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Overview
Early Ideas – The Cloudy Bag Model and the Padé

Both small and large mπ limits are important!
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Overview
Early Ideas – The Cloudy Bag Model and the Padé

Both small and large mπ limits are important!

Finite-Range Regularised Chiral Effective Field Theory
Loop integrals should become small for large mπ.

Quenched Chiral Perturbation Theory
Modification of meson-baryon vertices
Incorporation of light η′ meson
Correcting the Quenched Approximation

Fascinating aspects of baryon structure.
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Early Ideas – Proton Magnetic Moment
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Early Ideas – The Padé
Series expansion of µp(n) in powers of mπ is not a useful
approximation for mπ larger than the physical mass.

The simple Padé approximant:

µp(n) =
µ0

1 − χ mπ/µ0 + β m2
π

,

Builds in the Dirac moment at moderately large m2
π

Has the correct LNA behavior of chiral perturbation theory

µ = µ0 + χmπ,

with χ a model independent constant, as m2
π → 0.

Two-parameter fits to lattice results proceed by
Fixing χ at the value given by chiral perturbation theory,
Optimizing µ0 and β.
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Proton Magnetic Moment
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Neutron Magnetic Moment
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Chiral Effective Field Theory

General low-energy expansion about chiral limit (mq = 0)

MN = {Terms Analytic in mq} + {Chiral loop corrections}
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Chiral Effective Field Theory

General low-energy expansion about chiral limit (mq = 0)

MN = {Terms Analytic in mq} + {Chiral loop corrections}

Analytic terms
Coefficients are not constrained by chiral symmetry
To be determined via analysis of Lattice QCD results
Related to the Low Energy Constants of χPT

Chiral loops
Predict nonanalytic behaviour in the quark mass
Coefficients are known and are model independent
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Chiral Effective Field Theory

General low-energy expansion about chiral limit (mq = 0)

Common to formulate the expansion in terms of m2
π ∼ mq

MN = {a0 + a2m
2
π + a4m

4
π + a6m

6
π + · · · }

+{χπ Iπ(mπ) + χπ∆ Iπ∆(mπ) + · · · }

Iπ =

Iπ∆ =
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Regularisation of Loop Integrals

Consider the self-energy of the nucleon in heavy-baryon χPT

χπIπ(mπ) = −
3 g2

A

32 π f2
π

2

π

∫

∞

0

dk
k4

k2 + m2

with gA = 1.26 and fπ = 0.093 GeV.
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Regularisation of Loop Integrals

Consider the self-energy of the nucleon in heavy-baryon χPT

χπIπ(mπ) = −
3 g2

A

32 π f2
π

2

π

∫

∞

0

dk
k4

k2 + m2

Standard approach: dimensional regularisation, ǫ → 0

Iπ → ∞ + ∞m2
π + m3

π

a0 and a2 undergo an infinite renormalisation

MN = {a0 + a2m
2
π + a4m

4
π + a6m

6
π + · · · }

+{χπIπ(mπ) + χπ∆Iπ∆(mπ) + · · · }
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Regularisation of Loop Integrals

Consider the self-energy of the nucleon in heavy-baryon χPT

χπIπ(mπ) = −
3 g2

A

32 π f2
π

2

π

∫

∞

0

dk
k4

k2 + m2

Standard approach: dimensional regularisation, ǫ → 0

Iπ → ∞ + ∞m2
π + m3

π

Nucleon expansion −→

MN = c0 + c2m
2
π + χπm3

π + c4m
4
π + · · ·
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Lattice QCD and Dim RegχPT

CP-PACS collaboration results Phys. Rev. D65 (2002) 054505
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Lattice QCD and Dim RegχPT

CP-PACS collaboration results Phys. Rev. D65 (2002) 054505
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Slow RATE of Convergence

Origin lies in regularisation prescription

DR: Large contributions to integral from k → ∞ portion of integral
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Slow RATE of Convergence

Origin lies in regularisation prescription

DR: Large contributions to integral from k → ∞ portion of integral

Short distance physics is highly overestimated!

