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I. Introduction

1. The QCD phase diagram at nonzero T, µ is
quite complicated
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(From Mark Alford’s review paper).
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When ms 6= 0 phase diagram becomes really very
complicated at intermediate µ... with possibilities of K
condensation, η condensation, LOFF phase, crystalline
phase, to name just a few...
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2. Few Remarks:
a) On the lattice one can study the phase diagram
at T 6= 0, µ ' 0. One can not analyze the large µ
behavior due to the sign problem;
b) We are interested in behavior when µ varies at
small T ' 0. It might be relevant for the physics of
neutron stars. At large µ � ΛQCD the system in the
deconfinement phase; at small µ ' 0 the system in the
hadronic phase. Something should occur on the way
from (µ ' 0) ⇒ (µ� ΛQCD);
c) If one knows the most important vacuum
configurations at µ = 0 ( hint: instantons?) one can
answer many questions about the phase transitions.

3. On the phenomenological side: The
development of the instanton liquid model (Shuryak
and Co.) has encountered successes: chiral symmetry
breaking, resolution of the U(1) problem, spectrum etc
and failures: a) confinement can not be described by
well separated lumps with integer topological charges;
b) lattice calculations suggest that Tc for confinement
and chiral phase transitions are very close to each
other (hint: both phenomena originated from the same
vacuum configurations?); c)....
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II. Main Goals and Results

1. We argue that the instantons is the driving
force for confinement-deconfinement phase transition
at nonzero µ (they are not necessary small well-
localized lumps, see below).
2. We argue that the low-energy effective chiral
Lagrangian corresponds to a statistical system of
interacting pseudo-particles with fractional 1/Nc

charges. (dual representation)
3. We shall identify these objects with instanton
quarks suspected long ago (demonstration of a link
between confinement and instantons in 2d): V.Fateev
et al, B.Berg and M.Luscher, A. Belavin et al, (1979).
4. We make some very specific predictions
which can be tested with traditional Monte Carlo
techniques, by studying QCD at nonzero isospin
chemical potential µI where there is no sign problem.
In particular we predict that the confinement-
deconfinement transition and the topological charge
density distribution must experience sharp changes
exactly at the same critical value µc(T ). We estimate
µc(T ) for different Nc, Nf .
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III. Main Logic of the Presentation

1. I use a TRICK which allows me to represent
the low energy effective lagrangian in terms of dual
variables (a statistical system of some interacting
pseudo-particles ).

2. I test this trick in the weak coupling regime in
QCD (large chemical potential, Color Superconductor)
where all calculations are under complete theoretical
control.

3. I observe that the instanton-instanton(II)
and instanton -anti-instanton (ĪI) interactions at
large distances are very different from the naive
semiclassical calculations.

4. I apply the same TRICK to QCD at zero
chemical potential and T = 0. I advocate the picture
that in the strongly coupled theories the instantons
and anti-instantons lose their individual properties
(instantons will “melt”) their sizes become very large
and they overlap.
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5. The description in terms of the instantons
and anti-instantons is not appropriate any more,
and alternative degrees of freedom should be used
to describe the physics. The relevant description is
that of instanton-quarks with fractional topological
charges 1/Nc.

6. I approach the phase transition region from the
high density side where instanton calculations under
complete theoretical control.

7. I argue that the phase transition has
an universal nature for µ and isotopical chemical
potential µI for different Nc and Nf . For
µI 6= 0 our predictions can be tested with
traditional Monte Carlo techniques, by studying QCD

at nonzero isospin chemical potential.

• The key observation here is there existence of
the free parameter θ ( it plays the crucial role in
mapping of one problem to another). The θ plays
the role of the messenger between colorless (chiral
effective Lagrangian fields) and colorful (instanton
quarks) objects.
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IV. Color Superconductivity for
Pedestrians

(µΨ̄γ0Ψ - term, µ� ΛQCD)

1. If there is a channel in which the quark-
quark interaction is attractive, than the true ground
state of the system will be a complicated coherent
state of Cooper pairs like in BCS theory (ordinary
superconductor).

