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Topics to Cover

✦ Form Factors
✦ Provide information on size, shape and internal (charge) densities
✦ eg. Neutron has charge zero, but charge density? +/-?
✦ Good place to search for chiral non-analytic behaviour

✦ Nucleon Axial Charge, gA 
✦ Neutron beta decay, chiral symmetry breaking
✦ Study finite size effects

✦ Transversity (Tensor charge, gT)
✦ Not yet measured experimentally (lattice prediction)

✦                           :Look for curvature at light quark masses�x�q, �x�∆q



✦ Magnetic moments
PRD60:034014 (1999)

PRD71:014001 (2005)

✦ Radii
PRD79:094001 (2009)

✦ gA

PRD66:054501 (2002)
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FIG. 3. The proton magnetic moment as calculated in lattice QCD (• LDW Ref. [15], ! WDL
Ref. [16]), the cloudy bag model (CBM) which includes the pion cloud contribution and the MIT

bag model (MIT) where the pion cloud contribution of the CBM is omitted. Also illustrated is a
fit of the simple analytic form of Eq. (4) to the CBM results. The point at the physical value of
m2

π is the experimental measurement and is used to constrain the parameters of the CBM.

nuclear magnetons. Hence, for the purposes of this investigation, it is reasonable to accept
the quenched results as an approximate representation of the full QCD result.

V. ENCAPSULATING FORM

Having established the quark mass dependence of the nucleon moments over a very wide
range, we now turn to encapsulating these results in a simple analytic form that might be
used in future lattice QCD extrapolations of simulation results. The following function

µN(mπ) =
µ(0)

N

1 + αmπ + βm2
π

, (4)

is matched to the CBM model results by tuning the three parameters µ(0)
N , α and β. These

fits are also illustrated in figures 3 and 4. This functional form provides the correct limiting
behavior as a function of mπ. As mπ → 0, Eq. (4) may be expanded as

µN(mπ) = µ(0)
N

[

1 − αmπ + (α2 − β)m2
π + · · ·

]

, (5)

such that the leading nonanalytic behavior is proportional to mπ as required by χPT. For
large mπ, Eq. (4) leads to

7

6

FIG. 7: The extrapolated magnetic moment on a finite vol-
ume, V = (2.56 fm)3, for varying regulator parameter Λ.

or through the introduction of precise lattice QCD results
at light quark masses.

VI. ESTIMATING EFFECTS OF DYNAMICAL
SEA QUARKS

In a study of baryon masses in quenched and 2+1-
flavour QCD it has been found that the short-distance
physics of the analytic terms in the residual expansion of
FRR-EFT are found to be very similar when the chiral-
loop effects are evaluated with an appropriate FRR [14].
By identifying the short distance behaviour in QQCD,
one need only restore the chiral loop effects of QCD to
obtain an improved estimate of the physical magnetic
moment.

In making such an identification it is essential to have a
consistent method for setting the scale in both quenched
and dynamical QCD. In particular, one must ensure that
the procedure is insensitive to chiral physics. The QCD
Sommer scale [50], based on the static quark potential,
is insensitive to light quark physics and provides an ideal
procedure for the scale determination.

The identification of this phenomenological link be-
tween quenched and dynamical simulations has been ap-
plied to FLIC fermion calculations of baryon masses
[34, 36]. Upon replacing the chiral loops of QQCD by
their QCD counterparts the nucleon and Delta are found
to be in good agreement with experiment.

By applying the same principle to the calculation of
magnetic moments in quenched QCD one can obtain im-
proved estimates of the physical magnetic moment. The

fit parameters, aB (Q)
i , are determined by fitting finite-

volume quenched lattice QCD using Eq. (15) with dis-
cretized momenta and a dipole regulator of 0.8 GeV.
The estimate of the quenching effects are obtained un-
der the assumption that the bare residual expansion pa-
rameters are unchanged in infinite-volume QCD when
Λ = 0.8 GeV. That is, the full QCD result can be de-

FIG. 8: Correcting the finite-volume quenched approximation
to the infinite-volume limit of full QCD. The solid curve is the
finite-volume quenched fit to the data as in Fig. 4. The dotted
curve provides an estimate of the infinite-volume limit mag-
netic moment in the quenched approximation. The dashed
curve shows estimates of the proton magnetic moment in full
QCD as described in the text.

scribed by Eq. (10) with the identification aB (Q)
i = aB

i .
By fitting with finite-volume FRR-EFT both quenching
and finite-volume corrections are incorporated in the fi-
nal estimate. We show the infinite-volume QCD estimate
of the proton magnetic moment by the dashed curve in
Fig. 8.

