the spinor r2 = mz,and k; is the momentum of 7th
soft photon,we have
_ [ 3 : md?r o= 1 B3k , n
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Here the notations

(f(&)o =1, (f(k))n = [ ] f(k:) (7)
have been introduced to denote the phase space integral of each photon.The ini-
tial sum over € is a sum over polarization of photon.To evaluate the contribution

of the soft-photons,we consider when only the nth photon is soft.

2.0.1 LSZ for scalar

binl) = / Pl (k) ful) + a* (k) [ ()],

frlx) = Wexp(_ik.x%
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ah(k) = i / i f* () Bo o (1)

<6out‘aapin> = <Bout|az;z(p)|ain>
<5out|a:ut(p)|ain> + <5out|a;L(p) - a:ut(p>‘ain>

(8 — Boutlatin) i <ﬂout| [ s, T o) - asm(x)]am>



» <ﬁout| [ 5% 1610(5) ~ b0 <w>]|am>
= dim — Jim) [ gy )3 Boulota Do)

7 t——oo

_ L o0 3, )62 T ) — 92 F (x . o
- \/E/;ood [fp( )80 </Bout|¢( ’t)| 27l> 80fp( )</Bout|¢( ’t)| 2n>]

2 xZ
TLl2) _ (2~ m2)fy ()

Using Partial integral onto ¢(z,t), we get

1
out| 0 Pin) = —F= Eaxf,(x) (e +m? out| (X, )| in
Bl pin) = == [ Efy )3+ 1) (B Do)
2.0.2 Main problem ;detemination of the matrixelement

Here we define the following matrix element

T, = (Q|r;ky,..kn)
= (Qa,(kn)|r; k1, . kn-1) .
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We consider T}, for k2 # 0,we continue off the photon mass-shell by Lehmann-

Symanzik-Zimmermann(LSZ)formula:
T, = €Ty,

/ @3y exp(ik - y) By (QTY(2)" Au(y) s by oo )
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where the electromagnetic current is

i (x) = —edp(x)y, ().

/d3y exp(an ! £C) <Q‘T1/}(£C)€Mj#(y>|7", kla ey knfl> .

8, T (Y Ay (2) = T, 4, () = T(—ju() + 350 A(w)),

d- AMphys >=0.

From the definition (9) T* is seen to satisfies Ward-Takahashi-identity:

k"#T#(Tv kla kn) = eTnfl(’f’, klv ..kn,]_)’ ’]"2 = mz,
provided the equal-time commutation relations

T (Wju(x)) = —ey(a),

T (Wju(x)) = ed(a).

(15)



In the Bloch-Nordsieck approximation we have most singular contributions of
photons which are emitted from external lines.In perturbation theory one photon
matrix element is given

= <i”|T(¢m(l’),i6/d?’y%n(y)”)/uilim(y)A?n(y))7«; k m>

ie / d3yd®2Sp(x — y)vué(g)(y —z2)exp(i(k-y+7r-2))e(k, \)U(r,s)

= —iem—éry_tn?vﬂe“(k, A exp(i(k +71) - z)U(r, s), (16)

where U (r, s) is a four-component free particle spinor with positive energy.U(r, s)
satisfies the relations

(y-r=m)U(r,s) = 0,

Z U(r,s)U(r,s) = yrem (17)
2m
s
In this case the Ward-Takahasi-identity follows
BTV = e (4 R, s)
‘ v (r+k)—m ’
= —ieU(r,s) = eIy, (18)
provided the lowest-order Ward-identity

Vok=(-(r+k)—m)—=(y-r—m). (19)

For general T, low-energy theorem determines the structure of non-singular
terms in k,,. Detailed dicussions are given in ref [1] and non-singular terms are
irrelevant for the single particle singularity in four-dimension.Under the same
assumption in three-dimension we have

Ve
Th|k2=0 = e——————T),_1. 20
lkz2=0 R (20)
From this relation the n-photon matrix element
QU (@) |rs ks s k) (1 k1, [$(0)|€2) (21)

is reduced to the product of lowest-order one-photon matrix element
T,T, = [ [ (k) T3 (k). (22)
j=1

In this case the spectral function p in (6) is given by exponentiation of one-
photon matrix element,which yields an infinite ladder approximation for the



propagator.Thus we obtain the spectral function and the propagator in the
followings forms,

m27"
plp) = /d?’xexp(*ip-x)/ i exp(ir - z) exp (F),
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Here II,,,, is the polarization sum

kuky
HMV = Zeu(k, )\)Ey(k, /\) = —Guv — (d - 1) 22 ’ (25)
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and the free photon propagator is