Always require large analytic terms at next order
no sign of convergence
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Overcoming This Problem

KEEP low-energy (infrared) structure of χPT

REMOVE the incorrect short-distance contributions associated
with ultraviolet behaviour of loop integrals
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long-distance physics
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Overcoming This Problem

KEEP low-energy (infrared) structure of χPT

REMOVE the incorrect short-distance contributions associated
with ultraviolet behaviour of loop integrals

INTRODUCE “separation-scale” to identify short- and
long-distance physics

Natural scale to be associated is the physical size of the pion
source

Axial-vector form factor of the nucleon
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Regularisation: Revisited

Use a Finite-Range Regulator (FRR)

MN = {aΛ
0 + aΛ

2 m2
π + aΛ

4 m4
π + aΛ

6 m6
π + · · · }

+{χπ Iπ(mπ, Λ) + χπ∆ Iπ∆(mπ, Λ) + · · · }

Loop integral is cutoff in momentum space at mass scale Λ
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Regularisation: Revisited

Use a Finite-Range Regulator (FRR)

MN = {aΛ
0 + aΛ

2 m2
π + aΛ

4 m4
π + aΛ

6 m6
π + · · · }

+{χπ Iπ(mπ, Λ) + χπ∆ Iπ∆(mπ, Λ) + · · · }

Loop integral is cutoff in momentum space at mass scale Λ

Different from standard QFT
Λ remains finite for EFT
Ultraviolet suppression for loop momenta k > Λ
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Finite-Range Regularisation

Consider the self-energy of the nucleon in heavy-baryon χPT

Iπ(mπ) =
2

π

∫

∞

0

dk
k4 u2(k)

k2 + m2

with a dipole regulator (on each NNπ vertex)

u(k) =

(

Λ2

Λ2 + k2

)2
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Finite-Range Regularisation

Consider the self-energy of the nucleon in heavy-baryon χPT

Iπ(mπ) =
2

π

∫

∞

0

dk
k4 u2(k)

k2 + m2

with a dipole regulator (on each NNπ vertex)

u(k) =

(

Λ2

Λ2 + k2

)2

Iπ =
1

16

Λ5(m2
π + 4mπΛ + Λ2)

(mπ + Λ)4
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Model-Independent Nonanalytic Behavior

Taylor expand

Iπ =
1

16

Λ5(m2
π + 4mπΛ + Λ2)

(mπ + Λ)4

about mπ = 0

Iπ →
Λ3

16
−

5Λ

16
m2

π + m3
π −

35

16Λ
m4

π +
4

Λ2
m5

π + . . .
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Model-Independent Nonanalytic Behavior

Taylor expand

Iπ =
1

16

Λ5(m2
π + 4mπΛ + Λ2)

(mπ + Λ)4

about mπ = 0

Iπ →
Λ3

16
−

5Λ

16
m2

π + m3
π −

35

16Λ
m4

π +
4

Λ2
m5

π + . . .

Iπ contains a resummation of the chiral expansion such that

Iπ → 0 as mπ becomes large.
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Model-Independent Nonanalytic Behavior

Taylor expand

Iπ =
1

16

Λ5(m2
π + 4mπΛ + Λ2)

(mπ + Λ)4

about mπ = 0

Iπ →
Λ3

16
−

5Λ

16
m2

π + m3
π −

35

16Λ
m4

π +
4

Λ2
m5

π + . . .

Iπ contains a resummation of the chiral expansion such that

Iπ → 0 as mπ becomes large.

In accord with the lattice simulation results.
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Renormalised Expansion Coefficients

Combine the analytic terms of

MLNA
N = a0 + a2m

2
π + χπIπ(mπ) + a4m

4
π

and
IDIP
π →

Λ3

16
−

5Λ

16
m2

π + m3
π −

35

16Λ
m4

π + . . .

Recover the renormalized expansion coefficients ci

MLNA
N =

(

a0 + χπ

Λ3

16

)

+

(

a2 − χπ

5Λ

16

)

m2
π + χπm3

π

+

(

a4 − χπ

35

16Λ

)

m4
π + · · ·

= c0 + c2m
2
π + χπm3

π + c4m
4
π
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Renormalised Expansion (FRR)

Any value of Λ is allowed!