In a similar manner, the infinite-volume limit of QQCD

is estimated by fitting the parameters aB (Q)
i of Eq. (15)

using finite-volume discretized momenta and a dipole reg-
ulator of 0.8 GeV in the loop integrals. The correction
is estimated by Eq. (16) calculated with infinite-volume
continuous momenta in the loop integrals. Figure 8 illus-
trates that the finite volume corrections are negligible in
the regime of the lattice QCD simulation results.

We emphasize that this result is a phenomenological
estimate, as the size of the correction is Λ dependent.
However an important feature of this approach is that
the largest finite volume corrections lie in the chiral limit
as they should. Ultimately, one would like to combine
the improved convergence properties of FRR-EFT with
the small 1/L expansion such that accurate and model-
independent determinations of finite volume effects can
be made.

The primary feature of Fig. 8 is that although the
quenched and physical theory have quite different chi-
ral structure, the observable effects are rather small. In
particular, the logarithmic divergence is likely to only be-
come apparent well below the physical pion mass. Within
the current formalism of lattice QCD it seems such obser-
vation would be a formidable task, particularly given the
large lattice volume required to reveal the η′contribution.

The results here, based on the leading chiral correc-
tions, indicate that proton magnetic moments evaluated
in quenched simulations give a good approximation to
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FIG. 11: The contribution of an s quark with unit charge to the Λ charge radius versus pion mass.

The square, rhombus, triangle, and round symbols are for the finite volume quenched QCD, infinite
volume quenched QCD, valence sector and full QCD results, respectively.

FIG. 12: The proton charge radius versus pion mass. The square, rhombus, triangle, and round
symbols are for the finite volume quenched QCD, infinite volume quenched QCD, valence sector
and full QCD results, respectively.

We note that the valence sector alone contributes a large fraction to the total charge radius.
There is a small correction by adding all the disconnected contributions of the 3 light-quark
flavors in the process of correcting QQCD via FRR EFT. Further, the strangeness component
only constitutes a small part of this small correction [50].

The charge radius of Σ+ is shown in Fig. 13. The numerical value is observed to be a little
larger than that of proton, with the physical charge radius of the Σ+ being 0.75± 0.05 fm2.
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FIG. 9: The lowest three moments of the helicity distribution ∆u−∆d, extrapolated using a naive

linear extrapolation (short-dashed lines) and the improved chiral extrapolation described in the

text. In each panel, the long-dashed lines correspond to fits with no ∆ and the LNA coefficient

determined from χPT, while the solid lines are fits obtained using gπN∆/gπNN = 2 (upper solid

curves) and
√

72/25 (lower solid curves). The lattice data are taken from the sources listed in

Table I.
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FIG. 9: The lowest three moments of the helicity distribution ∆u−∆d, extrapolated using a naive

linear extrapolation (short-dashed lines) and the improved chiral extrapolation described in the

text. In each panel, the long-dashed lines correspond to fits with no ∆ and the LNA coefficient

determined from χPT, while the solid lines are fits obtained using gπN∆/gπNN = 2 (upper solid
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The Lattice

ν̂

µ̂

Uµ(x)ψ(x) ψ(x + aµ̂)} {a

L=Na

✦ Discretise space-time with lattice 
spacing a volume

✦ Quark fields reside on sites

✦ Gauge fields on the links

L3 × T



The Lattice

Lattice simulations for QCD give first principle results

but need to have control of [ideally in this order]:                 ‘Goal’

