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What is the mechanism of binding of quarks and gluons in QCD? The
binding occurs typically above threshold, which means that the sum of
masses of constituents is smaller than the mass of the bound state. How
can this happen in a relativistic quantum theory? A boost-invariant Hamil-
tonian formulation of quantum choromodynamics is used to develop a
heuristic picture for the binding mechanism of heavy quarks and gluons.
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Cairns, July 7, 2005

Light-front Hamiltonians for heavy quarks and gluons

S. D. G lazek, Warsaw University

Light-Cone QCD and Nonperturbative Hadron Physics, Cairns, July 7-15, 2005.

Plan:

1. Introduce Hamiltonians for effective particles in QFT: light-front.

2. Describe an emerging heuristic picture of binding in gauge theories.

3. Describe what comes out of the picture for gluonium and heavy quarkonia.
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Jakub Narȩbski - Models of hybrids made of heavy gluons and quarks
Lech Stawikowski - Schrödinger equation with Coulomb + oscillator potential
Marek Wiȩckowski - Theory of bound states of constituents and scattering
Kenneth G. Wilson - Initial RG studies.
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KEY POINTS:

1. In the region of binding, the copuling constant increases to ∼ 1.

α =
g2

4π
,

g = g(λ) ,

H = Hλ ,

Hλ = ? (1)

2. One can use RGPEP equations for evaluating Hλ in perturbation
theory.

qλ = Uλ qcan U
†
λ , (2)

Hλ(qλ) = [Hcan +HCT ]reg (qcan) . (3)

Regularization, renormalization (both not Lagrangian) ab initio Hamil-
tonian, en block, in the Fock space.

Can it be relativistic? Yes.
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3. RGPEP extends to the Poincaré algebra in QFT (T. Mas lowski):

[P µ, P ν] = 0 ,

[P µ,M νρ] = i(gµνP ρ − gµρP ν) ,

[Mµν,Mρσ] = i(gµρMσν − gµσMρν + gνρMµσ − gνσMµρ) .

Example of φ3:

J1
λ = 1/2(M−2

λ −M+2
λ ) ,

J2
λ = −1/2(M−1

λ −M+1
λ ) ,

J3
λ = M 12

λ

[J i
λ, J

j
λ] = iεijkJ

k
λ + o(g3) .



5

4. Wiȩckowski’s Theorem (checked expl. 1 loop φ3 in 5+1 dimensions):

Structure of Hamiltonian CTs is calculated from RGPEP, and there exist finite parts in these counterterms

that produce covariant amplitude of the type e+e− → hadrons in one loop. Marek.Wieckowski@fuw.edu.pl

The same S matrix for scattering of physical particles can be obtained
using:

1. a bare Hamiltonian [Hcan +HCT ]reg, and representing the in and
out particles with creation and annihilation operators qcan for bare-
particles,

2. an effective Hamiltonian Hλ and effective operators qλ.

In each order of perturbation theory, the result for the S matrix is the same,
provided that the connection between qcan and qλ, which also means be-
tween Hreg and Hλ, is calculated up to this order. Hλ contains formfactors
in interaction terms.
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5. One can calculate bound states using Window Hamiltonians: Like one
can calculate non-perturbative atomic physics using the Coulomb poten-
tial, which is only of formal order e2. RGPEP produces Hλ(gλ) without
small denominators in perturbation theory.

Results of non-perturbative diagonalization of Wλ obtained from first 6 orders. Asymptotically free model for

bound-state calculation, with J. M lynik..
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6. Convergence in the Fock space in the effective-particle basis

Gluonium:

Ψ〉 = |gλgλ〉+ |gλgλgλ〉+ ...

Quarkonium:

Ψ〉 = |QλQ̄λ〉+ |QλQ̄λgλ〉+ ...

Growth of gλ compensated by the narrowing formfactor fλ.

Akin to nuclear physics with practically fixed number of nucleons.
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7. Assume a mass gap between states |gλgλgλ〉 and |gλgλ〉 due to non-
abelian potentials.

|gλgλgλ〉 = R|gλgλ〉 ,
Hgg|gλgλ〉 = E|gλgλ〉 ,

Hgg =
1√

P +R†R
(P +R†)Hλ(P +R)

1√
P +R†R

.

