
SPECTRUM OF STATES

WITH ONE CURRENT

ACTING ON THE ADJOINT

VACUUM OF MASSLESS

QCD2

A. Abrashkin

Y. Frishman

J. Sonnenschein

“Light-Cone QCD and

Nonperturbative Hadron

Physics”

Cairns, Australia, 7-15 July,

2005

1



ABSTRACT

Consider a “one current” state, ob-

tained by application of a color current

on the “adjoint” vacuum, in QCD2, with

quarks in fundamental representation.

The quarks are taken to be massless.

Then theory on the light-front can be

“currentized”, namely formulated in terms

of currents only.

Adjoint vacuum obtained by apply-

ing a current derivative, at zero momen-

tum, on the singlet vacuum.
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In general the “one current” states are

not eigenstates of M2 = 2P+P−, apart

from the large Nf limit.

Problems with infra-red regularizations

are pointed out.

Connection to fermionic structure is

made.
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INTRODUCTION

QCD2 in terms of only colored cur-

rents (“currentization”), turns out to be

very natural once the system is quan-

tized on the light-front.

Both the momentum and the Hamil-

tonian, and hence also M2, are expressed

in terms of the light-cone colored cur-

rents.

In fact only the left (or right) currents

are needed.

The currentization was shown to hold

for multiflavor fundamental and adjoint

quarks.
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In fact, it can be applied whenever the

free fermions energy momentum tensor

can be written in term of a Sugawara

form.

The light-cone momentum and Hamil-

tonian of any CFT that posseses an affine

Lie algebra and is coupled to non Abelian

gauge fields associated with the same al-

gebra, can also be described in terms of

holomorphic currents.

The Fock space of physical states is

obtained by applying current creation

operators on the vacuum .
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The lowest physical states constructed

by applying current creation operators

on the singlet vacuum, are those built

from two currents.

A ’t Hooft like equation for the wave

function of these two currents states was

obtained, and solved for the lowest mas-

sive state.

A. Armoni, Y. Frishman, J.Sonnenschein,

Nucl. Phys. B 596 459 (2001),

hep-th/0011043.

Excellent agreement with the DLCQ

results.
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Gross, Hashimoto and Klebanov

1998

Antonucchio and Pinsky 1998

Trittmann 2000

Turns out that one can also construct

states by using only one current cre-

ation operators, applied on the adjoint

vacuum.

The latter is obtained by acting on

the singlet vacuum with fermionic zero

modes.

In the case of adjoint fermions by a

single adjoint zero mode, and for fun-

damental fermions by quark anti-quark

zero modes.
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In a scheme where only currents are

being used one should be able to express

the adjoint vacuum also in terms of cur-

rents, which we do, as mentioned be-

fore, for the case of fundamental quarks.

The outcome of our analysis is that in

the large Nf limit the state of one cur-

rent applied on the adjoint vacuum, is

indeed an eigenstate of the mass opera-

tor with a mass of

√

√

√

√

√

e2Nf
π .

In the large Nc limit this is not the

case. Acting with M2 on this state, the

dominant daughter state is a two cur-

rent state.
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We further analyze the fermionic struc-

ture of these states, especially in the

large Nc limit, to connect to the ’t Hooft

analysis.

En route to these results we are faced

with technical obstacles, due to IR di-

vergences.

In certain parts of the computations

we were able to regularize the IR diver-

gences, but in others we left it as an

open problem.

Assuming that a regularization scheme

can be found, we have fully determined

the normalizations of the relevant states.
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QCD2 CURRENTIZATION

Multi-flavor massless fermions in the

fundamental representation of SU(Nc)

S =
∫

d2x tr (− 1

2e2F
2
µν + iΨ̄ 6DΨ)

Ψ = Ψi
a, i = 1 . . . Nc, a = 1 . . . Nf ,

Dµ = ∂µ + iAµ.

An alternative description is achieved

by bosonizing the theory. The bosoniza-

tion of multi-flavor massive QCD2 is com-

plicated since one has to translate the

fermions into bosonic variables which

are group elements of U(NF × Nc)
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Y. Frishman and J. Sonnenschein,

“Bosonization of Colored Flavored Fermions

and QCD in Two-Dimensions,”

Nucl. Phys. B 294 (1987) 801.

For massless fermions one can use bosoniza-

tion in the SU(Nc)×SU(Nf )×UB(1)

scheme. This scheme is more conve-

nient since it decouples the color and

flavor degrees of freedom.

