Goodbye to Large ΔG ?

Marek Karliner

Cambridge University and Tel Aviv University

with John Ellis, hep-ph/0501115

LC2005, Cairns, 7/2005

nucleon spin

quark helicities:

$$\Delta q = \int_0^1 \left[q_{\uparrow}(x) - q_{\downarrow}(x) \right] + \left[\bar{q}_{\uparrow}(x) - \bar{q}_{\downarrow}(x) \right]$$

sources of information about Δq -s: (a) weak decays

 $g_A = \Delta u - \Delta d$; $g_8 = \Delta u + \Delta d - 2\Delta s$

(b) polarized DIS on nucleon

$$g_1^p(x) = \frac{1}{2} \sum_{q} e_q^2 [q_{\uparrow}(x) - q_{\downarrow}(x) + \bar{q}_{\uparrow}(x) - \bar{q}_{\downarrow}(x)] = \frac{1}{2} \sum_{q} e_q^2 \Delta q(x)$$
$$+ \text{ QCD \& higher twist corrections}$$

and $n \iff p$

Marek Karliner LC2005, Cairns, 7/2005

global fit to p and d polarized DIS data:

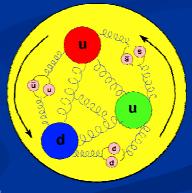
 $\Delta u = 0.82 \pm 0.03 \pm \dots$ $\Delta d = -0.44 \pm 0.03 \pm \dots$ $\Delta s = -0.11 \pm 0.03 \pm \dots$

and

 $\Delta \Sigma = \Delta u + \Delta d + \Delta s = 0.27 \pm 0.04 \pm \dots$

"Spin Crisis"

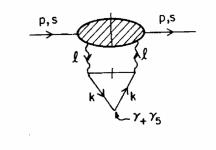
Angular momentum sum rule:


 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_z$

Marek Karliner

LC2005, Cairns, 7/2005

Why Should the Nucleon be Strange?

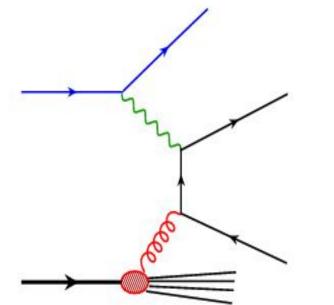

- the vacuum is strange:
 chiral symmetry for π, K mesons
- $\rightarrow \langle 0\bar{s}s|0\rangle = (0.8 \pm 0.1)\langle 0\bar{q}q|0\rangle$
 - cannot be expected to disappear when one inserts qqq 'test charge' into the vacuum
 - generated in pQCD: $q \longrightarrow g \longrightarrow \bar{s}s$
 - also by non-perturbative effect: instantons, chiral soliton models

axial anomaly: "the last hope" of the naïve quark model:

$$\Delta q
ightarrow \widetilde{\Delta q} \equiv \Delta q - rac{lpha_s}{2\pi} \Delta G$$

2nd term on rhs due to gluon axial current.

observables: Δq -s, rather than Δq -s, so in principle can resurrect the NRQM by

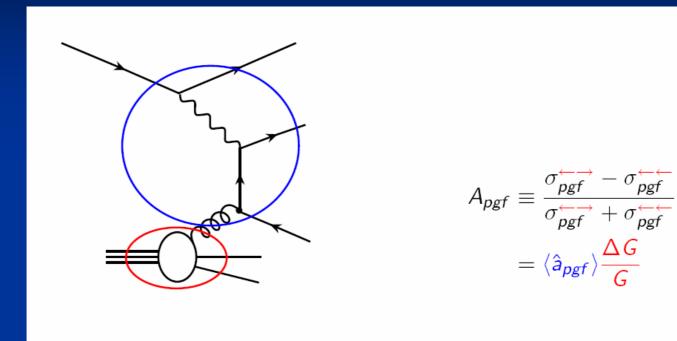

$$\widetilde{\Delta s} = \Delta s - \frac{\alpha s}{2\pi} \Delta G \neq 0$$
 : $\Delta s = 0, \ \Delta G \neq 0$

 \implies large $\Delta G \simeq 2$ at $Q^2 \simeq 3$ GeV².