2. Diquark condensates break color symmetry (CFL
phase, Nc = Nf = 3):

〈ψia
Lαψ

jb
Lβ〉

∗ ∼ εαβγε
ijεabcXγ

c ,

〈ψia
Rαψ

jb
Rβ〉

∗ ∼ εαβγε
ijεabcY γ

c

3. SU(3)c×U(1)EM×SU(3)L×SU(3)R×U(1)B

⇓

SU(3)c+L+R × U(1)∗EM
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a) Color gauge group is completely broken;
b) U(1)B is spontaneously broken;
c) U(1)EM is not broken;
d) U(1)A is broken spontaneously and explicitly (by

instantons)

4. Goldstone fields are the phases of the condensate

Σβ
γ =

∑
c

Xβ
c Y

c∗
γ ∼ eiλaπa

eiϕA. (1)

5. U(1)A is spontaneously broken. The symmetry
is broken also explicitly by the instantons. Effective
lagrangian is

LA ∼ f2
A[(∂0ϕA)2 − u2(∂iϕA)2] + aµ2∆2 cos(ϕA − θ)

Coefficient a can be explicitly calculated from the
t’Hooft formula (Son, Stephanov, AZ, 2001).
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6. To compute a we start from the instanton
induced effective four-fermion interaction,

Linst = e−iθ

∫
dρn0(ρ)

(
4
3
π2ρ3

)2{
(ūRuL)(d̄RdL) +

+
3
32

[
(ūRλ

auL)(d̄Rλ
adL)

− 3
4
(ūRσµνλ

auL)(d̄Rσµνλ
adL)

]}
+ H.c. (2)

where n0(ρ) in the presence of µ 6= 0 is given by

n0(ρ) = CN

(
8π2

g2

)2Nc

ρ−5 exp
(
− 8π2

g2(ρ)

)
e−Nfµ2ρ2

(3)
with

CN =
0.466e−1.679Nc1.34Nf

(Nc − 1)!(Nc − 2)!
, (4)
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7. Averaging Eq. (2) in the superconducting background,
we find

Vinst(ϕ) = −
∫
dρn0(ρ)

(
4
3
π2ρ3

)2

12|X|2 cos(ϕA−θ).

where

|X| = 3
2
√

2π
µ2∆
g
.

Using formula for n0(ρ) we get the final result

a(µ� ΛQCD) = 5×104

(
ln

µ

ΛQCD

)7(ΛQCD

µ

)29/3

� 1

8. The η′ is light: m2
η′ ∼

µ2∆2

f2 · a ∼ (ΛQCD

µ )b → 0.

9. Weak coupling regime: dilute gas approximation
leads exactly to the combination

(
ei(ϕA−θ)+e−i(ϕA−θ)

)
which is expected from the very beginning.
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V. Instanton interactions in dense
QCD

1. Partition function for η′

Z =
∫
DϕA e−f2u

R
d4x(∂ϕA)2 ea′

R
d4x cos(ϕA(x)−θ) ,

2. Different representation for η′

ea′
R

d4x cos(ϕA(x)−θ) ≡
∞∑

M=0

(a′/2)M

M !

∫
d4x

∑
Q=±1

eiQ(ϕ(x)−θ)

M

=
∞∑

M±=0

(a′/2)M

M+!M−!

∫
d4x1 . . .

∫
d4xM ei

PM
a=0 Qa(ϕA(xa)−θ) .

The last line is aclassical partition function of the gas
of M = M+ +M− identical particles of charges +1 or
−1 placed in an external potential given by i(θ−ϕ(x)).
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3. For each term the path integral is Gaussian and
can be easily taken:∫

Dϕe−f2u
R

d4x(∂ϕ)2 ei
PM

a=0 Qa(ϕ(xa)−θ) =

e−iθ
PM

a=0 Qa e
− 1

2f2u

PM
a>b=0 QaQbG(xa−xb) .

