

Lattice Investigations of Nucleon Structure at Light Quark Masses

James Zanotti University of Edinburgh [QCDSF Collaboration]

Tony's 60th B'day Party, Adelaide, February 15-19, 2010

Topics to Cover

Form Factors

- Provide information on size, shape and internal (charge) densities
- eg. Neutron has charge zero, but charge density? +/-?
- Good place to search for chiral non-analytic behaviour
- Nucleon Axial Charge, gA
 - Neutron beta decay, chiral symmetry breaking
 - Study finite size effects
- Transversity (Tensor charge, g_T)
 - Not yet measured experimentally (lattice prediction)
- + $\langle x
 angle_q, \langle x
 angle_{\Delta q}$:Look for curvature at light quark masses

Challenges from Tony for the Lattice Magnetic moments
PRD60:034014 (1999)
PRD71:014001 (2005)
Radii
PRD79:094001 (2009)

gА

+

PRD66:054501 (2002) hep-lat/0502002

Challenges from Tony for the Lattice Magnetic moments PRD60:034014 (1999) LDW 2.5 WDL PRD71:014001 (2005) CBM Fit MIT Radii 2.0 hp PRD79:094001 (2009) 1.5 **g**A 1.0 PRD66:054501 (2002) hep-lat/0502002

Challenges from Tony for the Lattice Magnetic moments
PRD60:034014 (1999)
PRD71:014001 (2005)
Radii
PRD79:094001 (2009)

gА

+

PRD66:054501 (2002) hep-lat/0502002

Challenges from Tony for the Lattice
Magnetic momentsPRD60:034014 (1999)
PRD71:014001 (2005)Radii0.9
PRD79:094001 (2009)0.8
gA0.7

PRD66:054501 (2002) hep-lat/0502002

Challenges from Tony for the Lattice Magnetic moments
PRD60:034014 (1999)
PRD71:014001 (2005)
Radii
PRD79:094001 (2009)

gА

+

PRD66:054501 (2002) hep-lat/0502002

Challenges from Tony for the Lattice Magnetic moments
PRD60:034014 (1999)
PRD71:014001 (2005)
Radii
PRD79:094001 (2009)

gА

+

PRD66:054501 (2002) hep-lat/0502002

The Lattice

- * Discretise space-time with lattice spacing *a* volume $L^3 \times T$
- Quark fields reside on sites
- Gauge fields on the links

The Lattice

- * Discretise space-time with lattice spacing *a* volume $L^3 \times T$
- Quark fields reside on sites
- Gauge fields on the links
- * Lattice simulations for QCD give first principle results

* but need to have control of [ideally in this order]:

- Statistical errors, $N_{conf} \sim O(1000)$
- Volume: $L \sim 1.5 \,\mathrm{fm} \rightarrow 3 \,\mathrm{fm}$
- ♦ Continuum limit: $a \sim 0.1 \, \text{fm} \rightarrow 0.04 \, \text{fm}$ $a \rightarrow 0$
- * Chiral extrapolation: $m_{\pi} \sim 500 \,\mathrm{MeV} \rightarrow 200 \,\mathrm{MeV}$ $m_{\pi} \rightarrow 140 \,\mathrm{MeV}$

 $\psi(x) \stackrel{!}{\vdash} U_{\mu}(x) \stackrel{!}{\downarrow} \psi(x + a\hat{\mu})$

L=Na

'Goal'

 $L \to \infty$

 $N_{conf} \to \infty$

✤ difficult, need Tflop++ machines to approach the theoretical goal

Lattice Techniques - QCDSF

- O(a)-improved Wilson (Clover) fermions
- Wilson gauge action
- $N_f = 2$ dynamical configurations
- 4 β values $\implies 0.07 \, \text{fm} < a < 0.12 \, \text{fm}$

150 MeV $< m_{\pi} < 1.2$ GeV 1.1 fm < L < 3.2 fm

Nucleon Form Factor

Electromagnetic Form Factors $\langle p', s' | J^{\mu}(\vec{q}) | p, s \rangle = \bar{u}(p', s') \left[\gamma^{\mu} F_1(q^2) + i \sigma^{\mu\nu} \frac{q_{\nu}}{2m} F_2(q^2) \right] u(p, s)$

Quark (charge) distribution in transverse plane

$$q(b_{\perp}^2) = \int d^2 q_{\perp} \,\mathrm{e}^{-i\vec{b}_{\perp}\cdot q_{\perp}} F_1(q^2)$$

