Numerical Evidence for the Maldacena Conjecture in Two-Dimensional $\mathcal{N} = (8, 8)$ Super Yang–Mills Theory

John R. Hiller

jhiller@d.umn.edu

Department of Physics

University of Minnesota Duluth

Introduction

- Maldacena conjecture: ∃ correspondences between certain string theories and super Yang–Mills (SYM) theories [hep-th/9711200, hep-th/9802042].
- can test by computing a correlator of the stress-energy tensor in both cases, from a weak-coupling supergravity approximation to the string theory and for the corresponding strong coupling in SYM theory.
- for SYM theory, need nonperturbative technique.
- will use a Hamiltonian approach in a Fock basis
- consistent expansion and simple vacuum \rightarrow light-cone coordinates.
- diagonalize a discrete matrix representation.
 - compute correlator by inserting sum over eigenstates.

Acknowledgments

- work done in collaboration with S. Pinsky, N. Salwen, and U. Trittmann [hep-th/0506225].
- see also
 - F. Antonuccio, A. Hashimoto, O. Lunin, and
 S. Pinsky, JHEP 9907, 029 (1999, [hep-th/9906087].
 - J. R. Hiller, O. Lunin, S. Pinsky, and U. Trittmann, PLB 482, 409 (2000), [hep-th/0003249].
 - M. Harada, J. R. Hiller, S. Pinsky, and N. Salwen, PRD 70, 045015 (2004), [hep-th/0404123].
- supported in part by
 - US Department of Energy.
 - Minnesota Supercomputing Institute.

Outline

- light-cone coordinates.
- (supersymmetric) discrete light-cone quantization.
- SYM theory in two dimensions.
- stress-energy correlator.
- results.
- conclusions.

Light-cone coordinates

Dirac, RMP 21, 392 (1949).

- time: $x^+ = (t+z)/\sqrt{2}$.
- space: $x^- \equiv (t-z)/\sqrt{2}$.

• energy:
$$p^- = (E - p_z)/\sqrt{2}$$
.

• momentum:
$$p^+ \equiv (E + p_z)/\sqrt{2}$$
.

• mass-shell condition: $p^2 = m^2 \Rightarrow p^- = \frac{m^2}{2p^+}$

Discrete light-cone quantization (DLCQ)

Pauli and Brodsky, PRD **32**, 1993 (1985); 2001 (1985). Brodsky, Pauli, and Pinsky, Phys. Rep. **301**, 299 (1997).

- Impose a light-cone box $-L < x^- < L$ and periodic BC
 → discrete grid: $p_i^+ \rightarrow \frac{\pi}{L} n_i$.
- the limit $L \to \infty$ is exchanged for a limit in terms of the integer resolution $K \equiv \frac{L}{\pi}P^+$ for fixed total momentum P^+ .
- $n_i > 0 \Rightarrow \# \text{ of particles} \le K.$
- integrals are replaced by discrete sums $\int dp^+ f(p^+) \simeq \frac{\pi}{L} \sum_n f(n\pi/L).$
- Dirac delta functions become Kronecker deltas $\delta(p^+ p^{'+}) \rightarrow \frac{L}{\pi} \delta_{nn'}$.

Supersymmetric DLCQ (SDLCQ)

Matsumura, Sakai, and Sakai, PRD **52**, 2446 (1995). Lunin and Pinsky, AIP Conf. Proc. **494**, 140 (1999).

- supersymmetry algebra: $\{Q^+, Q^+\} = 2\sqrt{2}P^+$, $\{Q^-, Q^-\} = 2\sqrt{2}P^-$, $\{Q^+, Q^-\} = -4P_{\perp}$.
- discretize supercharge Q^- and compute $P_{\text{SDLCQ}}^- = \frac{1}{2\sqrt{2}} \{Q^-, Q^-\} \neq P_{\text{DLCQ}}^-.$
- preserves supersymmetry.
- for ordinary DLCQ, recover supersymmetry only in infinite resolution limit.
- will use the large- N_c approximation.

*N***=(8,8) SYM** theory

• reduce $\mathcal{N}=1$ SYM theory from ten to two dimensions.

• the action in light-cone gauge ($A_{-}=0$) is

$$S_{1+1}^{LC} = \int dx^+ dx^- \operatorname{tr} \left[\partial_+ X_I \partial_- X_I + i\theta_R^T \partial^+ \theta_R + i\theta_L^T \partial^- \theta_L \right]$$
$$+ \frac{1}{2} (\partial_- A_+)^2 + gA_+ J^+ + \sqrt{2}g\theta_L^T \beta_I [X_I, \theta_R] + \frac{g^2}{4} [X_I, X_J]^2 \right]$$

- the X_I with I = 1, ..., 8 are the scalar remnants of the transverse components of the 10-D gauge field A_{μ} .
- the two-component spinor fields θ_R and θ_L are remnants of the right-moving and left-moving projections of the sixteen-component spinor.