4. Thus we obtain the dual CG representation for
the partition function

Z =
∞∑

M±=0

(a/2)M

M+!M−!

∫
d4x1 . . .

∫
d4xM e−iθ

PM
a=0 Qa · (5)

e
− 1

2f2u

PM
a>b=0 QaQbG(xa−xb) , G(xa − xb) =

1
4π2(xa − xb)2

.

The two representations of the partition function are
equivalent.
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5. Physical Interpretation.
a) Since Qnet ≡

∑
aQa is the total charge and it

appears in the action multiplied be the parameter θ, one
concludes that Qnet is the total topological charge
of a given configuration.
b) Each charge Qa in a given configuration should
be identified with an integer topological charge well
localized at the point xa. This, by definition,
corresponds to a small instanton positioned at xa.
c) Further support for the identification: every particle
with charge Qa brings along a factor of fugacity ∼ a′

which contains the classical one-instanton suppression
factor exp(−8π2/g2(ρ)) in the density of instantons.

6. The following hierarchy of scales exists: The
typical size of the instantons ρ̄ ∼ µ−1 is much smaller
than the short-distance cutoff of our effective low-
energy theory, ∆−1,

(size) � (cutoff) � (II distance) � (Debye)
µ−1 � ∆−1 � (

√
aµ∆)−1/2 � (

√
a∆)−1

Due to this hierarchy, ensured by large µ/ΛQCD, we
acquire analytical control.
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7. The starting low-energy effective Lagrangian
contains only a colorless field ϕA, we have ended up
with a representation of the partition function in
which objects carrying color (the instantons) can be
studied.

8. In particular, II and IĪ interactions (at very
large distances ) are exactly the same up to a sign,
order g0, and are Coulomb-like. This is in contrast
with semiclassical expressions when II interaction
is zero and IĪ interaction is order 1/g2.

9. Very complicated picture of the bare II and
IĪ interactions becomes very simple for dressed
instantons/anti-instantons when all integrations over
all possible sizes, color orientations and interactions
with background fields are properly accounted for!

10. As expected, the ensemble of small ρ ∼ 1/µ
instantons can not produce confinement. This is in
accordance with the fact that CS phase is not in
confining phase.
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VI.Chiral Lagrangian (µ = 0 θ 6= 0)
1. We keep only the diagonal elements of the

chiral matrix U = exp{idiag(φ1, . . . , φNf
)} which are

relevant in the description of the ground state. Singlet
combination is defined as φ = Tr U .

2. Effective lagrangian for the φ is

Lη′ = f2(∂µφ)2 + E cos
(
φ− θ

Nc

)
+

Nf∑
a=1

ma cosφa (6)

3. A Sine-Gordon structure for the singlet
combination corresponds to the following behavior of
the (2k)th derivative of the vacuum energy in pure
gluodynamics (Veneziano, 1979)

∂2kEvac(θ)
∂ θ2k

∣∣∣∣
θ=0

∼
∫ 2k∏

i=1

dxi〈Q(x1)...Q(x2k)〉 ∼ (
i

Nc
)2k,

where Q = g2

32π2GµνG̃µν is topological density.
Veneziano originally thought that this relation
implies the periodicity to be 2πNc rather than 2π.
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VII. Dual Representation for the Chiral
Lagrangian (µ = 0 θ 6= 0)

1. One can represent the Sine Gordon effective
field theory in terms of the classical statistical model
(Coulomb Gas representation )

Z =
∑

Q
(0)
a =± 1

Nc

(E
2 )M0

M0!

∫
(dx(0)

1 . . . dx
(0)
M0

) e−SCG

SCG = iθQ
(0)
T +

1
2f2

{
M0∑

b,c=1

Q
(0)
b G(x(0)

b − x(0)
c ) Q(0)

c

}
.