For a Review see

Y. Frishman and J. Sonnenschein,

“Bosonization and QCD in Two-Dimensions”,

Phys.Rept.223 (1993) 309, hep-th/9207017
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The bosonized form of the action in

this scheme is

Sb = NfSWZW (h) + NcSWZW (g)+

∫

d2x
1

2
∂µφ∂µφ− ∫

d2x tr
1

2e2FµνF
µν+

Nf

2π

∫

d2xtr (ih†∂+hA− + ih∂−h†A+−

A+hA−h† + A+A−)

h ∈ SU(Nc), g ∈ SU(Nf ), φ is the

bosonic field for the baryon number and

SWZW stands for the Wess-Zumino-Witten

action
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SWZW (g) =
1

8π

∫

Σ d2x tr (∂µg∂µg−1)+

1

12π

∫

B d3yǫijk tr (g−1∂ig)(g−1∂jg)(g−1∂kg)

B is a three dimensional volume whose

boundary is the two dimensional sur-

face Σ, which in our case is the 1+1

Minkowsky space.

The flavored sectors are indeed decou-

pled from the colored one. Moreover the

former ones are entirely massless. Since

we are interested in the massive spec-

trum of the theory we will set aside the

g and φ fields and analyze only the col-

ored field h.
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The residual interaction of the zero

modes of the g, h and φ fields, will not

be important to our discussion.

Choose the light cone gauge A− = 0,

and quantize the system on the light-

front x− = 0. Integrating A+ we get

an effective non-local action

S = NfSWZW (h)−1

2
e2 ∫

d2x tr (
1

∂−
J+)2

J+ =
iNf
2π h∂−h†.

The light-front momentum and energy

take now simplified forms.
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The momentum takes the Sugawara

form

P+ =
1

Nc + Nf
×

∫

dx− : Ja(x−, x+ = 0)Ja(x−, x+ = 0) :

The energy

P− = − e2

2π
×

∫

dx− : Ja(x−, x+ = 0)
1

∂2−
Ja(x−, x+ = 0) :

J =
√

πJ+.

Evaluate mass

2P+P− |ψ〉 = M2 |ψ〉.
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Note:

1.

The equations that determine the spec-

trum are entirely expressed in terms of

currents.

2.

Both P+ and P− depend only on J+

and not on J−.

3.

The only condition for currentizing a

theory of fermions coupled to non Abelian

gauge fields, is that T++ of the free

fermionic theory could be rewritten in

terms of a Sugawara form.
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4.

In particular this can be done for ad-

joint fermions and for fermions in the

symmetric and antisymmetric “two box”

representations.

In momentum space

J(p+) =
∫ dx−√

2π
e−ip+x−J(x−, x+ = 0)

Normal ordering in the expression of

P+ and P− are naturally with respect

to p+, where p+ < 0 denotes a creation

operator. To simplify the notation we

write from now on p instead of p+.
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P+ =
2

Nf + Nc

∫ ∞
0 dpJb(−p)Jb(p)

P− =
e2

2π

∫ ∞
0 dpΦ(p)Jb(−p)Jb(p)

Φ(p) =
1

2











1

(p + iǫ)2
+

1

(p − iǫ)2











Φ(p) is (−
√

π
2 ) times the Fourier trans-

form of the ’potential’ |x − y|.
In computing the eigenvalues of

M2 = 2P+P− we will need the algebra

[Ja(p), Jb(p′)] =

1

2
Nf p δabδ(p + p′) + ifabcJc(p + p′)
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The vacuum |0〉 obeys

∀p > 0, J(p) |0〉 = 0

Physical states are built by applying

the current creation operators on the

vacuum

|ψ〉 = tr J(−p1) . . . J(−pn) |0〉

Note that this basis is not orthogonal.

19



THE ONE-CURRENT STATE

Define “adjoint vacuum”

|0, ij〉 = lim
ǫ→0

b
†i
β (ǫ)d

†β
j (ǫ) |0〉

b
†i
β and d

†β
j are the creation operators

of a quark and anti-quark respectively.

We can represent the action of the

above adjoint zero mode on the vacuum

by the derivative of a creation current

taken at zero momentum.

J
′i
j (k) |0〉k=0− =

√

√

√

√

√

√

√

π

2

d

dk

∫ ∞
0 dp

∫ ∞
0 dqδ(k+p+q)b

†i
β (p)d

†β
j (q) |0〉k=0−

= −
√

√

√

√

√

√

√

π

2
b
†i
β (ǫ)d

†β
j (ǫ) |0〉ǫ→0.

20



As the currents are traceless, we have

to subtract the trace part for i = j. The

latter can be neglected for large Nc.
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Comments:

1. The adjoint vacuum can also have

flavor quantum numbers. In fact, when

using different flavor indices on the fermion

and anti-fermion [and not summing], we

can get a vacuum that is also adjoint in

flavor. This will result in a “current-

ball” being an adjoint flavor multiplet

as well.

