Chiral Effective Field Theory Inspired by Tony

Derek Leinweber

Key Contributors

Ian Cloet, Ding Lu, Tony Thomas, Kazuo Tsushima,

Ping Wang, Stewart Wright, Ross Young

- "Baryon masses from lattice QCD: Beyond the perturbative chiral regime"
 D. B. Leinweber, A. W. Thomas, K. Tsushima and S. V. Wright Phys. Rev. D 61, 074502 (2000) [arXiv:hep-lat/9906027] 102 Citations
- 2. "Nucleon magnetic moments beyond the perturbative chiral regime"
 D. B. Leinweber, D. H. Lu and A. W. Thomas
 Phys. Rev. D 60, 034014 (1999) [arXiv:hep-lat/9810005]
 89 Citations
- "Physical nucleon properties from lattice QCD"
 D. B. Leinweber, A. W. Thomas and R. D. Young
 Phys. Rev. Lett. 92, 242002 (2004) [arXiv:hep-lat/0302020]
 86 Citations

- 4. "Chiral analysis of quenched baryon masses"
 R. D. Young, D. B. Leinweber, A. W. Thomas and S. V. Wright Phys. Rev. D 66, 094507 (2002) [arXiv:hep-lat/0205017] 83 Citations
- "Precise determination of the strangeness magnetic moment of the nucleon"
 D.B. Leinweber, S. Boinepalli, I.C. Cloet, A.W. Thomas, A.G. Williams, R.D. Young, J.M. Zanotti, J.B. Zhang,
 Phys. Rev. Lett. 94, 212001 (2005) [arXiv:hep-lat/0406002]
 73 Citations

- Early Ideas The Cloudy Bag Model and the Padé
 - Both small and large m_{π} limits are important!

- Early Ideas The Cloudy Bag Model and the Padé
 - Both small and large m_{π} limits are important!
- Finite-Range Regularised Chiral Effective Field Theory
 - Loop integrals should become small for large m_{π} .

- Early Ideas The Cloudy Bag Model and the Padé
 - **Solution** Both small and large m_{π} limits are important!
- Finite-Range Regularised Chiral Effective Field Theory
 - Loop integrals should become small for large m_{π} .
- Quenched Chiral Perturbation Theory
 - Modification of meson-baryon vertices
 - Incorporation of light η' meson
 - Correcting the Quenched Approximation

- Early Ideas The Cloudy Bag Model and the Padé
 - **Solution** Both small and large m_{π} limits are important!
- Finite-Range Regularised Chiral Effective Field Theory
 - Loop integrals should become small for large m_{π} .
- Quenched Chiral Perturbation Theory
 - Modification of meson-baryon vertices
 - Incorporation of light η' meson
 - Correcting the Quenched Approximation
- Fascinating aspects of baryon structure.

Early Ideas – Proton Magnetic Moment

D.B. Leinweber, D.H. Lu, A.W. Thomas, Phys. Rev. D60, 034014 (1999)

Early Ideas – The Padé

- Series expansion of $\mu_{p(n)}$ in powers of m_{π} is not a useful approximation for m_{π} larger than the physical mass.
- The simple Padé approximant:

$$\mu_{p(n)} = \frac{\mu_0}{1 - \chi \, m_\pi / \mu_0 + \beta \, m_\pi^2} \, .$$

- Builds in the Dirac moment at moderately large m_{π}^2
- Has the correct LNA behavior of chiral perturbation theory

$$\mu = \mu_0 + \chi m_\pi,$$

with χ a model independent constant, as $m_{\pi}^2 \rightarrow 0$.

- Two-parameter fits to lattice results proceed by
 - Fixing χ at the value given by chiral perturbation theory,
 - Optimizing μ_0 and β .

Proton Magnetic Moment

D.B. Leinweber, D.H. Lu, A.W. Thomas, Phys. Rev. D60, 034014 (1999)

Neutron Magnetic Moment

D.B. Leinweber, D.H. Lu, A.W. Thomas, Phys. Rev. D60, 034014 (1999)

Chiral Effective Field Theory

Seneral low-energy expansion about chiral limit ($m_q = 0$)

 $M_N = \{\text{Terms Analytic in } m_q\} + \{\text{Chiral loop corrections}\}$

Chiral Effective Field Theory

Seneral low-energy expansion about chiral limit ($m_q = 0$)

 $M_N = \{\text{Terms Analytic in } m_q\} + \{\text{Chiral loop corrections}\}$

Analytic terms

- Coefficients are not constrained by chiral symmetry
- To be determined via analysis of Lattice QCD results
- Related to the Low Energy Constants of χ PT

Chiral loops

- Predict nonanalytic behaviour in the quark mass
- Coefficients are known and are model independent

Chiral Effective Field Theory

- General low-energy expansion about chiral limit ($m_q = 0$)
- Common to formulate the expansion in terms of $m_{\pi}^2 \sim m_q$

$$M_N = \{a_0 + a_2 m_{\pi}^2 + a_4 m_{\pi}^4 + a_6 m_{\pi}^6 + \cdots \} + \{\chi_{\pi} I_{\pi}(m_{\pi}) + \chi_{\pi\Delta} I_{\pi\Delta}(m_{\pi}) + \cdots \}$$

Regularisation of Loop Integrals

Consider the self-energy of the nucleon in heavy-baryon χ PT

$$\chi_{\pi}I_{\pi}(m_{\pi}) = -\frac{3\,g_A^2}{32\,\pi\,f_{\pi}^2}\frac{2}{\pi}\int_0^\infty dk\,\frac{k^4}{k^2+m^2}$$

with $g_A = 1.26$ and $f_{\pi} = 0.093$ GeV.