MLNA
N =

(

a0 + χπ

Λ3

16

)

+

(

a2 − χπ

5Λ

16

)

m2
π + χπm3

π

+

(

a4 − χπ

35

16Λ

)

m4
π + · · ·

= c0 + c2m
2
π + χπm3

π + c4m
4
π

To any finite order, FRR is mathematically equivalent to
Dimensional Regularisation.
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Renormalised Expansion (FRR)

Any value of Λ is allowed!

MLNA
N =

(

a0 + χπ

Λ3

16

)

+

(

a2 − χπ

5Λ

16

)

m2
π + χπm3

π

+

(

a4 − χπ

35

16Λ

)

m4
π + · · ·

= c0 + c2m
2
π + χπm3

π + c4m
4
π

To any finite order, FRR is mathematically equivalent to
Dimensional Regularisation.

Within the power-counting regime of χPT
FRR EFT is not a model
Higher-order terms are truly negligible.
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The Power Counting Regime

Renormalised coefficients c0, c2 and c4 are fixed.
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Application of FRR Result

Fit the resummed expression to lattice QCD results

MN = aΛ
0 + aΛ

2 m2
π + χπ Iπ(mπ, Λ) + aΛ

4 m4
π

with

Iπ =
1

16

Λ5(m2
π + 4mπΛ + Λ2)

(mπ + Λ)4

and
Λ = 0.8 GeV
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Lattice QCD and FRR EFT

Dipole Regularisation
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Lattice QCD and FRR EFT
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Lattice QCD and FRR EFT

Dipole Regularisation
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Next Leading Order

MNLNA
N = aΛ

0 + aΛ
2 m2

π + χπIπ(mπ, Λ) + aΛ
4 m4

π

+χπ∆Iπ∆(mπ, Λ) + χtad
π Itad

π (mπ, Λ) + aΛ
6 m6

π

Iπ∆ = ∼ m4
π lnmπ

Itad
π = ∼ m4

π lnmπ

Chiral Effective Field TheoryInspired by Tony – p.21/101



FRR Regulators

Alternatives:
Sharp cut-off

θ(Λ − k)

Monopole
(

Λ2

Λ2 + k2

)

Gaussian

exp(−
k2

Λ2
)
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MNLNA
N Extrapolation
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MNLNA
N Extrapolation
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MNLNA
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MNLNA
N Extrapolation
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Low Energy Coefficients

NLNA results are largely independent of the model!

Regulator c0 c2 c4

Dipole 0.922 2.49 18.9

Sharp cutoff 0.923 2.61 15.3

Monopole 0.923 2.45 20.5

Gaussian 0.923 2.48 18.3

Dim. reg. 0.875 3.14 7.2
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Series Truncation

Residual series coefficients

Regulator a4 (GeV−3) a6 (GeV−5)
Dipole −0.49 0.09

Sharp cutoff −0.55 0.12

Monopole −0.49 0.09

Gaussian −0.50 0.10

Dim. reg. 8.9 0.38
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FRR Summary

To any finite order, FRR is mathematically equivalent to
Dimensional Regularisation.
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FRR Summary

To any finite order, FRR is mathematically equivalent to
Dimensional Regularisation.

Lattice QCD simulation results are generally smooth slowly
varying functions of the quark mass.

Higher-order terms of the DR expansion must sum
approximately to zero.
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FRR Summary

To any finite order, FRR is mathematically equivalent to
Dimensional Regularisation.

Lattice QCD simulation results are generally smooth slowly
varying functions of the quark mass.

Higher-order terms of the DR expansion must sum
approximately to zero.

Finite-range regularisation resums the chiral expansion of DR.
Linear combinations of higher order DR terms appear
already in one-loop calculations.
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FRR Summary

To any finite order, FRR is mathematically equivalent to
Dimensional Regularisation.

Lattice QCD simulation results are generally smooth slowly
varying functions of the quark mass.

Higher-order terms of the DR expansion must sum
approximately to zero.

Higher order DR terms obtained in FRR EFT sum such that loop
contributions vanish as the quark mass becomes large.
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FRR Summary

To any finite order, FRR is mathematically equivalent to
Dimensional Regularisation.

Lattice QCD simulation results are generally smooth slowly
varying functions of the quark mass.

Higher-order terms of the DR expansion must sum
approximately to zero.

Higher order DR terms obtained in FRR EFT sum such that loop
contributions vanish as the quark mass becomes large.