Q
(0)
T =

M0∑
b=1

Q
(0)
b − total charge for the configuration

2. One can identify Q
(0)
T as the

total topological charge of the given configuration.
Indeed, the θ parameter appears in the original

Lagrangian only in the combination iθ
Gµν eGµν

32π2 d4x.
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3. The fundamental difference in comparison with
the previous case: while the total charge in integer,
the individual charges are fractional ±1/Nc. The fact

that species Q
(0)
i has charges ∼ 1/Nc is a direct

consequence of the θ/Nc dependence in the underlying
QCD with frozen (non-dynamical) quarks.

4. Due to the 2π periodicity of the theory, only
configurations which contain an integer topological
number contribute to the partition function. Therefore,
the number of particles for each given configuration

Q
(0)
i with charges ∼ 1/Nc must be proportional to Nc.

5. The number of integrations over d4x
(0)
i

exactly equals 4Nck, where k is integer. This
number, 4Nck, exactly corresponds to the number
of zero modes in the k-instanton background, and we
conjecture that at low energies (large distances) the

fractionally charged species-Q
(0)
i pseudo-particles are

the instanton-quarks suspected long ago.
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VIII. Interpretation. Speculations.

1. There is an interesting connection between the
CG statistical ensemble and the 2d CPNc models. An
exact accounting and resummation of the n-instanton
solutions maps the original problem to a 2d-CG
with fractional charges (dubbed in 1979 as the
instanton-quarks ). These pseudo-particles do not

exist separately as individual objects; rather, they
appear in the system all together as a set of ∼ Nc

instanton-quarks so that the total topological charge
of each configuration is always integer.

2. One immediate objection: it has long been
known that instantons can explain most low energy
QCD phenomenology ( chiral symmetry breaking,
resolution of the U(1) problem, spectrum, etc) with the
exception confinement; and we claim that confinement
can arise in this picture: how can this be consistent?

3.In dilute gas approximation quark confinement
can not be described. However, in strongly coupled
theories the instantons and anti-instantons lose their
individual properties their sizes become very large, they
overlap. Confinement is the possibility.
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IX. Conjecture and Results

1. We thus conjecture that the confinement-
deconfinement phase transition takes place at precisely
the value where the dilute instanton calculation breaks
down: At low µ color is confined (because of the
instanton-quarks), whereas at large µ color is not
confined (because of dilute instantons).

2. We have determined the critical chemical
potential in different cases at nonzero baryon or isospin
chemical potential assuming ms = 150 MeV for
Nf = 3 case,

Nc=3,Nf =2 Nc=Nf =3 Nc=Nf =2
µBc/Λ 2.3 1.4 3.5
µIc/Λ 2.6 1.5 3.5
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3. One can generalize the calculations for T 6= 0
when gap is still large and the instanton calculations
are still justified.
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Critical isospin chemical potential µI(T ) for the
confinement-deconfinement phase transition as a
function of temperature (solid curve) at Nc=3,Nf =2
where direct lattice calculation are possible.
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4. The phase diagram of QCD at nonzero
temperature and isospin chemical potential should look
like....

πm /2 µI
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Phase diagram of QCD at nonzero temperature
and isospin chemical potential. First and second
order phase transitions are depicted by solid and
dashed curves, respectively. The confined phases are
shaded.
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X. Future Directions

1. We claim that the topological charge density
distribution measured as a function of µI will
experience sharp changes at the same critical value
µI = µc(T ) where the phase transition occurs.
a).There are well- established lattice methods which
allow to measure the topological density distribution.
b). Independently, there are well- established lattice
method which allow to introduce µI into the system.
Combine these two measurements!
2. There is a close relation between instanton quarks
and the “periodic instantons” which have the internal
structure resembling the instanton-quarks ( van Baal).
3. One can hope to understand the relation between
old picture advocated by ’t Hooft and Mandelstam
and confinement due to the instanton-quarks. The key
point of the ’t Hooft - Mandelstam approach is the
assumption that dynamical monopoles exist and Bose
condense. One can argue (semiclassical analysis ) that
the instanton-quarks carry the magnetic charges. In
this case both pictures could be the two sides of the
same coin.
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