Kk
2
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We get

B a3k , m2 1 5(k?)
F=—¢ / e Pk DO (s + ) +Hd= D)= (27)

The second term 6(k?)/k? equals to —&'(k?).Our calculation is the same with
the imaginary part of the photon propagator.To avoid infrared divergence which
arises in the phase space integral we must introduce small photon mass p as an
infrared cut-off. Therefore (22) is modified to

3
F = —¢ / % exp(ik - 2)0(k°)
m2
I8 = 1) (s + ) — (A= D2 =) (29)

Here we assume p;(w) = py(w) = p which is valid in the infrared(i.e.y - r =
m).In general case there are two kinds of spectral function which is given in the
appendix.It is helpful to use function D4 (x) to determine F

Di(z) = (2;)21_ / exp(ik - 2)d>kO(k°)8 (k? — u?)
1 ° wkdk xp(—px)
- (27r)2i/0 k) 75 T2 - I;m'g ' (29)



If we use parameter trick(exponential cut-off)

lim [ dacexp(i(h +ie) - (v + ar)) = i P 2) (30)
e—0 0 k A
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the function F' is written in the following form

o0 oo a
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where the function Ei(p |x|) is defined

Bi(j|2]) = /100 Mdt. (34)

It is understood that all terms which vanishes with 4 — 0 are ignored.The
leading non trivial contributions to F' are

Ei(fol) = — — In(ye ) + O(u o), (3)
€2m2
F= g (5 + el (= Gl =) ) + O
62
62
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where v is Euler’s constant.Hereafter we use integrals for intermediate state for
on-shell fermion

/d?’x exp(—ip - x) / d*ré(r? —m?) exp(ir - 2) f(r) = f(m). (38)

/dSLE exp(—ip - x) / d37’M exp(ir - )6(r? — m?)——
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And we set 2 = m? in the phase space integral;

md?r

V12 +m?2

exp(ir - z) exp(F(m, |z|))

p(p) = /d31’ exp(—ip - x)

= [ #rewiiv "B (o 2)), (40)
plz) = % exp(F(m, z])). (41)
62
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D= a5 (12)

Linear infrared divergences cancell by higher order correction.Here exp(—m |z|) /47 |z|, |x| =
vV —2? is a free scalar propagator with physical mass m and exp(F') denotes the

quantum correction for the propagator involving infinite numbers of photons in

our approximation.

2.1 Confining property

Here we mention the confining property of the propagator Sg(z) in position
space

iy-0 mexp(—m|z|)

_ 1 D(@A—m|x|) ) 4
Sp(x) = (L= + DT R ) ] (43)
The Sg dumps strongly at large = provided
lim (p |z])~Pml=l = 0. (44)

The profiles of the p(x) for various values of D > 1 are shown in Fig.1.The effect
of (u \x|)_Dm|w| in position space is seen to decrease the value of the propagator
at low energy and shown in Fig.2.
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In section IV and V we discuss dynamical mass,the renormalization con-
stant,and bare mass in connection of each terms in F.

2.2 0O(e?) propagator in Momentum space

After angular integration of (39),we get the propagator

Se(p) = (22 + (), (45)
) = 5= || Aol in (V) exp(4 — (mo + ) e )~
(46)
where
e? 'yez e2 e2 e2

If we discuss the Euclidean or off-shell propagator we can omitt the linear in-
frared divergent part in A.In this case m denotes a physical mass

2
€
= —(d—2 . 4
m = lmo + £=(d — 2 +1)| (48)



Here we show the propagator p(p) up to O(e?) and the spectral function

2

P (p) =/d3wexp(—ip-9:)/mirexp(ir-w)F(x)

dlx|sin(y/p?x?) exp(—=m [z|)[1 + A = C |z[In(u|2[) + D In(p |z[)]

=1

= [ﬁ +m(DI; — CI)), (49)
p@(p) = p(Z)( 2, (50)

where 1, I are the following integrals

0 o3 212
A
0

,pz
B N (Vi (R V) S
Tz 12 2(m?2 + p?) m? +p? 7
o /oo sin(y/p2a2) exp(—m |z|) | In(g |2))d |2
0 —p?
_ ﬁ[ln((m — V=) /(m + /=p?))
+In((m? +p%) /%) = 2(1 = 7)) (52)

From these expressions we see that the gauge dependent terms A, D and B,C
are wave function renormalization constant and mass renormalization respec-
tively.In this order the wave function renormalization constant

2

7 = 14 A= (g (0 +72) [1?) I/ ~72) 4/ ~2)) (53)

is divergent at p?> = —m? and p? = oo.