〈k|Hgg|k′〉 = 〈k|Tλ + T δm2

λε + fλWgg,gg +

+
1

2
Ygg,ggg

(
1

Ek − Tλ − T µ2 +
1

Ek′ − Tλ − T µ2

)
Yggg,gg|k′〉 ,

Tλ|k〉 = Ek|k〉 .

The gap ansatz depends on the relative momenta of 3 gluons:

T µ2

=
1

3!

∑
123

∫
[123]

3∑
i=1

µ2
i (123)

p+
i

|123〉〈123| ,

µ2
i (123), i = 1, 2, 3.



9

8. Let us make a gap ansatz correctable order by order:

Hλ = T + V , acting in the gluon Fock space.

αλ = g2
λ

4π .

Take λ = λ0 near the binding scale.

Physical value: αλ0
= αphysical ∼ 1/3 or 3/4.

One is free to add 1−
 αλ0

αphysical

2
 Tµ ,

where Tµ is a mass term (function of x and κ⊥) for gluons.

For the right αλ0
= αphysical the added term is zero.

Hλ0
= Tλ0

+ Tµ +

Vλ0
−
 αλ0

αphysical

2

Tµ

 .
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FIG. 1: How binding works.

Transition from the Lepage-Brodsky colinear region to the binding region.

vfin(12, 34) = − 1

x1x2
ε⊥∗1 α⊥ ε⊥∗2 β⊥ ε⊥3 ε

⊥
4 +

1

x1x4
ε⊥∗1 α⊥ ε⊥4 β

⊥ ε⊥∗2 ε⊥3

+
1

x2x3
ε⊥3 α

⊥ ε⊥∗2 β⊥ ε⊥∗1 ε⊥4 −
1

x3x4
ε⊥3 α

⊥ ε⊥4 β
⊥ ε⊥∗1 ε⊥∗2

− 1

x1x5
ε⊥∗1 α⊥ ε⊥3 β

⊥ ε⊥∗2 ε⊥4 +
1

x2x5
ε⊥4 α

⊥ ε⊥∗2 β⊥ ε⊥∗1 ε⊥3

+
1

x3x5
ε⊥3 α

⊥ ε⊥∗1 β⊥ ε⊥∗2 ε⊥4 −
1

x4x5
ε⊥∗2 α⊥ ε⊥4 β

⊥ ε⊥∗1 ε⊥3 ,

α⊥ = x1κ
⊥
34 − x3κ

⊥
12 ,

β⊥ = x2κ
⊥
34 − x4κ

⊥
12 ,

fλ = exp[−(Ma −Mb)
2/λ2] ,

F̃2 = x2x3
1 + x1 − x3

x2α⊥2 + x3β⊥2 ,

ff = exp

− x2α
⊥2 + x3β

⊥2

x2x3(x1 − x3)λ2

 .
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9. How binding works stglazek@fuw.edu.pl

FIG. 2: Interaction at a distance (potential) without tachyons.

FIG. 3: UV ⊥ renormalization group (Hamiltonians) for effective particles.
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M(jz = 0) [GeV] M(|jz| = 1) [GeV] M(|jz| = 2) [GeV]

1.73 2.25 1.97

2.01 2.63 2.54

2.06 2.64 2.6

2.41 2.66 2.67

2.41 2.85 2.83

Gluonium masses (not energies). Dashed = lattice. Bold from Hλ. 0++ matched to lattice 1.73 GeV: λ =

1.92 GeV, b = 2λ, δ = 0.2, αs = 0.44. Also, nmax = 9, lmax = 15. Results perhaps similar in size to

lattice 0++, 2++, 0−+, 0∗++, 2−+ but only lowest jz 6= 0 are well separated; denser spectrum than on lattice.