Statistical errors, 

Volume:

Continuum limit:

Chiral extrapolation:

difficult, need Tflop++ machines to approach the theoretical goal

Nconf ∼ O(1000)

L ∼ 1.5 fm→ 3 fm

a ∼ 0.1 fm→ 0.04 fm

mπ ∼ 500 MeV→ 200 MeV

Nconf →∞

L→∞

a→ 0

mπ → 140 MeV

ν̂

µ̂

Uµ(x)ψ(x) ψ(x + aµ̂)} {a

L=Na

✦ Discretise space-time with lattice 
spacing a volume

✦ Quark fields reside on sites

✦ Gauge fields on the links

L3 × T



Lattice Techniques - QCDSF

O(a)-improved Wilson (Clover) fermions
Wilson gauge action
            dynamical configurations
4     values        
Nf = 2

β

150 MeV < mπ < 1.2 GeV

1.1 fm < L < 3.2 fm

0.07 fm < a < 0.12 fm
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Nucleon Form Factor



R⊥

b⊥

Pz

Quark (charge) distribution in transverse plane

Distance of (active) quark to the centre of 
momentum in a fast moving nucleon

q(b2
⊥) =

�
d2q⊥ e−i�b⊥·q⊥F1(q2)

Electromagnetic Form Factors
�p�, s�|Jµ(�q)|p, s� = ū(p�, s�)

�
γµF1(q2) + iσµν qν

2m
F2(q2)

�
u(p, s)



R⊥

b⊥

Pz

Quark (charge) distribution in transverse plane

Distance of (active) quark to the centre of 
momentum in a fast moving nucleon

q(b2
⊥) =

�
d2q⊥ e−i�b⊥·q⊥F1(q2)

Provide information on the size and 
internal charge densities

Electromagnetic Form Factors
�p�, s�|Jµ(�q)|p, s� = ū(p�, s�)

�
γµF1(q2) + iσµν qν

2m
F2(q2)

�
u(p, s)



Scaling of Form Factors

 for

F1 ∝ 1
Q4

(dipole?)

F2 ∝ 1
Q6

(tripole?)
Q2 > ζpQCD

From dimensional counting [Brodsky & Farrar, 1973]
F (0)

(1 + Q2/M2)p

Q2 F2

F1
∝ const

GE

GM
∝ const
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Form Factor Radii & Magnetic Moments

Search for non-analytic behaviour predicted by 
Chiral Perturbation Theory

 Form factor radii:

 Magnetic moment      /anomalous magnetic momentµ κ

µ = 1 + κ = Gm(0)

r2
i = −6

dFi(q2)
dq2

���
q2=0



Form Factors: 
    Comparison with experiment
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• Chiral perturbation theory: Dramatic non-analytic predicted             
Need

• Evidence for divergence in r2 but not r1

• Radius measures slope at Q2=0, but smallest Q2>0.25GeV2

• Twisted boundary conditions

• Finite volume effects? 

r2 ∝
1

mπ



Anomalous Magnetic Moment
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• Chiral perturbation theory: Dramatic non-
analytic predicted in the infinite volume

• Finite volume effects should suppress 
magnetic moment

Anomalous Magnetic Moment

hep-lat/0406001 
[Young, Leinweber, Thomas]
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On a periodic lattice with spatial volume L3, momenta 
are discretised in units of

Modify boundary conditions on the valence quarks

allows to tune the momenta continuously

hep-lat/0411033, hep-lat/0703005

ψ(xk + L) = eiθkψ(xk), (k = 1, 2, 3)

�pFT + �θ/L

q2 = (pf − pi)2 =
�

[Ef (�pf )− Ei(�pi)]2 −
�
(�pFT,f + �θf/L)− (�pFT,i + �θi/L)

�2
�

2π/L

N(t, !p ′)

O(τ, !q)

N̄(0, !p)

