Travels With Tony- Nucleon Structure Through Our Ages

Gerald A. Miller
University of Washington

Theme- ways of examining nucleon structure have changed with time, ’79-’82 was an exciting time and so is now.
Themes- neutron structure and shape of the proton through gpds and tmds

Happy Birthday Tony!
Outline

1. Cloudy bag model

2. Phenomenology: proton is not round.

3. Model independent neutron charge density

4. Measure shape of proton on lattice (impact parameter dependent GPD), and in experiment (TMD): IPDGPD is coordinate-space probability and TMD is momentum-space probability

GAM “Transverse Charge Densities” 1002.0355

Experimental progress—several labs
Cloudy bag model of the nucleon

A. W. Thomas and S. Théberge

TRIUMF, University of British Columbia, Vancouver, British Columbia, Canada V6T2A3

Gerald A. Miller

Institute for Nuclear Theory and Physics Department, FM-15, University of Washington, Seattle, Washington 98195

(Received 28 January 1981)

A previously derived model in which a baryon is treated as a three-quark bag that is surrounded by a cloud of pions is used to compute the static properties of the nucleon. The only free parameter of the model is the bag radius which is fixed by a fit to pion-nucleon scattering in the (3,3)-resonance region to be about 0.8 fm. With the model so determined the computed values of the root-mean-square radii and magnetic moments of the neutron and proton, and g_A, are all in very good agreement with the experimental values. In addition, about one-third of the Δ-nucleon mass splitting is found to come from pionic effects, so that our extracted value of α_s is smaller than that of the MIT bag model.

Many successful predictions

One feature- pion penetrates to the bag interior
One gluon exchange gives similar effect, the FT of G_{En} is $+\text{ near } 0$.

\[4\pi r^2 \int d^3 e^{-i\vec{q} \cdot \vec{r}} G_{En}^n(\vec{q}) \]
Meaning of form factor

• $G_E(Q^2)$ is NOT Fourier transform of charge density

• Relativistic treatment needed—wave function is frame-dependent, initial and final states differ, no density

• Light front coordinates, ∞ momentum frame

“Time” $x^+ = (ct + z)/\sqrt{2} = (x^0 + x^3)/\sqrt{2}$, “evolution” $p^- = (p^0 - p^3)/\sqrt{2}$

“Space” $x^- = (x^0 - x^3)/\sqrt{2}$, “Momentum” $p^+ = (p^0 + p^3)/\sqrt{2}$

“Transverse position, momentum, b, p

These coordinates are used to analyze form factors, deep inelastic scattering, GPDs, TMDS
Relativistic formalism-kinematic subgroup of Poincare

- Lorentz transformation – transverse velocity v

\[k^+ \rightarrow k^+, \quad k \rightarrow k - k^+v \]

k^- such that k^2 not changed

Just like non-relativistic with k^+ as mass, take momentum transfer in perp direction, then density is 2 Dimensional Fourier Transform, also

\[q^+ = q^0 + q^3 = 0, \quad -q^2 = Q^2 = q^2 \]
interpretation of FF as **quark density**

q

overlap of wave function Fock components with **different** number of constituents

NO probability/charge density interpretation

Absent in a Drell-Yan Frame

\[q^+ = q^0 + q^3 = 0 \]

From Marc Vanderhaeghen
Model proton wave function $\Psi(k_\perp, K_\perp, \xi, \eta)$

Poincare invariant

Light front variables for boost:

Dirac spinors carry orbital angular momentum
Ratio of Pauli to Dirac Form Factors 1995
Frank, Jennings, Miller theory, data 2000

Flat due to orbital angular momentum
Model exists

- lower components of Dirac spinor
- orbital angular momentum
- shape of proton?? **Wigner Eckart**
- no quadrupole moment
- spin dependent densities SDD
- non-relativistic example
I: Non-Rel. $p_{1/2}$ proton outside 0^+ core

$$\langle r_p | \psi_{1,1/2s} \rangle = R(r_p) \sigma \cdot \hat{r}_p | s \rangle$$

$$\rho(r) = \langle \psi_{1,1/2s} | \delta(r - r_p) | \psi_{1,1/2s} \rangle = R^2(r)$$

probability proton at r & spin direction n:

$$\rho(r, n) = \langle \psi_{1,1/2s} | \delta(r - r_p) \frac{1 + \sigma \cdot n}{2} | \psi_{1,1/2s} \rangle$$

$$= \frac{R^2(r)}{2} \langle s | \sigma \cdot \hat{r} (1 + \sigma \cdot n) \sigma \cdot \hat{r} | s \rangle$$

$n \parallel \hat{s}$: $\rho(r, n = \hat{s}) = R^2(r) \cos^2 \theta$

$n \parallel -\hat{s}$: $\rho(r, n = -\hat{s}) = R^2(r) \sin^2 \theta$

non-spherical shape depends on spin direction
Shapes of the proton

Momentum space
three vectors n, K, S

Relation between coordinate and momentum space densities?