Tomasz.Maslowski@fuw.edu.pl



13

M(jz = 0) [GeV] M(|jz| = 1) [GeV] M(|jz| = 2) [GeV]

1.73 2.56 2.27

1.92 3.01 2.9

2.19 3.03 2.97

2.71 3.05 3.07

2.75 3.27 3.25

The same as before, but changed λ and αs keeping 0++ at 1.73 GeV. Degeneracy for j = 2 is not appearing but 2++
1

and 2++
2 can vary. Here, λ = 2.14 GeV, b = 2λ, δ = 0.2, αs = 0.47, nmax = 9, lmax = 15. Tomasz.Maslowski@fuw.edu.pl
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Typical dependence of the lightest gluonium masses on α. Tomasz.Maslowski@fuw.edu.pl
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αs as a perturbative function of λ for ΛQCD = 522 MeV, no quarks. Tomasz.Maslowski@fuw.edu.pl
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Variation of the expectation value of the effective gluon mass with parameters, assuming that αs(λ) is pertur-

bative, parameters b and δ are constrained so that M(0++) = 1.73 Gev. 10 hrs per point per calculation, and

several calculations per point to identify central values in the stability region. Tomasz.Maslowski@fuw.edu.pl
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M(0++) b/λ δ
√
〈µ2〉M(2++

0 )/M(0++) M(2++
1 ) M(2++

2 )

1.72 1.0 0.085 1.12 1.19 2.16 1.91

1.72 1.5 0.15 1.46 1.17 2.23 1.96

1.73 2.0 0.2 1.75 1.16 2.25 1.97

1.77 3.0 0.27 2.27 1.16 2.33 2.04
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Convergence with radial number, lmax = 15, and nmax varies from 1 to 9. λ = 1.92 GeV, b = 2λ, δ = 0.2,
αs = 0.44. Tomasz.Maslowski@fuw.edu.pl
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Convergence with angular momentum, nmax = 9, and lmax varies from 3 do 15. λ = 1.92 GeV, b = 2λ, δ = 0.2,
αs = 0.44. Tomasz.Maslowski@fuw.edu.pl
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QUARKONIUM

All details of the mass ansatz in |QλQ̄λgλ〉 disappear.

The leading interaction in the resulting equation is spherically symmetric

The boost-invariant wavefunction in the sector |QλQ̄λ〉, satisfies the Shrödinger equation
of the form

[
p2

mq

− α

r
+

1

2
kr2

]
ψ =

M2 − 4m2
q

4mq

ψ .

This is how strings may arise.
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Are we in the ball park? Answer from L. Stawikowski: Yes.

PDG:
mc = 1.15− 1.35 GeV
mb = 4.1− 4.4 GeV

[
p2

mq

− α

r
+

1

2
kr2

]
ψ =

M2 − 4m2
q

4mq

ψ .

Υ data:
3S 9460.3 + 563.0 + 331.9
2S 9460.3 + 563.0
1S 9460.3

The Coulomb and oscillator mix.

For 560 and 330, one needs one negative eigenvalue x.
mb = 5017.2
α = 0.84130
k = 0.03991 ( ω = 0.1261 )

mb determines the scale of M1S, M2S, M3S

α determines M1S −M2S

k determines M2S −M3S

THEN:
M1P = 9.9172 (exp 9.8884)
M2P = 10.2521 (exp 10.2519)

THEN:
mb → mc = 1.624 to fit M1S = 3.0969 for J/Ψ
M2S = 3.6828 ( exp 3.6861)
M1P = 3.5113 ( exp 3.4940).

Three aspects:

1. One needs higher order analysis to tackle 10% effects.

2. Numbers were calculated by a freshman.

3. His code in Mathematica runs several hours on his ancient home PC (36 basis states).
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CONCLUSION

1. We are in the ball park
(symmetry and numbers)

2. We have an image to hold on to
(self-interaction- mechanism for binding above threshold).

3. We have a theory to refine our image
(full formalism for effective particles in QFT, open for development).

4. We have puzzles to solve
(4th order, fermion seagul terms, condensate terms, chiral symmetry).

5. So far, no vacuum was involved.

6. Contact interactions (δ3-functions) are under theoretical control.

7. We can expect surprises
(mass and polarization of gluons, values of quark masses, CMS and IMF,

structure of hybrids).

(8. Infrared limit cycle in the chiral extrapolation → baryons.)