3 Analysis in momentum space

To search the infrared behaviour we expand the propagator in the powers of
the coupling constant e? and obtained the Fourier transform of p(z) [2].In that
case it is not enough to see the structure of infrared behaviour which can be
compared to the well-known four dimensional QED[10].Instead we make Laplace
transformation of (u|z|)~P™*l which leads the general spectral representation
of the propagator in momentum space.After that we show the roles of Coulomb
energy and position dependent mass. The former determines the dimension of
the propagator and the latter acts to change mass.Let us begin to study the



effect of position dependent mass(Self-energy),Coulomb energy in momentum
space

2

exp(— |z| M(z)) = exp(— || Se—w In(p|z]), (54)
o2
exp(—Coulomb energy/m) = exp(f% In(p |x]))- (55)

Similar discussion was given to study the effects of self-energy and bare potential
in the stabilty of massless e™ e~ composite in lattice simulation[11].The position
space free propagator

exp(—mo |z])

47 |x| (56)

Sr(x,mp) = —(iy - 0 + mo)
is modified by these two terms which are related to dynamical mass and wave
function renormalization.To see this let us think about position space propagator

exp(—m |x|)

() = T )8 ] 5 (57)

It is easy to see that the probability of particles which are separated with
each other in the long distance is supressed by the factor (p|x|)~P™*! and
the Coulomb energy modifies the short distance behaviour from the bare 1/ |z|

to 1/ |z|*~" The effect of Coulomb energy for the infrared behaviour of the free
particle with mass m can be seen by its fourier transform[2,10]

°° L sin(y/p?x?) exp(—m |z]) Dy
i [ g2 (ul]) Pl
0 pex 47 ‘Z|

_ pl(D+ 1)sin((D + 1) arctan(y/—p?/m)) (58)
K \/,_pZ(,pz +m2)(1+D)/2

~ uP(\/=p? —m)"1 P near p? = —m?. (59)

Above formula shows the structure in momentum space is modified for both
infrared and ultraviolet regions. Usually constant D represents the coeflicent
of the leading infrared divergence for fixed mass in four dimension. Therefore
Coulomb energy in three dimension has the same effects as in four dimension
but change the ultraviolet behaviour since the coupling constant e? is not renor-
malized. Now we consider the role of M (x) as the dynamical mass at low mo-
mentum.First we define Fourier transform of the scalar part of the propagator;

mexp(—m |z|)

plp) = PR i) (60)
= /eXp(fip . x)%ﬂ(u ‘z|)7C\T|+Dd3x. (61)

10



For definiteness we show the Fourier transformations of the propagator for (D =
0,C =0) and (D =1,C = 0) cases,

o yexp(=mlz]) o 1
[ Erespicip-a) TRt o - o
. exp(—m |z 2m
/d3xexp(—zp . JI)WW |$‘ = m (62)

The second case is the same with dynamical mass generation as we have seen
before.If we include exp(— |z| M(z)) = (u|z|)~C1*! term it is easy to see that
the value of the proagator p(p = 0) decreases which is shown numerically in
Fig.3. If we use Laplace transformation

o0
F(s) = [ exp(=slal)(m al) "ldla]
0
we easily see that (m |x|)~Cl*l acts as mass changing operator m — m — s
exp(—m [z)(ma]) =1 = /dsF(S) exp(—(m — s) [x]). (63)

To separate the p dependence we change by

(e |a) =€l = (u/m)

and the former factor absorbs as mass renormalization as m* = m(1+D In(u/m)).

—Clx| (m |$‘)_Dm|w\ — exp(—Dm |z| In(u/m))(m |x|)—Dm\w|

exp(—m |z[)

p(p) = (v-p+m)FT| (meDD%/U " exp(s al) F(s)ds]. (64)

Ar |l’| —100

o(p) = (D +1)uP /O°° dsF(s)sm((D + 1) arctan(y/—p?/(m* — S)),D €

e e 52— 2o " B
F(s) is shown in Fig.4.
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Fig.4 F(s) for (m|z[)=P™l m =1,D = 1,5 = n/20.