$$J^+ = i[X_I, \partial_- X_I] + 2\theta_R^T \theta_R.$$

$$eta_1\equiv\sigma_1$$
, $eta_2\equiv\sigma_3$

Supercharges

dimensionally reduce the 10-D supercurrent, to obtain

$$Q_{\alpha}^{-} = g \int dx^{-} \operatorname{tr} \left(-2^{3/4} J^{+} \frac{1}{\partial_{-}} u_{\alpha} + 2^{-1/4} i [X_{I}, X_{J}] (\beta_{I} \beta_{J})_{\alpha \eta} u_{\eta} \right)$$

where $\alpha, \eta = 1, \dots, 8$ and the u_{α} are the components of θ_R .

where $p, q = 1, 2, ..., N_c$.

the mode expansions of the dynamical fields are

$$X_{Ipq}(x^{-}) = \frac{1}{\sqrt{2\pi}} \int_0^\infty \frac{dk^+}{\sqrt{2k^+}} [A_{Ipq}(k^+)e^{-ik^+x^-} + A_{Iqp}^{\dagger}(k^+)e^{ik^+x^-}]$$

$$u_{\alpha pq}(x^{-}) = \frac{1}{\sqrt{2\pi}} \int_0^\infty \frac{dk^+}{\sqrt{2}} [B_{\alpha pq}(k^+)e^{-ik^+x^-} + B^{\dagger}_{\alpha qp}(k^+)e^{ik^+x^-}],$$

Creation/annihilation operators

The operators A and B satisfy
$$\begin{split} &[A_{Ipq}(k^+), A_{Jrs}^{\dagger}(k^{'+})] = \delta_{IJ}\delta_{pr}\delta_{qs}\delta(k^+ - k^{'+}), \\ &\{B_{\alpha pq}(k^+), B_{\beta rs}^{\dagger}(k^{'+})\} = \delta_{\alpha\beta}\delta_{pr}\delta_{qs}\delta(k^+ - k^{'+}). \end{split}$$

In the discrete approximation, we rescale the annihilation operators $\sqrt{\frac{L}{\pi}}a(k) = A(k^+ = \frac{\pi k}{L}), \ \sqrt{\frac{L}{\pi}}b(k) = B(k^+ = \frac{\pi k}{L}),$ so that

$$\begin{split} &[a_{Ipq}(k), a_{Jrs}^{\dagger}(k')] = \delta_{IJ}\delta_{pr}\delta_{qs}\delta_{kk'},\\ &\{b_{\alpha pq}(k), b_{\beta rs}^{\dagger}(k')\} = \delta_{\alpha\beta}\delta_{pr}\delta_{qs}\delta_{kk'}\\ &\text{and}\\ &X_{Ipq}(x^{-}) = \frac{1}{\sqrt{2\pi}}\sum_{k=1}^{\infty}\frac{1}{\sqrt{2k}}[a_{Ipq}(k)e^{-i\frac{\pi}{L}kx^{-}} + a_{Iqp}^{\dagger}(k^{+})e^{i\frac{\pi}{L}kx^{-}}],\\ &u_{\alpha pq}(x^{-}) = \frac{1}{\sqrt{2L}}\sum_{k=1}^{\infty}\frac{1}{\sqrt{2}}[b_{\alpha pq}(k)e^{-i\frac{\pi}{L}kx} + b_{\alpha qp}^{\dagger}(k)e^{i\frac{\pi}{L}kx^{-}}]. \end{split}$$

Symmetries

- diagonalize any one of the $P_{\alpha}^{-} = \{Q_{\alpha}^{-}, Q_{\alpha}^{-}\}/2\sqrt{2}$.
- various symmetries can be used to block diagonalize.
- Itransformations that leave Q_8^- unchanged are generated by

	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	b_1	b_2	b_3	b_4	b_5	b_6	b_7
1	a_1	a_8	$-a_{5}$	$-a_4$	$-a_{3}$	a_6	$-a_{7}$	a_2	b_1	b_4	$-b_3$	b_2	b_7	$-b_6$	b_5
2	a_2	a_1	$-a_{5}$	$-a_6$	$-a_{3}$	$-a_4$	$-a_{8}$	$-a_7$	b_4	b_3	b_2	b_1	b_5	$-b_6$	$-b_{7}$
3	a_2	a_1	$-a_{6}$	a_8	a_7	$-a_{3}$	a_5	a_4	b_1	$-b_2$	b_6	b_5	b_4	b_3	$-b_{7}$
4	$-a_{1}$	$-a_{2}$	$-a_{3}$	$-a_4$	$-a_{5}$	$-a_{6}$	$-a_7$	$-a_{8}$	b_1	b_2	b_3	b_4	b_5	b_6	b_7
5	a_1	a_2	a_3	$-a_4$	$-a_{5}$	a_6	$-a_{7}$	$-a_{8}$	b_1	b_2	$-b_3$	$-b_4$	$-b_5$	$-b_6$	b_7
6	$-a_{1}$	a_2	a_3	$-a_4$	a_5	$-a_{6}$	$-a_7$	a_8	b_1	$-b_2$	b_3	$-b_4$	$-b_5$	b_6	$-b_{7}$
7	a_1	$-a_{2}$	a_3	a_4	$-a_{5}$	$-a_6$	$-a_{7}$	a_8	$-b_1$	b_2	b_3	$-b_4$	b_5	$-b_6$	$-b_{7}$

$\mathcal{N}=(2,2)$ SYM theory

- ▶ reduce $\mathcal{N}=1$ SYM theory from four to two dimensions.
- the action is the same as for $\mathcal{N}=(8,8)$, except that the indices run from 1 to 2 instead of 1 to 8.
- there are also fewer symmetries.
- the smaller number of fields allows calculations at higher resolution; we have reached K = 14 for the (2,2) theory vs K = 11 for the (8,8) theory.
- however, there is no conjecture of correspondence or any separate estimate of the correlator's behavior.