θfθi

Accessing Small Q2:
Partially Twisted 

Boundary Conditions 

Introduces additional finite volume effect ∼ e−mπL



Pion Dispersion Relation



We need to extrapolate F2(q2) to q2=0 Model dependence

Accessing Small Q2:
Partially Twisted Boundary Conditions 

QCDSF: Nf=2 Clover

mπ ≈ 750 MeV



We need to extrapolate F2(q2) to q2=0 Model dependence

Accessing Small Q2:
Partially Twisted Boundary Conditions 

QCDSF: Nf=2 Clover

mπ ≈ 750 MeV



Neutron Form Factors

F1 neutron negative at small Q2 How does “hump” change 
with quark mass?

mπ ≈ 900 MeV

GE(q2) = F1(q2)− q2

(2m)2
F2(q2)Fn = −1

3
Fu − 2

3
F d



gA



Axial charge, 

Governs neutron      decay
Given by the forward nucleon matrix elements

p - nucleon momentum
s - spin vector,
 

Renormalised improved axial vector current

                                     is the bare quark mass
derivative operator vanishes for forward matrix elements
      is only known perturbatively

β

�p, s|ūγµγ5u − d̄γµγ5d|p, s� = 2gAsµ

s2 = −m2
N

gA = ∆u−∆d

m = (1/κ− 1/κc)/(2a)

bA

Aµ(x) = ZA(1 + bAamq) (q̄(x)γµγ5q(x) + acA∂µq̄(x)γ5q(x))

gA
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✦ For                               require

✦                                                    ? 

✦ Overall all trend still low. 

✦ Renormalisation? 

✦ Chiral physics?
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FIG. 10: The lowest two moments of the transversity distribution δu − δd. All curves are as

described in Fig. 9.

future lattice simulations.

V. CONCLUSION

The insights into non-perturbative hadron structure offered by the study of parton dis-

tribution functions makes this an extremely interesting research challenge. It is made even

more important and timely by the tremendous new experimental possibilities opened by

facilities such as HERMES, COMPASS, RHIC-Spin and Jefferson Lab. Lattice QCD offers

the only practical method to actually calculate hadron properties within non-perturbative
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• Forward MEs with no momentum transfer provide moments of 
quark distributions (or structure functions)

• Consider u-d

• Nonperturbative renormalisation using Rome-Southampton 
method (RI’-MOM), then convert to MS at 2 GeV
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• Results confirm predictions that “flat” behaviour will persist on small volumes

• Evidence for curvature with large volume results 
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FIG. 9: The lowest three moments of the helicity distribution ∆u−∆d, extrapolated using a naive

linear extrapolation (short-dashed lines) and the improved chiral extrapolation described in the

text. In each panel, the long-dashed lines correspond to fits with no ∆ and the LNA coefficient

determined from χPT, while the solid lines are fits obtained using gπN∆/gπNN = 2 (upper solid

curves) and
√

72/25 (lower solid curves). The lattice data are taken from the sources listed in

Table I.
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Generalised Parton 
Distributions



M. Diehl (2001): 8 real functions needed for a complete 
description of the nucleon quark structure at twist 2

Generalised Parton Distributions
Basic properties

 Forward limit (t=0): reproduces the parton distributions

( )−

( )−

1
2( )+H(x, 0, 0) = q(x)

H̃(x, 0, 0) = ∆q(x)
HT (x, 0, 0) = δq(x)

H(x, ξ, t), E(x, ξ, t) , H̃(x, ξ, t), Ẽ(x, ξ, t)
HT (x, ξ, t), ET (x, ξ, t) , H̃T (x, ξ, t), ẼT (x, ξ, t)



M. Diehl (2001): 8 real functions needed for a complete 
description of the nucleon quark structure at twist 2

Generalised Parton Distributions
Basic properties

 Forward limit (t=0): reproduces the parton distributions

( )−

( )−

1
2( )+H(x, 0, 0) = q(x)

H̃(x, 0, 0) = ∆q(x)
HT (x, 0, 0) = δq(x)

           : Form factors
�

dx
 Dirac: 
Pauli: 
Axial: 
Pseudo-scalar: 
Tensor: 