2. For the case of Nf = Nc, the

state constructed from the bosonic ad-

joint vacuum is degenerate with the one

constructed from the fermionic adjoint

vacuum.
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Denote

Za ≡ −
√

√

√

√

√

√

√

2

π
(Ja)

′
(0)

The “one current” state we have in

mind is

|k〉 = Jb(−k)Zb|0〉.

This state is obviously a global color

singlet, but in our Light Cone gauge

A− = 0 it is also a local color singlet, as

the appropriate line integral vanishes.
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Now
√

√

√

√

√

√

√

π

2



Ja(p), Zb


 =
1

2
Nfδabδ(p)−ifabc(Jc)

′
(p)

From which, for p > 0

Ja(p)Zb|0〉 = 0

Hence the state Zb|0〉 is annihilated

by all the annihilation currents, and so

it is indeed a colored vacuum.

From


P+, Jb(−k)


 = kJb(−k)

we get that our state |k〉 is indeed of

momentum k.
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EVALUATION OF M2





∫ ∞
0 dpφ(p)Ja(−p)Ja(p), Jb(−k)



 =

1
2Nf

1
kJb(−k)+

ifabc ∫ k
0 dpφ(p)Ja(−p)Jc(p − k)+

ifabc ∫ ∞
k dp (φ(p) − φ(p − k))×

Ja(−p)Jc(p − k)

In P− (and in P+) we ignore contri-

butions from zero - mode states, that is,

we cut the integrals at ǫ, and then take

the limit.
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P−Jb(−k)Zb|0〉 =


P−, Jb(−k)


 Zb|0〉

as the Hamiltonian annihilates the color

vacuum as well.

Using the commutator of the Hamilto-

nian with a current, which we evaluated

before, we get

π

e2P
−Jb(−k)Zb|0〉 =

1

2
Nf

1

k
Jb(−k)Zb|0〉+

ifabc ∫ k
0 dpφ(p)Ja(−p)Jc(p − k)Zb|0〉
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M2Jb(−k)Zb|0〉 = 2P−P+Jb(−k)Zb|0〉

= 2kP−Jb(−k)Zb|0〉

= (
e2Nf

π
)Jb(−k)Zb|0〉+

(
2e2

π
k)ifabc ∫ k

0 φ(p)Ja(−p)Jc(p−k)Zb|0〉
So, in the large Nf limit, the state

Jb(−k)Zb|0〉 is an eigenstate, with eigen-

value
e2Nf

π .

To see the exact dependence of the

two terms in the equation above (the

one and two current states) on Nf and

Nc, we should normalize them.
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〈0|ZaJa(k)Jb(−k)Zb |0〉 =

1

2
Nfkδ(0) 〈0|ZbZb |0〉+Nc 〈0|ZbZb |0〉
The second term in the last line can

be neglected compared to the first, as it

is a constant compared with δ(0), the

space volume divided by 2π.

〈0|ZbZb|0〉 = (N2
c − 1)〈0|Z1Z1|0〉

and the factor kδ(0) is the normaliza-

tion of a plane wave of momentum k.
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The normalized state, for Nc >> 1,
1

Nc

√

√

√

√

1
2Nf

Jb(−k)Zb|0〉 (1)

relative to 〈0|Z1Z1|0〉.
The normalization of the second term

is more complicated. A lengthy but straight-

forward calculation gives
∥

∥

∥

∥

∥

∥



ifdefk
∫ k
0 dqΦ(q)Jd(−q)Jf (q − k)



 Ze |0〉
∥

∥

∥

∥

∥

∥

2
=

Nc



N2
c − 1















1

2
Nf











2
kδ(0)

〈

0
∣

∣

∣

∣

∣

∣

Z1Z1
∣

∣

∣

∣

∣

∣

0
〉

×(Ints)

(Ints) =

k
∫ k
0 dpp(k − p)Φ(p) (Φ(p) − Φ(k − p))

−k
Nc

Nf

∫ k
0 dpΦ(p)

∫ k−p
0 dqqΦ(q)
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We have written only the terms pro-

portional to δ(0).

Useful formulae for the evaluation, in-

volving sums of products of structure

functions of SU(N), are given in the

Appendix.

The various momentum integrals (in-

cluding the ones for the non dominant

terms) are divergent for ǫ → 0, thus

they should be regulated. We leave this

problem for now, and assume henceforth

that they are regulated and finite. For

simplicity the integrals (including the

factor k) appearing in the two domi-

nant terms will be notated R1 and −R2
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in the following expressions. Note that

we have 1
ǫ2

and 1
ǫ divergences and also

ln(k
2

ǫ2
). It seems that these are cancelled

in R2.