Stress-energy correlator

the stress-energy correlation function is

$$F(x^{-}, x^{+}) \equiv \langle T^{++}(x)T^{++}(0) \rangle.$$

for the string theory corresponding to N=(8,8) SYM theory, F can be calculated on the string-theory side in a weak-coupling super-gravity approximation

$$F(x^{-}, x^{+}) = \frac{N_c^{\frac{3}{2}}}{g_{YM}r^5}, \text{ with } r \equiv \sqrt{x^{+}x^{-}}.$$

• will compute this in strongly-coupled SYM theory and compare, considering both $\mathcal{N}=(8,8)$ and (2,2).

Fourier transform

- fix the total momentum $P^+ = P_-$.
- compute the Fourier transform and express the transform in a spectral decomposed form

$$\tilde{F}(P_{-}, x^{+}) = \frac{1}{2L} \langle T^{++}(P_{-}, x^{+}) T^{++}(-P_{-}, 0) \rangle$$
$$= \sum_{i} \frac{1}{2L} \langle 0|T^{++}(P_{-}, 0)|i\rangle e^{-iP_{+}^{i}x^{+}} \langle i|T^{++}(-P_{-}, 0)|0\rangle.$$

- the position-space form is recovered by Fourier transforming with respect to $P_{-} = K\pi/L$.
- continue to Euclidean space by taking $r = \sqrt{2x^+x^-}$ to be real.

Final form

This yields

$$F(x^{-}, x^{+}) = \sum_{i} \left| \frac{L}{\pi} \langle 0 | T^{++}(K) | i \rangle \right|^{2} \left(\frac{x^{+}}{x^{-}} \right)^{2} \frac{M_{i}^{4} K_{4}(M_{i} \sqrt{2x^{+} x^{-}})}{8\pi^{2} K^{3}}.$$

The stress-energy operator is given by

$$T^{++}(x^-, x^+) = \operatorname{tr}\left[(\partial_- X^I)^2 + \frac{1}{2}(iu^\alpha \partial_- u^\alpha - i(\partial_- u^\alpha)u^\alpha)\right].$$

In terms of the discretized creation operators, we find

$$T^{++}(-K)|0\rangle = \frac{\pi}{2L} \sum_{k=1}^{K-1} \left[-\sqrt{k(K-k)} a^{\dagger}_{Iij}(K-k) a^{\dagger}_{Iji}(k) + \left(\frac{K}{2} - k\right) b^{\dagger}_{\alpha i j}(K-k) b^{\dagger}_{\alpha j i}(k) \right] |0\rangle.$$

Thus $(L/\pi)\langle 0|T^{++}(K)|i\rangle$ is independent of *L*. Also, only one symmetry sector contributes.

Computation

- the correlator behaves like $1/r^4$ at small r: $\left(\frac{x^-}{x^+}\right)^2 F(x^-, x^+) = \frac{N_c^2(2n_b + n_f)}{4\pi^2 r^4} (1 - 1/K).$
- rescale by defining

$$f \equiv \langle T^{++}(x)T^{++}(0)\rangle \left(\frac{x^{-}}{x^{+}}\right)^{2} \frac{4\pi^{2}r^{4}}{N_{c}^{2}(2n_{b}+n_{f})}.$$

- then $f \rightarrow (1 1/K)$ for small r.
- compute f numerically by
 - computing entire spectrum for "small" matrices.
 - using Lanczos iterations for large matrices.

Plot of (2,2) & (8,8) log derivative

Comments

- at small r, the graphs for different K match the expected (1 1/K) behavior.
- at large r the behavior is different between odd and even K; the difference gets smaller as K gets bigger.
- for even K there is exactly one massless state that contributes to the correlator, while there is no massless state for odd K.
- the lowest massive state dominates for odd K at large r; however, this state becomes massless as $K \to \infty$.
- **\checkmark** for most of the range, can extrapolate to infinite K.

Sample (8,8) extrapolations

Fit quadratic and cubic to *K* odd and even separately:

Plot of (2,2) & (8,8) extrapolations

Conclusions

- the (2,2) and (8,8) results differ in their behavior at intermediate r.
- the calculations do distinguish between theories that differ in the amount of extended supersymmetry.
- the result for the (8,8) theory is consistent with the Maldacena conjecture.
- additional calculations at higher resolution are needed to reduce the extrapolation errors and explicitly confirm the conjecture.

