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PLAN

Aims of this contribution: treatment of QFT divergences
from Hadamard’s type extension of singular OPVD.

Euclidean Epstein and Glaser’s approach in a nutshell;
the magic of Lagrange’s formula for Taylor’s remainder.

Construction and properties of the partition of unity.

UV behaviour and renormalisation group.

IR behaviour

Massive scalar QFT from resummation of mass
perturbation expansion
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Aims of this contribution

Treating fields as OPVD with explicit test functions
provides a mathematically rigourous way to avoid
divergences at any stage.

Identification of divergences : propagators on the
diagonnal ie x = x′.

Link with Epstein and Glaser’s analysis and role of the
partition of unity in its extension.

The method at work: UV and IR analysis.
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Epstein and Glaser’s analysis

Euclidean massive scalar field as OPVD
OPVD defines a functional with respect to a test
function ρ(x), C∞ with compact support,

Φ(ρ) ≡< ϕ, ρ >=

∫
d(D)yϕ(y)ρ(y).

More general interpretation: functional Φ(x, ρ) evaluated
at x = 0.
The translated functional is a well defined object such
that

TxΦ(ρ) =< Txϕ, ρ >=< ϕ, T−xρ >=

∫
d(D)yϕ(y)ρ(x− y)

Due to the properties of ρ TxΦ(ρ) obeys the KG
equation and is taken as the physical field φ(x) LC05 – p. 4/20



Fourier decomposition of ρ(x− y)

ρ(x− y) =

∫
d(D)q

(2π)D
eiq(x−y)f(q2)

quantized form φ(x) follows

φ(x) =

∫
d(D)p

(2π)D
[a+

p e
ipx + ape

−ipx]f(p2).

f(p2) : partition of unity(paracompactness property of
Euclidean manifold): ensures convergence of otherwise
diverging integrals , plays no role on the reverse.
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Example:propagator

∆(x− y) =

∫
dDp

(2π)D
e[−ip.(x−y)]f2(p2)

(p2 +m2)

At D = 2..4 and for x 6= y ∆(x− y) is finite and f 2(p2)
may be taken to 1 everywhere.
Aim : understand the role of the partition of unity in the
extension of ∆(x− y) to the diagonnal
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E −G’s analysis of singular distributions
• f(X) : C∞(Rd) test function ∈ S(Rd)

• T (X) distribution ∈ S′(Rd)

• singular order k of T (X) at the origin of (Rd) such that

k = inf{s : lim
λ→0

λsT (λX) = 0} − d

E −G’s extension and magic of Lagrange’s formula
• Taylor series surgery : throw away the weigthed k-jet
of f(X) at the origin : Rk

0f is the Taylor remainder

Pwf(X) = (1 − w(X))Rk−1
0 f(X) + w(X)Rk

0f(X)

• w(X) E −G’s weight with properties w(0) = 1 ,
w(α)(0) = 0 ,0 <| α |≤ k
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• T̃ (X) extension of T (X) such that

< T̃ , f >=< T,Pwf >=

∫
ddXT (X)Pwf(X)

• Lagrange’s formula for Taylor remainder

Rk
0f(X) = (k + 1)

∑

|β|=k+1

∂β
[Xβ

β!

∫ 1

0
dt(1 − t)k∂β

(tX)
f(tX)

]

• T̃ (X) obtained by partial integration

T̃ (X) = (−)kk
∑

|α|=k

∂α
[Xα

α!

∫ 1

0
dt

(1 − t)k−1

tk+d
T (
X

t
)(1 − w(

X

t
)
]

+(−)k+1(k + 1)
∑

|α|=k+1

∂α
[Xα

α!

∫ 1

0
dt

(1 − t)k−1

tk+d+1
T (
X

t
)w(

X

t
)
]
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• f(X) partition of unity for ‖X‖ ∈ [0, h] ,
f (α)(0) = f (α)(h) = 0 , ∀α ≥ 0
• =⇒ f(X) ≡ Taylor remainder
• at ‖X‖ ≈ 0 Taylor remainder is:

f(X) ≡ f<(X) ≡ (k+1)
∑

|β|=k+1

[Xβ

β!