Marek Karliner LC2005, Cairns, 7/2005

How to measure $\Delta G/G$

Photon-Gluon Fusion (PGF)

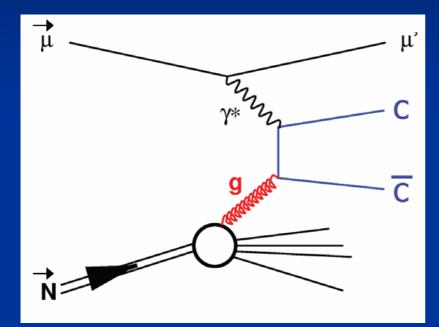

 $A_{\mu N}^{PGF} = \left\langle a_{LL} \right\rangle \frac{\Delta G}{G}$

Two tagging methods: - High p_T hadron pairs - Open charm

Marek Karliner

LC2005, Cairns, 7/2005

Photon-Gluon Fusion (PGF)



COMPASS cuts for jet asymmetry: each hadron $p_T > 0.7$ GeV/c, $(p_{T1}^2 + p_{T2}^2) > 2.5$ (GeV/c)²

current fragmentation: $x_F > 0.1$, z > 0.1

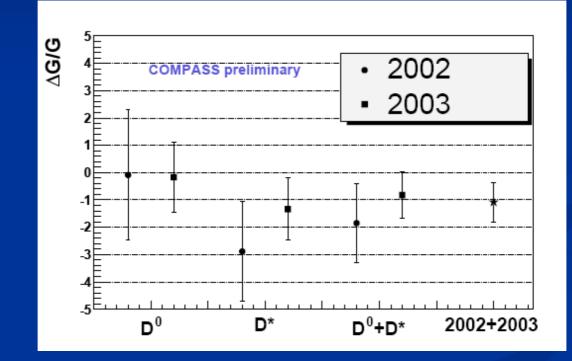
Marek Karliner LC2005, Cairns, 7/2005

$\Delta G/G$ from open charm

$D^{0} \longrightarrow K^{-} \pi^{+} (BR 4\%)$ $D^{*+} \longrightarrow D^{0} \pi^{+} + c.c.$

 $A_{\gamma N}^{c\overline{c}} = \left\langle a_{LL} \right\rangle \frac{\Delta G}{G}$

LC2005, Cairns, 7/2005

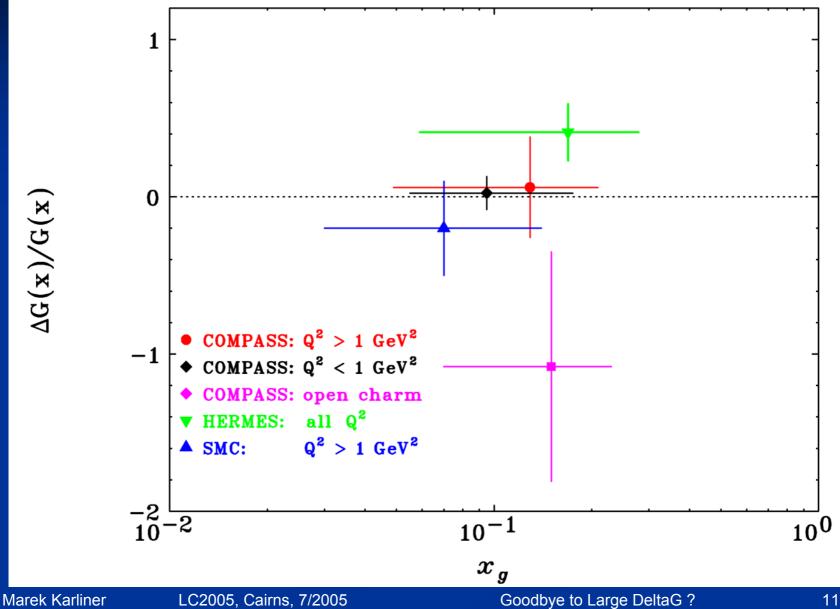

Compilation of ΔG measurements

Indirect, using polarized structure function data: BBA: $\Delta G = 1.026 \pm 0.549$ BBB: $\Delta G = 0.031 \pm 0.669$ AAC: $\Delta G = 0.533 \pm 1.931$

Direct, using hadron production asymmetries:										
HERMES :			$0.06 < x_G < 0.28,$							
SMC :			$\langle x_G angle = 0.07,$							
COMPASS :			$\langle x_G angle = 0.13,$ $Q^2 > 1 ~ { m GeV}^2$							
COMPASS :	$\Delta G/G =$	$0.024 \pm 0.089 \pm 0.057$	$\langle x_G angle = 0.095.$ $Q^2 < 1 { m GeV}^2$							

LC2005, Cairns, 7/2005

2002-2003 results from open charm
no physics background
but much less data than hadron asymmetry