Regulator parameter, Λ, shifts strength between FRR loop
integrals and the residual expansion of terms analytic in the
quark mass.

Provides a new mechanism to optimize the convergence
properties of the chiral expansion.
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Optimal Regularisation?

Regulator parameter Λ should be constrained by lattice QCD
results.

Several criteria were under investigation.

See Jonathan Hall’s poster tomorrow for the solution.
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Proton Moment in Quenched QCD
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Proton Radius in Quenched QCD
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Quenched Chiral Nonanalytic Behavior

“Disconnected” sea-quark loops are absent, modifying vertices.

(a) (b)
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Quenched Chiral Nonanalytic Behavior

“Disconnected” sea-quark loops are absent, modifying vertices.

(a) (b)
 

η′-meson mass remains degenerate with the pion and can
contribute new nonanalytic terms to the chiral expansion.

(a) (b)
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Quenched Quark Flow for Form Factors

Hadronic Level

Quark Flow Level
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Finite-Range Regularisation

Finite Range Regulator

µp = aΛ
0 +µp χη Iη(mπ, Λ)+χπ Iπ(mπ, Λ)+χK IK(mK , Λ)+aΛ

2 m2
π+· · ·

Kaon mass relation

m2
K = m

(0) 2
K +

1

2
m2

π
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Finite-Range Regularisation

Finite Range Regulator

µp = aΛ
0 +µp χη Iη(mπ, Λ)+χπ Iπ(mπ, Λ)+χK IK(mK , Λ)+aΛ

2 m2
π+· · ·

Limit mπ → 0

µp = c0 + µp χη

[

l0 + log

(

m2
π

Λ2

)]

+ χπ mπ + χK mK + c2 m2
π + · · ·
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Finite-Range Regularisation

Finite Range Regulator

µp = aΛ
0 +µp χη Iη(mπ, Λ)+χπ Iπ(mπ, Λ)+χK IK(mK , Λ)+aΛ

2 m2
π+· · ·

Limit mπ → 0

µp = c0 + µp χη

[

l0 + log

(

m2
π

Λ2

)]

+ χπ mπ + χK mK + c2 m2
π + · · ·

Dimensional Regularisation

µp = c0+µp χη

[

log
Λ2

Λ′2
+ log

(

m2
π

Λ2

)]

+χπ mπ+χK mK+c2 m2
π+· · ·
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Direct Loop Contributions

(a) Full QCD = (b) + (c)

(b) Valence in Full & Quenched QCD

(c) Direct sea-quark loop
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Direct Loop Contributions

(a) Full QCD = (b) + (c)

(b) Valence in Full & Quenched QCD

(c) Direct sea-quark loop

Phys. Rev. D69 (2004) 014005
[arXiv:hep-lat/0211017].
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Indirect Loop Contributions

(a) Full QCD = (b) + (c)

(b) Valence in Full & Quenched QCD

(c) Valence only in Full QCD
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Indirect Loop Contributions

(a) Full QCD = (b) + (c)

(b) Valence in Full & Quenched QCD

(c) Valence only in Full QCD

(c) Indirect sea-quark loop

(c) is removed upon quenching

Phys. Rev. D69 (2004) 014005
[arXiv:hep-lat/0211017].
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Coefficientsχπχπχπ and χKχKχK (µNµNµN /GeV)

Quark Int. Total Direct Loop Valence Quenched

2 up Nπ −6.87 +4.12 −11.0 −3.33

ΛK −3.68 0 −3.68 0

ΣK −0.15 0 −0.15 0

dp Nπ +6.87 +4.12 +2.75 +3.33

ΣK −0.29 0 −0.29 0

sp ΛK +3.68 +3.68 0 0

ΣK +0.44 +0.44 0 0

2 uΣ+ Σπ −2.16 +2.16 −4.32 0

Λπ −1.67 +1.67 −3.33 0

NK 0 +0.29 −0.29 −0.29

ΞK −6.87 0 −6.87 −3.04
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Finite Volume Artifacts
Directly incorporate finite-volume effects into the chiral
expansion.

General expansion for the small parameters mπ and 1/L

MN = {Terms Analytic in m2
π and 1/L}

+{Volume-modified Chiral loop corrections}
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Finite Volume Artifacts
Directly incorporate finite-volume effects into the chiral
expansion.