∫ 1

0
dt(1−t)k∂β

(tX)
f(tX)

]
∀k ≥ 0

• at ‖X‖ ≈ h Taylor remainder is :

f(X) ≡ f>(X) ≡ −(k+1)
∑

|β|=k+1

[Xβ

β!

∫ ∞

1
dt(1−t)k∂β

(tX)
f(tX)

]
∀k ≥ 0
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Partition of unity : example,ppties

• f>(X) =⇒ T̃>(X) extension of T (X) singular of order k
at ‖X‖ = h : UV extension
• f<(X) =⇒ T̃<(X) extension of T (X) singular of order k
at ‖X‖ = 0 : IR extension

UV analysis
• define f>(X)

f>(X) =





1 for ‖X‖ ≤ 1

χ(X, h) for 1 < ‖X‖ ≤ 1 + h

0 for ‖X‖ > 1 + h

• possible choice for χ(X,h)

χ(X,h) = Nh

∫ h

‖X‖−1
e
[− h2

v(v−h)
]
dv; N−1

h =

∫ h

0
e
[− h2

v(v−h)
]
dv
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• χ "builds up" 1 since

for 0 < ‖X‖ < h χ(X + 1, h) + χ(1 + h−X,h) = 1

• h is a parameter: may depend on X. Consequences:

−i) ∃ Xmax such that
Xmax = 1 + h(Xmax) ≡ µ2Xmaxg(Xmax) =⇒ g(Xmax) = 1

µ2

−ii) h > 0 =⇒ µ2Xg(X) > 1 ∀ X ∈ [1, Xmax] =⇒

g(1) > g(Xmax) =⇒ µ2 > 1

−iii) from f>(Xt) present in Lagrange’s formula one

has t < 1+h(X)
X = µ2g(X) =⇒ T̃>(X)
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UV behaviour

• UV extension of T (X)

< T, f> >=

∫
ddXT (X)

{
−(k + 1)

∑

|β|=k+1

[Xβ

β!

∫ µ2g(X)

1
dt

(1 − t)k

t(k+1)
∂

β
Xf

>(tX)
]}

= < T̃>, 1 >=⇒ T̃>(X) after partial integration

T̃ >(X) = (−)k(k + 1)
∑

|β|=k+1

∂
β
X

[
Xβ

β! T (X)
∫ µ2g(X)

1 dt(1−t)k

t(k+1)

]

LC05 – p. 12/20



• back to propagator at x = y

−i) X = p2

Λ2 ;T (X) = 1
(XΛ2+m2) =⇒ {D = 2, d = 1, k = 0}

˜[ 1

(p2 +m2)

]
µ,D=2

= ∂X

[ X

(XΛ2 +m2)

∫ µ2g(X)

1

dt

t

]

=
m2 log[µ2g(X)]

(XΛ2 +m2)2
+

Xg′(X)

(XΛ2 +m2)g(X)

the choice g(x) = x(α−1) ie h(x) = µ2xα − 1 with 0 < α < 1

is OK with the construction of χ(X,h)

in the limit α → 1 g′(X)
g(X) = 0 and Xmax = (µ2)(

1
(1−α)

) → ∞

∆(0) =

∫
d2p

(2π)2
f2(p2)

(p2 +m2)
= m2 log(µ2)

∫
d2p

(2π)2
1

(p2 +m2)2

=
1

(4π)
log(µ2) RG invariant w.r.t. scale µ
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−ii) X = p2

Λ2 ;T (X) = 1
(XΛ2+m2) =⇒ {D = 4, d = 2, k = 1}

˜[ 1

(p2 +m2)

]
µ,D=4

= lim
α→1

−∂
(2)
X

[ X2

(XΛ2 +m2)

∫ µ2g(X)

1
dt

(1 − t)

t2

]

=
2m4

µ2

[1 − µ2 + µ2 log(µ2)]

(XΛ2 +m2)3

−iii) alternate form of T̃>(X) : variable change Xt→ Y

T̃ >(X) = (−)k(k + 1)
∑

|β|=k+1

∂β
X

[
Xβ

β!