 $\Delta G/G = -1.08 \pm 0.73$

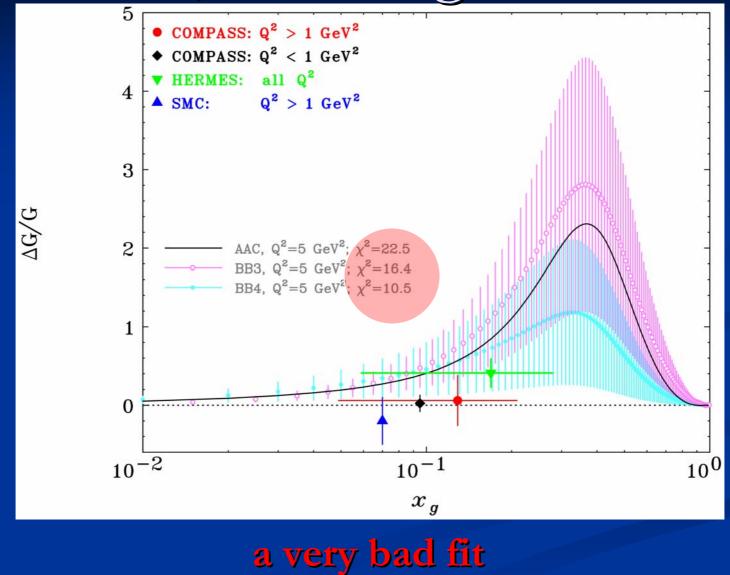
$x_G = 0.15 \pm 0.08$

Marek Karliner

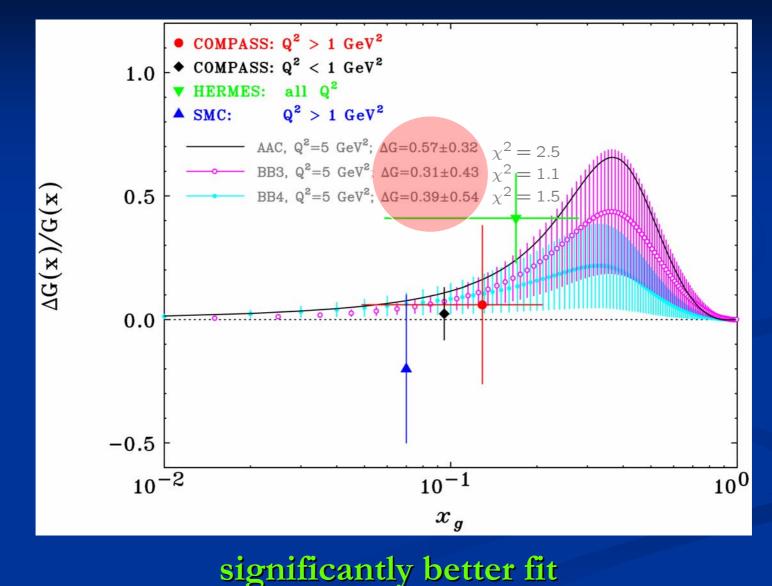
LC2005, Cairns, 7/2005

$\Delta G/G$ from hadron polarization asymmetries

fits to asymmetry data


- data not precise enough (yet?) for a full-fledged fit
- but good enough to estimate ΔG magnitude
- assume the three trial forms BB3, BB4, AAC for $\Delta G(x, Q^2)$;
- normalization A_{ijk} left as a free parameter

BB3: **BB4** :


AAC:

 $\Delta G(x,Q^2) = A_{BB3} \cdot f_{BB3}(x,Q^2),$ $\Delta G(x,Q^2) = A_{BB4} \cdot f_{BB4}(x,Q^2),$ $\Delta G(x,Q^2) = A_{AAC} \cdot f_{AAC}(x,Q^2).$

first, fit forcing $\Delta G=2$

fit with normalization allowed to float

LC2005, Cairns, 7/2005

Marek Karliner

	BB4			BB3			AAC		
Q^2		χ^2	χ^2		χ^2	χ^2		χ^2	<i>x</i> ²
GeV ²	ΔG	best	for	ΔG	best	for	ΔG	best	for
		fit	$\Delta G=2$		fit	$\Delta G=2$		fit	$\Delta G=2$
1.5	$0.31 {\pm} 0.40$	1.6	19.7	0.46 ± 0.44	1.0	13.4	$0.58 {\pm} 0.31$	2.2	22.8
2.0	$0.33 {\pm} 0.43$	1.5	16.5	$0.33 {\pm} 0.37$	1.2	21.2	$0.57 {\pm} 0.31$	2.3	23.4
5.0	$0.39 {\pm} 0.54$	1.5	10.5	$0.31 {\pm} 0.43$	1.1	16.4	$0.57 {\pm} 0.32$	2.5	22.5
10.0	0.43±0.62	1.5	6.5	$0.30{\pm}0.48$	1.1	13.5	$0.58 {\pm} 0.33$	2.6	20.6

Fits to the HERMES, SMC and COMPASS $\Delta G/G$ data, for $Q^2 = 1.5$, 2, 5 and 10 GeV². For each parametrization we list the best-fit value of ΔG and its χ^2 , as well as the χ^2 value corresponding to $\Delta G = 2$.

Goodbye to Large ΔG .

Long Live $\Delta s \neq 0$!

 recent exp. evidence on strange magnetic moment of the nucleon from JLab

• lattice

Marek Karliner LC2005, Cairns, 7/2005