Distance of (active) quark to the centre of momentum in a fast moving nucleon

Electromagnetic Form Factors $\langle p', s' | J^{\mu}(\vec{q}) | p, s \rangle = \bar{u}(p', s') \left[\gamma^{\mu} F_1(q^2) + i \sigma^{\mu\nu} \frac{q_{\nu}}{2m} F_2(q^2) \right] u(p, s)$

Quark (charge) distribution in transverse plane

$$q(b_{\perp}^2) = \int d^2 q_{\perp} \,\mathrm{e}^{-i\vec{b}_{\perp}\cdot q_{\perp}} F_1(q^2)$$

Distance of (active) quark to the centre of momentum in a fast moving nucleon

Provide information on the size and internal charge densities

Scaling of Form Factors

Scaling of Form Factors

Scaling of Form Factors

Form Factor Radii & Magnetic Moments Search for non-analytic behaviour predicted by Chiral Perturbation Theory

• Form factor radii:

$$r_i^2 = -6 \frac{dF_i(q^2)}{dq^2} \Big|_{q^2 = 0}$$

• Magnetic moment μ /anomalous magnetic moment κ

$$\boldsymbol{\mu} = 1 + \boldsymbol{\kappa} = G_m(0)$$

Form Factors: $F_1^{(p)}$ Comparison with experiment

charge radius

Form Factors: $F_1^{(p)}$ Comparison with experiment

$$r_i^2 = -6 \frac{dF_i(q^2)}{dq^2} \Big|_{q^2=0}$$

 $r_2 \propto$

 m_{π}

• Chiral perturbation theory: Dramatic non-analytic predicted Need $m_{\pi} < 300 \text{ MeV}$

• Evidence for divergence in r_2 but not r_1

• Radius measures slope at $Q^2=0$, but smallest $Q^2>0.25GeV^2$

- Twisted boundary conditions
- Finite volume effects?

Anomalous Magnetic Moment

Anomalous Magnetic Moment

- Chiral perturbation theory: Dramatic nonanalytic predicted in the infinite volume
- Finite volume effects should suppress magnetic moment

Accessing Small Q²: Partially Twisted Boundary Conditions hep-lat/0411033, hep-lat/0703005

* On a periodic lattice with spatial volume L³, momenta are discretised in units of $2\pi/L$

* Modify boundary conditions on the valence quarks $\psi(x_k + L) = e^{i\theta_k}\psi(x_k), \quad (k = 1, 2, 3)$

** allows to tune the momenta continuously $\vec{p}_{\rm FT} + \vec{\theta}/L$ ** Introduces additional finite volume effect $\sim e^{-m_{\pi}L}$

 $q^{2} = (p_{f} - p_{i})^{2} = \left\{ [E_{f}(\vec{p}_{f}) - E_{i}(\vec{p}_{i})]^{2} - \left[(\vec{p}_{\text{FT},f} + \vec{\theta}_{f}/L) - (\vec{p}_{\text{FT},i} + \vec{\theta}_{i}/L) \right]^{2} \right\}$

Pion Dispersion Relation

Accessing Small Q²: Partially Twisted Boundary Conditions $QCDSF: N_f=2 Clover$

Accessing Small Q²: Partially Twisted Boundary Conditions $QCDSF: N_f=2 Clover$

Neutron Form Factors

 $F^n = -\frac{1}{3}F^u - \frac{2}{3}F^d$

$$\mathcal{G}_E(q^2) = F_1(q^2) - \frac{q^2}{(2m)^2}F_2(q^2)$$

 F_1 neutron negative at small Q^2

How does "hump" change with quark mass?

Axial charge, g_A

+ Governs neutron β decay

+ Given by the forward nucleon matrix elements

 $\langle p, s | \bar{u} \gamma_{\mu} \gamma_{5} u - \bar{d} \gamma_{\mu} \gamma_{5} d | p, s \rangle = 2 g_{A} s_{\mu}$

⋆ p - nucleon momentum

$$\bullet$$
 s - spin vector, $s^2 = -m_N^2$

 $\star g_A = \Delta u - \Delta d$

• Renormalised improved axial vector current $A_{\mu}(x) = Z_A(1 + b_A a m_q) \left(\bar{q}(x) \gamma_{\mu} \gamma_5 q(x) + a c_A \partial_{\mu} \bar{q}(x) \gamma_5 q(x) \right)$ • $m = (1/\kappa - 1/\kappa_c)/(2a)$ is the bare quark mass • derivative operator vanishes for forward matrix elements • b_A is only known perturbatively