∫ µ2

1 dt (1−t)k

t(k+d+1) T (X/t)
]

˜[ 1

(p2 +m2)

]alter

µ,D=2
= ∂X

[
X

∫ µ2

1

dt

t

1

(XΛ2 +m2t)

]

=
1

(p2 +m2)
−

1

(p2 +m2µ2)

overall results unchanged after p-integration
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IR behaviour
• IR extension of T (X)

−i) for ‖X‖ ≈ 0 f<(X) = w(X)f>(X) with
w(X) = χ(h− ‖X‖ + 1, h)

−ii) T (X) is homogeneous near ‖X‖ = 0 =⇒

T (X
t ) = t(k+d)T (X)

<T, f<>=(−)(k+1)(k + 1)
∑

|β|=k+1

∫
ddX∂

β
X

[Xβ

β!
T (X)

∫ 1

0
dt

(1 − t)k

t
w(
X

t
)
]
f>(X)

−iii) w(X
t ) effectively cuts the t-integration ie

‖X‖(µ2 − 1) ≡ µ̃‖X‖ < t < 1

<T̃<, 1>=(−)k+1(k + 1)
∑

|β|=k+1

∫
ddX∂

β
X

[Xβ

β!
T (X)

∫ 1

µ̃‖X‖
dt

(1 − t)k

t

]
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IR behaviour:continued

• The t-integration is trivial =⇒ T̃<(X)

T̃ <(X) = (−)k(k + 1)
∑

|β|=k+1

∂
β
X

[
Xβ

β! T (X) log(µ̃‖X‖)
]

+(−)k

k! Hk

∑

|β|=k

Cβδ(β)(X)

Here Hk =
k∑

p=1

(−1)(p+1)

p

(
k

p

)
= γ + ψ(k + 1)

and Cβ =
∫
(‖X‖=1) T (X)XβdS
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IR behaviour : example

• massive scalar field propagator from perturbative mass
expansion
• D0

F (x) =< φ(x), φ(0) > known from CFT = limm→0K0(mr)

DF (x) = D0
F (x) −m2

∫
d2p

(2π)2
eip.x

p4
(f<(p2))4

+m4

∫
d2p

(2π)2
eip.x

p6
(f<(p2))6 + ...

from T̃<(X) with X = p2

Λ2 one finds

˜[ 1

(p2)(k+1)

]
=

(−)k

k!

∂k+1

∂(p2)k+1

[
log(

p2

Λ2
)
]
+ 2

(−)k

k!
Hkδ

(k)(p2)
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IR example continued

Taking Fourier transform gives

∫
d2p

(2π)2
eip.x

˜[
(p2)(k+1)

] =
(−)k

2π(k!)2
(
| x |2

4
)k
[
ψ(k + 1) − log(

Λ | x |

2
)
]

for k = 0 this is − 1
2π

[
γ + log(Λ|x|

2 )
]
≡ D0

F (x) =⇒ Λ ≡ m

the overall expression for DF (x) is then

DF (x) =
1

2π

∞∑

k=0

[
ψ(k + 1) − log(m|x|

2 )
]

(k!)2
[m2 | x |2

4

]k

=
1

2π
K0(m | x |)
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Final Conclusions
Well defined fields leading to finite action (adequate
path integral formulation ?)

Finite RG-analysis w.r.t to scale parameter present in
partition of unity

Minkowskian metric focusses on causality: taylor
substractions equivalent to symmetry preserving
dispersion relations or possibly interpreted in terms of
P.V. type of subtraction (but without the introduction of
new fields)

QED gauge invariance OK (cf LC2004)

Link with dimensional regularistion through analytic
continuation of power of propagator (but no problem
related to γ5 extension cf J.M. Garcia-Bondia)

Towards a finite LCQFT for the S-matrix repesented in
terms of the light-front time σ = ω.x (counterterms
avoided)
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