How to measure? - Lattice and/or experiment
Model independent transverse charge density

\[J^+(x^-, b) = \sum_q e_q q_+^\dagger(x^-, b) q_+(x^-, b) \]

\[\rho_\infty(x^-, b) = \langle p^+, \mathbf{R} = 0, \lambda | \sum_q e_q q_+^\dagger(x^-, b) q_+(x^-, b) | p^+, \mathbf{R} = 0, \lambda \rangle \]

\[F_1 = \langle p^+, \mathbf{p}', \lambda | J^+(0) | p^+, \mathbf{p}, \lambda \rangle \]

\[\rho(b) \equiv \int dx^- \rho_\infty(x^-, b) = \int \frac{Q dQ}{2\pi} F_1(Q^2) J_0(Q b) \]

Density is \(u - \bar{u}, d - \bar{d} \)
Transverse charge densities

$\rho(b) \ [fm^{-2}]$

Proton

Kelly

Negative

$\rho(b) \ [fm^{-2}]$

Neutron
Negative F_1 means central density negative.
Neutron Interpretation needed

Neutron interpretation

- Impact parameter gpd Burkardt $\rho(x, b)$
- From Drell-Yan-West relation between high x DIS and high Q^2 elastic scattering
- High x related to low b, not uncertainty principle
- d quarks dominate DIS from neutron at high x
- d quarks dominate at neutron center, or

\[
\pi^- \text{ is } \bar{u}d \\
\text{Density is } u - \bar{u}, \ d - \bar{d} \\
\text{decreases } u \text{ contribution} \\
\text{enhances } d \text{ contribution}
\]
Neutron $\rho(b, x)$

Using other people’s models

d or π^- dominates at high x, low b
Return of the cloudy bag model

- In a model nucleon: bare nucleon + pion cloud - parameters adjusted to give negative definite F_1, pion at center causes negative central transverse charge density
- Boosting the matrix element of J^0 to the infinite momentum frame changes G_E to F_1
Shapes of the proton

- Relate spin dependent density to experiment

Field-theoretic spin dependent momentum density is related to the transverse momentum distribution h_{1T}^{\perp}

$$\Phi^{[\Gamma]}(x, K_T) = \left. \int \frac{d\xi^- d^2 \xi_T}{2 (2\pi)^3} e^{iK \cdot \xi} \langle P, S | \overline{\psi}(0) \Gamma \mathcal{L}(0, \xi; n_-) \psi(\xi) | P, S \rangle \right|_{\xi^+ = 0}$$

Mulders Tangerman’96

$$\Phi^{[i\sigma^i + \gamma_5]}(x, K_T) = S_T^i h_1(x, K_T^2) + \left(\frac{K_i^j K_T^j - \frac{1}{2} K_T^2 \delta_{ij}}{M^2} \right) S_T^j h_{1T}^{\perp}(x, K_T^2)$$

$$\sigma^i + \gamma^5 \sim \gamma^0 \gamma^+ \sigma^i,$$

then relate equal time to $\xi^+ = 0$ by integration over x
Cross section has term proportional to \(\cos 3\phi \).

Boer Mulders ‘98 there are other ways to see \(h_{1T} \).

\[\text{Measure } h_{1T} : e, p \rightarrow e', \pi X \]

Cross section has term proportional to $\cos 3\phi$

Boer Mulders ’98 there are other ways to see h_{1T}^\perp
Generalized densities

\[\mathcal{O}_q^\Gamma (px, b) = \int \frac{dx^- e^{ipxx^-}}{4\pi} q_+^\dagger (0, b) \Gamma q_+ (x^-, b) \]

\[\rho^\Gamma (b) = \int dx \sum_q e_q \langle p^+, \mathbf{R} = 0, \lambda | \mathcal{O}_q^\Gamma (p^+ x, b) | p^+, \mathbf{R} = 0, \lambda \rangle \]

\[\int dx \] sets \(x^- = 0 \), get \(q_+^\dagger (0, b) \Gamma q_+ (0, b) \) Density!

\[\Gamma = 1 / 2 (1 + \mathbf{n} \cdot \gamma) \] gives spin-dep density

Local operators calculable on lattice Gloeckler et al
PRL98,222001

\(\tilde{A}_{T10}'' \sim \text{sdd} \) spin-dependent density

Schierholtz, 2009 -this quantity is not zero, proton is not round
Transverse Momentum Distributions -
momentum space density

In a state of fixed momentum

\[\Phi_{q}^{\Gamma}(x, \mathbf{K}) \] give probability of quark of given 3-momentum

\[h_{1T}^{\bot} \] gives momentum-space spin-dependent density

measurable experimentally

hard to calculate on lattice because - gauge link
Summary

• Form factors, GPDs, TMDs, understood from unified light-front formulation
• Neutron central transverse density is negative-consistent with Cloudy Bag Model
• Proton is not round- lattice QCD spin-dependent-density is not zero
• Experiment can whether or not proton is round by measuring h_{1T}
Summary

• Form factors, GPDs, TMDs, understood from unified light-front formulation
• Neutron central transverse density is negative-consistent with Cloudy Bag Model
• Proton is not round- lattice QCD spin-dependent-density is not zero
• Experiment can whether or not proton is round by measuring h_{1T}

The Proton