General expansion for the small parameters mπ and 1/L

MN = {Terms Analytic in m2
π and 1/L}

+{Volume-modified Chiral loop corrections}

Performed with the constraint mπL ≫ 1.
Corrections are perturbative in the pion cloud.
Analytic terms in 1/L are small by constraint.
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Finite Volume Artifacts
Directly incorporate finite-volume effects into the chiral
expansion.

General expansion for the small parameters mπ and 1/L

MN = {Terms Analytic in m2
π and 1/L}

+{Volume-modified Chiral loop corrections}

Performed with the constraint mπL ≫ 1.
Corrections are perturbative in the pion cloud.
Analytic terms in 1/L are small by constraint.

The finite periodic volume of the lattice modifies integrals

∫

d3k →

(

2π

L3

)3
∑

kx,ky,kz

.
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uuu quark in the Proton: Quenched QCD
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uuu quark in the Proton: Quenched QCD

Chiral Effective Field TheoryInspired by Tony – p.38/101



QuenchedFinite Volume Moments
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QuenchedFinite Volume Moments
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Correcting the Quenched Approximation

Studied a matched set of quenched QCD and full QCD gauge
configurations from the MILC Collaboration

Fit the nucleon mass in quenched QCD and in full QCD
With Finite-Range Regularised quenched EFT and full EFT
Regulator Parameter Λ = 0.8
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Correcting the Quenched Approximation

Studied a matched set of quenched QCD and full QCD gauge
configurations from the MILC Collaboration

Fit the nucleon mass in quenched QCD and in full QCD
With Finite-Range Regularised quenched EFT and full EFT
Regulator Parameter Λ = 0.8

Discovered the coefficients of analytic terms in quenched QCD
and full QCD

Are the same within errors

MN = {aΛ
0 + aΛ

2 m2
π + aΛ

4 m4
π + aΛ

6 m6
π + · · · }

+{χπ Iπ(mπ, Λ) + χπ∆ Iπ∆(mπ, Λ) + · · · }
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Correcting the Quenched Approximation

Studied a matched set of quenched QCD and full QCD gauge
configurations from the MILC Collaboration

Fit the nucleon mass in quenched QCD and in full QCD
With Finite-Range Regularised quenched EFT and full EFT
Regulator Parameter Λ = 0.8

Discovered the coefficients of analytic terms in quenched QCD
and full QCD

Are the same within errors

Leads to the concept of separating
The pion cloud

Affected by quenching and finite volume
The core (the source of the pion cloud)

Invariant to quenching and finite volume artifacts.
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MILC Collaboration Simulations
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Coefficients of Analytic Terms

For case of Regulator Parameter Λ = 0.8

Nucleon

a0 a2 a4

N (Dynamical) 1.23(1) 1.13(8) −0.4(1)

N (Quenched) 1.20(1) 1.10(8) −0.4(1)

Units are in appropriate powers of GeV.
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Coefficients of Analytic Terms

For case of Regulator Parameter Λ = 0.8

Nucleon

a0 a2 a4

N (Dynamical) 1.23(1) 1.13(8) −0.4(1)

N (Quenched) 1.20(1) 1.10(8) −0.4(1)

Units are in appropriate powers of GeV.

Delta

a0 a2 a4

∆ (Dynamical) 1.40(3) 1.1(2) −0.6(3)

∆ (Quenched) 1.43(3) 0.8(2) −0.1(3)
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Nucleon and Delta Masses
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Quenched Baryon Masses

η ’ η ’

+

++

 

ππ
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NucleonQuenchedχPT Fit
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Delta QuenchedχPT Fit
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Correct Chiral Nonanalytic Behavior

+
π π
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Correct the Quenched Approximation
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Correct Moments to Full QCD

Quenched QCD

Chiral Effective Field TheoryInspired by Tony – p.50/101



Correct Moments to Full QCD

Quenched QCD
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Correct Moments to Full QCD

Quenched QCD

Full QCD
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Indirect Loop Contributions

(a) Full QCD = (b) + (c)