We have the complete the expression of the propagators based on spectral
representation.The spinor propagator in position space is expressed in the fol-
lowing for p; = p, = p which is the case in our model[7] The equation for the
renormalization constant in terms of the spectral functions read

112}0 = \/Z_zqzbra
Yo = V71, (65)

OIT(ho(2)ho()I0) = Z2 (0|7 (¢, ()%, (y))]0) (66)
Zyt B
m = Sp (p) (67)
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moZst =m [[wpy()de = lim (750, (63)

2 = [ pit)do = Jim [y Se). (69)

we obtain
moZ; "~ lim e { T?l Eg - gg } , (70)
R R B )

This means that propagator in the high energy limit has no part which is pro-
portional to the free one. Usually mass is a parameter which appears in the
Lagrangean.For example chiral symmetry is defined for the bare quantity.In
ref[9] the relation between bare mass and renormalized mass of the fermion
propagator in QED is discussed based on renormalization group equation with
the assumption of ultraviolet stagnant point and shown that the bare mass
vanishes in the high energy limit even if we start from the finite bare mass in
the theory.It suggests that symmetry properties can be discussed in terms of
renormalized quantities.In QCD bare mass vanishes in the short distance by as-
ymptotic freedom.And the dynamical mass vanishes too[8].In our apprximation
this problem is understood that at short distance propagator in position space
tends to

—— _ exp(=mo |z[)

() = S o= B el D n(ulal)~C | ()0 — [ o) €1
_ (72)
where we have p(0) = finite at D = 1 case which is independent of the

bare mass mg.Thus we have a same effect as vanishing bare mass in four
dimensional model.Of course we have a dynamical mass generation which is
m = |§(d — 2+ )] for mp = 0 in our approximation.There is a chiral symme-
try at short distance where the bare or dynamical mass vanishes in momentum
space but its breaking must be discussed in terms of the values of the order
parameter.Therefore it is interesting to study the possibility of pair condensa-
tion in our approximation.The vacuum expectation value of pair condensate is
evaluated

) = —trSp(z) = — OO17265\/17F(D+1)'L‘D

($y) = ~trSr(z) = 2/0 212 (D +1)2/p?
. oo ) 8Sin((D+1)arctan(\/}7/(m—5))
A (e

is finite for D > 1 for finite cut-off u.it looks like a wave packet at finite range
where long range correlation appears.In the weak coupling limit we obtain Z, =
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1,mp = m and <Ew> = 00.If we introduce chiral symmetry as a global U(2n),it
breaks dynamically into SU(n) x SU(n) x U(1) x U(1) as in QCD[8,11] for
D = 1 for finite infrared cut-off. Our model may be applicable to relativistic
model of super fluidity in three dimension.Usually we do not find the critical
coupling D = 1 in the analysis of the Dyson-Schwinger equation in momentum
space where only continuum contributions are taken into account and we do not
define physical mass.-

3.0.1 Vaccum polarization

)1 (2m+\/_)
Vk2 om — k2"

I, (k) = — egTW[ dm 4+ (V2 4 Am

—>D_1:k2+§\/]€_2

3
D(x) = /(ClTk3 exp(ik - x) =

N
2m) k:z—i-%k
_’R’COS(% )—|—2C1(% x)sin( G )—281(% )cos(%x)
B dmly ’
1 e?(1+7) e? e?
D(2)yo = — — &)+ o),
@m0 = 72 = e Tom2 MY TOW
4
D(@) -0 2022

We cannot remove infrared cut-off p.

Short distance:log correction

Long distance Coulomb force is weak and no massgeneration but we have
wave renormalization—cut structure

Modified spectral function

p(p?) = F.T.[(iv-@—&-m)%[exp(ﬁ’(c |z] < 1)+..exp(F(cx > 1)],c = ezTN.
(74)

14



For short distance
o0 1/e sin(y/—p? |z|) exp(—(m — s) |z
plo) =2nf(e) [ ds [ a2l &__pfm' Do = (s efal)
= i’ f(e) [ dsG(s)[(m — s +i/—p2) " P Dy(D 41, (m — s + ir/—p?) /)

4y/—p? Jo
—(m = s —iy/=p2) P Dy(D + 1, (m — s — in/=p?/c)],
_ (D + 1)icP f(e) /OOOdSG(S)[(m—S—i\/——pZ)DH—(m—s—&-i\/——pz)DH]

e ((m — 5)2 — p2)D+1
_ T(D + 1)cP f(e) /00 dSG(S)Sin((D + 1) arctan(y/—p2/(m — s)) D= A
0

2/ V==t T Nom
(75)
Critical coupling for <E1/)> #0:D>1
Long distance
p(p) = ex? /OO a:zdxsm( /_p"2) expl-ma) (ca:)D
1/c v/ —p?x drx
D .
i . _ .
B Q\M/ —5lm+ iV/=p?)"P*OL(D + 1, (m + i/ —p?) /]
— (m— iV PIT(D 11, (m — i/ pP) /. (76)
near mass shell
2 H\pY - P+m P2 —(@1+D) 8
~(—=)f—nr—(1-— D=—s.
o) = (L)L o - Lymast) p - = (77)
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