�
dx H(x, ξ, t) = F1(t)�
dx E(x, ξ, t) = F2(t)�
dx H̃(x, ξ, t) = gA(t)�
dx Ẽ(x, ξ, t) = gP (t)�
dx HT (x, ξ, t) = gT (t)

H(x, ξ, t), E(x, ξ, t) , H̃(x, ξ, t), Ẽ(x, ξ, t)
HT (x, ξ, t), ET (x, ξ, t) , H̃T (x, ξ, t), ẼT (x, ξ, t)



Construct Mellin moments
�

dx xn−1

Non-forward MEs of tower of local twist-2 operators

�P �|O
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D µn} q

H(x, ξ, t), E(x, ξ, t) , H̃(x, ξ, t), Ẽ(x, ξ, t)
HT (x, ξ, t), ET (x, ξ, t) , H̃T (x, ξ, t), ẼT (x, ξ, t)

Generalised Parton Distributions



Impact Parameter GPDs (M. Burkardt, 2000)
Quark densities in the transverse plane

R⊥

b⊥

Pz

Quark (charge) distribution in transverse plane

Distance of (active) quark to the centre of 
momentum in a fast moving nucleon

q(b2
⊥) =

�
d2∆⊥ e−i�b⊥·∆⊥F1(∆2)



Impact Parameter GPDs (M. Burkardt, 2000)
Quark densities in the transverse plane

R⊥

b⊥

Pz

b⊥

Pz
R⊥

xPz

q(x,�b⊥) =
1

(2π)2

�
d
2∆⊥ e−i�b⊥·∆⊥H(x, 0,∆2

⊥)

Quark (charge) distribution in transverse plane

Distance of (active) quark to the centre of 
momentum in a fast moving nucleon

Decompose into contributions from 
individual quarks with momentum 

fraction,  x

q(b2
⊥) =

�
d2∆⊥ e−i�b⊥·∆⊥F1(∆2)

[Probabilistic interpretation of                                                 at          ]H(x, ξ, t), H̃(x, ξ, t),HT (x, ξ, t) ξ = 0



Transverse Spin Structure of the Nucleon

[Diehl & Haegler, 2005]   [Burkardt, 2005]

Transverse densities:
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Tensor Form Factors
are remarkably largeBTn0(t)



Tensor Form Factors

             is sizeable while                  A
d
Tn0(t) A

u
Tn0(t) ≈ 0



Anomalous tensor magnetic moment

κT =
�

dxET (x, ξ, 0) = BT10(0)

κlatt
Tu ≈ 3.13

κlatt
Td ≈ 1.94 Both positiv

e

}

κexp
u ≈ 1.67

κexp
d ≈ −2.03

κ =
�

dxE(x, ξ, 0) = B10(0) = F2(0)



Deformed Spin Densities
up

do
w

n

(n=1)xs xS Ph. Hägler (QCDSF) [PRL 98, 222001 (2007)]



Deformed Spin Densities
up

do
w

n

(n=1)xs xS
Nucleon

Ph. Hägler (QCDSF) [PRL 98, 222001 (2007)]



✦ Calculations of hadronic quantities becoming available close to the 
physical masses (beware finite size effects) 

✦ Lattice provides a useful tool for investigating FFs/GPDs

✦ q2 scaling of F1, F1, F2/F1, GE, GM    (F1
n negative)

✦ Twisted b.c.s give access to small q2

✦ Moments of Generalised Parton Distributions

✦ Quark contribution to nucleon spin and angular momentum

✦ Non-trivial transverse spin densities in pion and nucleon

✦ gA still a challenge. 
✦ Finite volume effects go in the right direction, but are they enough?
✦ Renormalisation? Discretisation?

✦         finite volume analysis at light quark masses indicate results might be 
going in the right direction indicating “bending down”

Conclusion & Outlook

�x�



Conclusion & Outlook

✦ Currently improving the 403x64 results at the physical 
point

✦ Simulations with the same parameters but 643x96 volume 
are starting

✦ So far have only used Nf=2, now starting simulations with 
Nf=2+1 flavours of O(a)-improved Clover (Wilson) 
fermions



Happy Birthday Tony!