Define now the normalized states

|S1〉 = C1



Jb(−k)Zb |0〉




|S2〉 = iC2kfabc ∫ k
0 dpΦ(p)Ja(−p)Jc(p−k)Zb |0〉

where

C1 =
1

Nc

√

√

√

√

1
2Nf

C2 =

2
Nf

√
N3

c
√

√

√

√

√R1 + R2
Nc
Nf
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The mass eigenvalue equation

M2|S1〉 =
e2

π
Nf |S1〉+

e2Nc

π

√
2

√

√

√

√

√

√

√

√

R1
Nf

Nc
+ R2|S2〉

In the large flavor limit, our state |S1〉
is an eigenstate with mass

M =

√

√

√

√

√

√

√

√

e2Nf

π
.

In the large color limit, however, we ac-

tually get that the second term domi-

nates by a factor of Nc. Moreover, while

the first term goes to zero in the large

Nc limit, due to the factor of e2, the

second term survives.
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FERMIONIC STRUCTURE

Consider

J i
j(−k)b

†j
β (ǫ)d

†β
i (ǫ) |0〉

with

J i
j(−k) =

1

2π

∫ ∞
0 dp

[b
†i
β (p+k)b

β
j (p)+θ(k−p)b

†i
β (k−p)d

†β
j (p)

−d
†β
j (p + k)di

β(p)]

The 4-quarks part has a coefficient which

is independent of Nc.

As for the 2-quark part, it involves an

anti-commutator of creation with anni-

hilation, yielding a state which is a com-
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bination of

b
†j
β (k)d

†β
j (ǫ) and b

†j
β (ǫ)d

†β
j (k)

with a coefficient that is proportional to

Nc.

Thus for large Nc, we have a quark-

antiquark combination of momenta (k, 0)

and (0, k).

As ’t Hooft found all meson states for

large Nc, and each has a well defined

momentum distribution, it is clear that

our state is not a mass eigenstate of

large Nc. This is of course part of our

explicit calculation in the previous sec-

tion.
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DISCUSSION

Investigation of two dimensional mass-

less multi flavor QCD in its “curren-

tized” form.

Useful tool to solve those QCD2 sys-

tems.

Spectrum of states that are constructed

by applying a single current creation op-

erator on the adjoint vacuum.

The later was shown to be given in

terms of the derivative with respect to

k, at k = 0, of the current acting on the

singlet vacuum.
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In general, and in particular also in

the large Nc, these states are not eigen-

states of M2. However, in the large Nf

limit they are eigenstates.

Previously

A. Armoni, Y. Frishman and J. Son-

nenschein,

“Massless QCD(2) from current con-

stituents,” Nucl. Phys. B 596, 459

(2001) [arXiv:hep-th/0011043]

the spectrum of two current states on

the singlet vacuum was derived.
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It was also shown there that in the

large Nf limit there is a continuum of

states with mass above 2 × e

√

√

√

√

√

Nf
π . This

indicates that there is a non-interacting

“currentball” meson of mass e

√

√

√

√

√

Nf
π .

Now, in the same large Nf limit, we

have indeed found an eigenstate of M2

with exactly this mass.
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The state we have found is a color sin-

glet. In fact it is easy to see that in the

large Nf limit, there are N2
c −1 colored

eigensates of M2 with the same mass.

Interpretation: For large Nf , QCD2

is transfered into a set of N2
c−1 Abelian

systems. Now in QED2 it is well known

that the Schwinger mechanism yields a

massive state of mass e√
π
. This Schwinger

state is often considered as a bound state

of an electron-positron. For large Nf ,

the M2 eigenstates are therefore just

the Schwinger states appearing in a mul-

tiplicity of N2
c − 1.
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Open questions:

1.

The computation of the spectrum of

the states requires a regularization pre-

scription that we have only partially found.

2.

Diagonalize the “currentball” states cre-

ated by applying any number of current

creation operators on the various vacua.

3.

The question of what have we learned

from the currentization procedure and

from the two dimensional spectrum of

states, about four dimensional QCD.
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In particular a challenging question is

to investigate the possibility of a Schwinger

like mechanism also in four dimensions.
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Summation Identities

The generators T a of SU(N), in the

adjoint representation, are related to the

structure constants fabc as

(T a)bc = −ifabc

Thus

fabcfabd = Tr(T cT d) = Nδcd

and

fabcfa′bc′faa′df cc′d = Tr(T bT dT bT d)

= if bdeTr(T eT bT d)+Tr(T bT bT dT d)

=
1

2
N2(N2 − 1)
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where we used

∑

a
T aT a = NIadj

with Iadj the unit matrix in the adjoint

representation.
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