(b) Valence in Full & Quenched QCD

(c) Valence only in Full QCD

(c) Indirect sea-quark loop

(c) is removed upon quenching
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Coefficientsχπχπχπ and χKχKχK (µNµNµN /GeV)

Quark Int. Total Direct Loop Valence Quenched

2 up Nπ −6.87 +4.12 −11.0 −3.33

ΛK −3.68 0 −3.68 0

ΣK −0.15 0 −0.15 0

dp Nπ +6.87 +4.12 +2.75 +3.33

ΣK −0.29 0 −0.29 0

sp ΛK +3.68 +3.68 0 0

ΣK +0.44 +0.44 0 0

2 uΣ+ Σπ −2.16 +2.16 −4.32 0

Λπ −1.67 +1.67 −3.33 0

NK 0 +0.29 −0.29 −0.29

ΞK −6.87 0 −6.87 −3.04
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uuu quark in the Proton: Quenched QCD
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Valenceuuu quark in the Proton: Full QCD
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Direct Loop Contributions

(a) Full QCD = (b) + (c)

(b) Valence in Full & Quenched QCD

(c) Direct sea-quark loop
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Coefficientsχπχπχπ and χKχKχK (µNµNµN /GeV)

Quark Int. Total Direct Loop Valence Quenched

2 up Nπ −6.87 +4.12 −11.0 −3.33

ΛK −3.68 0 −3.68 0

ΣK −0.15 0 −0.15 0

dp Nπ +6.87 +4.12 +2.75 +3.33

ΣK −0.29 0 −0.29 0

sp ΛK +3.68 +3.68 0 0

ΣK +0.44 +0.44 0 0

2 uΣ+ Σπ −2.16 +2.16 −4.32 0

Λπ −1.67 +1.67 −3.33 0

NK 0 +0.29 −0.29 −0.29

ΞK −6.87 0 −6.87 −3.04
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uuu quark in the Proton: Full QCD
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uuu quark in Σ+Σ+Σ+
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uuu quark in ppp
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uuu quark in nnn
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uuu quark in Ξ0Ξ0Ξ0
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sss quark in Ξ0Ξ0Ξ0
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sss quark in ΛΛΛ
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uuu or ddd quark in ΛΛΛ
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Octet Baryon Magnetic Moments
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Octet Baryon Magnetic Moments
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uuu quark in ppp

Chiral Effective Field TheoryInspired by Tony – p.67/101



uuu quark in nnn
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Proton Charge Radius
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Neutron Charge Radius
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uuu quark in ppp
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uuu quark in Σ+Σ+Σ+
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uuu quark in nnn
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uuu quark in Ξ0Ξ0Ξ0
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sss quark in Ξ0Ξ0Ξ0
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sss quark in ΛΛΛ
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sss quark in ΣΣΣ
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uuu or ddd quark in ΛΛΛ
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Octet Baryon Charge Radii
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Proton Moment in Full QCD
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Power Counting: O(m1
π)O(m1
π)O(m1
π)
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Power Counting: O(m2
π)O(m2
π)O(m2
π)

Chiral Effective Field TheoryInspired by Tony – p.82/101



Power Counting: O(m3
π)O(m3
π)O(m3
π)
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Power Counting: O(m4
π)O(m4
π)O(m4
π)
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Power Counting: O(m5
π)O(m5
π)O(m5
π)
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Power Counting: O(m6
π)O(m6
π)O(m6
π)
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Power Counting: O(m8
π)O(m8
π)O(m8
π)
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Power Counting: O(m10
π )O(m10
π )O(m10
π )
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Power Counting: O(m20
π )O(m20
π )O(m20
π )
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Power Counting: O(m40
π )O(m40
π )O(m40
π )
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Power Counting: O(m80
π )O(m80
π )O(m80
π )
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Power Counting: O(m160
π )O(m160
π )O(m160
π )
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∆++∆++∆++ Decay in Full QCD
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QCD is Flavour Blind
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But there is nouuuuuuuuu proton!
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Quenched∆∆∆: Negative Metric Contribution

Chiral Effective Field TheoryInspired by Tony – p.96/101



p and ∆+ Magnetic Moments
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p/∆+ Magnetic Moment Ratio in QQCD
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p/∆+ Magnetic Ratio in Full QCD
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The Structure of the Nucleon
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