 $g_A/f_\pi \; [\mathrm{GeV}^{-1}]$

$\mathcal{O}_{i4}^{\sigma} = \bar{q}\gamma_5\sigma_{i4}q$

 g_T

• Forward MEs with no momentum transfer provide moments of quark distributions (or structure functions)

$$\langle N(\vec{p}) | \left[\mathcal{O}_q^{\{\mu_1 \cdots \mu_n\}} - \operatorname{Tr} \right] | N(\vec{p}) \rangle^{\mathcal{S}} = 2 v_n^{(q)\mathcal{S}} \left[p^{\mu_1} \cdots p^{\mu_n} - \operatorname{Tr} \right]$$
$$\int_0^1 dx \, x^{n-1} \left[q(x) + (-1)^n \bar{q}(x) \right] = v_n^{(q)\mathcal{S}}$$

- Consider u-d
- Nonperturbative renormalisation using Rome-Southampton method (RI'-MOM), then convert to MS at 2 GeV

$$\mathcal{O}_q^{\mu_1\cdots\mu_n} = \overline{q} \ \gamma^{\mu_1} \ \overleftarrow{D}^{\mu_2} \cdots \overleftarrow{D}^{\mu_n} \ q$$

$$\overleftrightarrow{D} = \frac{1}{2}(\overrightarrow{D} - \overleftarrow{D})$$

hep-lat/0310003 [Detmold, Melnitchouk, Thomas]

QCDSF (preliminary)

Results confirm predictions that "flat" behaviour will persist on small volumes
Evidence for curvature with large volume results

Generalised Parton Distributions

Generalised Parton Distributions Basic properties

Forward limit (t=0): reproduces the parton distributionsH(x,0,0) = q(x) $\tilde{H}(x,0,0) = \Delta q(x)$ $H_T(x,0,0) = \delta q(x)$ $H_T(x,0,0) = \delta q(x)$

Generalised Parton Distributions Basic properties

 \bullet Forward limit (t=0): reproduces the parton distributions H(x,0,0) = q(x) $\frac{1}{2}($ + $H(x,0,0) = \Delta q(x)$ $(\rightarrow) \rightarrow$ ____ $H_T(x,0,0) = \delta q(x)$ $\bigstar \int dx$: Form factors ✤ Dirac: $\int dx H(x,\xi,t) = F_1(t)$ $\int dx \, E(x,\xi,t) = F_2(t)$ **♦***Pauli*: $\int dx H(x,\xi,t) = g_A(t)$ **♦***Axial*: *Pseudo-scalar: $\int dx E(x,\xi,t) = g_P(t)$ $\int dx H_T(x,\xi,t) = g_T(t)$ ******Tensor*:

Generalised Parton Distributions $H(x,\xi,t), E(x,\xi,t) , \quad \tilde{H}(x,\xi,t), \tilde{E}(x,\xi,t)$ $H_T(x,\xi,t), E_T(x,\xi,t) , \quad \tilde{H}_T(x,\xi,t), \tilde{E}_T(x,\xi,t)$ Construct Mellin moments $\int dx \, x^{n-1}$ Non-forward MEs of tower of local twist-2 operators $\mathcal{O}_a^{\{\mu_1 \cdots \mu_n\}} = \overline{q} \, \gamma^{\{\mu_1} \, \overleftrightarrow{D}^{\,\mu_2} \cdots \overleftrightarrow{D}^{\,\mu_n\}} \, q$

$$\langle P' | \mathcal{O}_q^{\{\mu_1 \cdots \mu_n\}} | P \rangle \propto A_{ni}(t), B_{ni}(t), C_n(t)$$

$$\int_{-1}^{1} dx \, x^{n-1} H_q(x,\xi,t) = \sum_{i=0}^{\frac{n-1}{2}} A_{qn,2i}(t) (-2\xi)^{2i} + C_{qn}(t) (-2\xi)^n |_{n \text{ even}}$$
$$\int_{-1}^{1} dx \, x^{n-1} E_q(x,\xi,t) = \sum_{i=0}^{\frac{n-1}{2}} B_{qn,2i}(t) (-2\xi)^{2i} - C_{qn}(t) (-2\xi)^n |_{n \text{ even}}$$

Impact Parameter GPDs (M. Burkardt, 2000) Quark densities in the transverse plane

Quark (charge) distribution in transverse plane

$$q(b_{\perp}^2) = \int d^2 \Delta_{\perp} e^{-i\vec{b}_{\perp}\cdot\Delta_{\perp}} F_1(\Delta^2)$$

Distance of (active) quark to the centre of momentum in a fast moving nucleon

Impact Parameter GPDs (M. Burkardt, 2000) Quark densities in the transverse plane

Quark (charge) distribution in transverse plane

$$q(b_{\perp}^2) = \int d^2 \Delta_{\perp} \,\mathrm{e}^{-i\vec{b}_{\perp}\cdot\Delta_{\perp}} F_1(\Delta^2)$$

[Probabilistic interpretation of $H(x,\xi,t), \tilde{H}(x,\xi,t), H_T(x,\xi,t)$ at $\xi = 0$] $q(x, \vec{b}_{\perp}) = \frac{1}{(2\pi)^2} \int d^2 \Delta_{\perp} e^{-i\vec{b}_{\perp}\cdot\Delta_{\perp}} H(x,0,\Delta_{\perp}^2)$

Distance of (active) quark to the centre of momentum in a fast moving nucleon

Decompose into contributions from individual quarks with momentum fraction, x

Transverse Spin Structure of the Nucleon

Transverse densities:

$$\rho^{n}(b_{\perp}, s_{\perp}, S_{\perp}) = \int_{-1}^{1} dx \, x^{n-1} \rho(x, b_{\perp}, s_{\perp}, S_{\perp}) = \frac{1}{2} \Biggl\{ A_{n0}(b_{\perp}^{2}) + s_{\perp}^{i} S_{\perp}^{i} \left(A_{Tn0}(b_{\perp}^{2}) - \frac{1}{4m^{2}} \Delta_{b_{\perp}} \widetilde{A}_{Tn0}(b_{\perp}^{2}) \right) + \frac{b_{\perp}^{j} \epsilon^{ji}}{m} \left(S_{\perp}^{i} B_{n0}'(b_{\perp}^{2}) + s_{\perp}^{i} \overline{B}_{Tn0}'(b_{\perp}^{2}) \right) + s_{\perp}^{i} (2b_{\perp}^{i} b_{\perp}^{j} - b_{\perp}^{2} \delta^{ij}) S_{\perp}^{j} \frac{1}{m^{2}} \widetilde{A}_{Tn0}''(b_{\perp}^{2}) \Biggr\}$$

[Diehl & Haegler, 2005] [Burkardt, 2005]

$$F(b_{\perp}^2) = \int d^2 \Delta_{\perp} \,\mathrm{e}^{-i\vec{b}_{\perp}\cdot\Delta_{\perp}} F(\Delta_{\perp}^2) = \int d^2 \Delta_{\perp} \,\mathrm{e}^{-i\vec{b}_{\perp}\cdot\Delta_{\perp}} \frac{F(0)}{(1-\Delta_{\perp}^2/M^2)^p}$$

Tensor Form Factors

 $B_{Tn0}(t)$ are remarkably large

Tensor Form Factors

 $\overline{A}_{Tn0}^{d}(t)$ is sizeable while $\overline{A}_{Tn0}^{u}(t) \approx 0$

Anomalous tensor magnetic moment

$$\kappa = \int dx E(x,\xi,0) = B_{10}(0) = F_2(0)$$
$$\kappa_u^{\text{exp}} \approx 1.67$$
$$\kappa_d^{\text{exp}} \approx -2.03$$

$$\kappa_T = \int dx \overline{E}_T(x,\xi,0) = \overline{B}_{T10}(0)$$

$$\begin{array}{l} &= \overline{B}_{T10}(0) \\ &\kappa_{Tu}^{\text{latt}} \approx 3.13 \\ &\kappa_{Td}^{\text{latt}} \approx 1.94 \end{array} \right\} \quad \text{Both positive}$$

Deformed Spin Densities

 $\bullet > S_x - > S_x$

Ph. Hägler (QCDSF) [PRL 98, 222001 (2007)] (n=1)

Deformed Spin Densities Nucleon Ph. Hägler (QCDSF) [PRL 98, 222001 (2007)] (n=1)

dn

 $\mapsto S_x$

→S_x)

имор

Conclusion & Outlook

 Calculations of hadronic quantities becoming available close to the physical masses (beware finite size effects)

- * Lattice provides a useful tool for investigating FFs/GPDs
- + q^2 scaling of F₁, F₁, F₂/F₁, G_E, G_M (F₁ⁿ negative)
 - * Twisted b.c.s give access to small q²
- * Moments of Generalised Parton Distributions
 - * Quark contribution to nucleon spin and angular momentum
 - * Non-trivial transverse spin densities in pion and nucleon
- * g_A still a challenge.
 - * Finite volume effects go in the right direction, but are they enough?
 - * Renormalisation? Discretisation?
- * $\langle x \rangle$ finite volume analysis at light quark masses indicate results might be going in the right direction indicating "bending down"

Conclusion & Outlook

- Currently improving the 40³x64 results at the physical point
- Simulations with the same parameters but 64³x96 volume are starting
- So far have only used N_f=2, now starting simulations with N_f=2+1 flavours of O(a)-improved Clover (Wilson) fermions

Happy Birthday Tony!