Regularisation of Loop Integrals

Consider the self-energy of the nucleon in heavy-baryon χ PT

$$\chi_{\pi}I_{\pi}(m_{\pi}) = -\frac{3\,g_A^2}{32\,\pi\,f_{\pi}^2}\frac{2}{\pi}\int_0^\infty dk\,\frac{k^4}{k^2+m^2}$$

Standard approach: dimensional regularisation, $\epsilon \rightarrow 0$

$$I_{\pi} \to \infty + \infty m_{\pi}^2 + m_{\pi}^3$$

 \bullet a_0 and a_2 undergo an infinite renormalisation

$$M_N = \{a_0 + a_2 m_{\pi}^2 + a_4 m_{\pi}^4 + a_6 m_{\pi}^6 + \cdots \} + \{\chi_{\pi} I_{\pi}(m_{\pi}) + \chi_{\pi\Delta} I_{\pi\Delta}(m_{\pi}) + \cdots \}$$

Regularisation of Loop Integrals

Consider the self-energy of the nucleon in heavy-baryon χ PT

$$\chi_{\pi}I_{\pi}(m_{\pi}) = -\frac{3\,g_A^2}{32\,\pi\,f_{\pi}^2}\frac{2}{\pi}\int_0^\infty dk\,\frac{k^4}{k^2+m^2}$$

Standard approach: dimensional regularisation, $\epsilon \rightarrow 0$

$$I_{\pi} \rightarrow \infty + \infty m_{\pi}^2 + m_{\pi}^3$$

Nucleon expansion \longrightarrow

$$M_N = c_0 + c_2 m_\pi^2 + \chi_\pi m_\pi^3 + c_4 m_\pi^4 + \cdots$$

Lattice QCD and Dim Reg χ **PT**

CP-PACS collaboration results Phys. Rev. <u>D65</u> (2002) 054505

Lattice QCD and Dim Reg χ **PT**

CP-PACS collaboration results Phys. Rev. <u>D65</u> (2002) 054505

D B:
$$c_0 + c_2 m_\pi^2 + \chi_\pi m_\pi^3$$

.

Lattice QCD and Dim Reg χ **PT**

CP-PACS collaboration results Phys. Rev. <u>D65</u> (2002) 054505

Slow RATE of Convergence

- Origin lies in regularisation prescription
- **DR:** Large contributions to integral from $k \to \infty$ portion of integral

Slow RATE of Convergence

- Origin lies in regularisation prescription
- **DR:** Large contributions to integral from $k \to \infty$ portion of integral

- Short distance physics is highly overestimated!
- Always require large analytic terms at next order
 - no sign of convergence

Overcoming This Problem

Solution KEEP low-energy (infrared) structure of χPT

REMOVE the incorrect short-distance contributions associated with ultraviolet behaviour of loop integrals

Overcoming This Problem

Solution KEEP low-energy (infrared) structure of χPT

- REMOVE the incorrect short-distance contributions associated with ultraviolet behaviour of loop integrals
- INTRODUCE "separation-scale" to identify short- and long-distance physics

Overcoming This Problem

Similar KEEP low-energy (infrared) structure of χ PT

- REMOVE the incorrect short-distance contributions associated with ultraviolet behaviour of loop integrals
- INTRODUCE "separation-scale" to identify short- and long-distance physics
- Natural scale to be associated is the physical size of the pion source

Axial-vector form factor of the nucleon

Regularisation: Revisited

Use a Finite-Range Regulator (FRR)

$$M_{N} = \{a_{0}^{\Lambda} + a_{2}^{\Lambda}m_{\pi}^{2} + a_{4}^{\Lambda}m_{\pi}^{4} + a_{6}^{\Lambda}m_{\pi}^{6} + \cdots \} + \{\chi_{\pi} I_{\pi}(m_{\pi}, \Lambda) + \chi_{\pi\Delta} I_{\pi\Delta}(m_{\pi}, \Lambda) + \cdots \}$$

• Loop integral is cutoff in momentum space at mass scale Λ

Regularisation: Revisited

Use a Finite-Range Regulator (FRR)

$$M_{N} = \{a_{0}^{\Lambda} + a_{2}^{\Lambda}m_{\pi}^{2} + a_{4}^{\Lambda}m_{\pi}^{4} + a_{6}^{\Lambda}m_{\pi}^{6} + \cdots \} + \{\chi_{\pi} I_{\pi}(m_{\pi}, \Lambda) + \chi_{\pi\Delta} I_{\pi\Delta}(m_{\pi}, \Lambda) + \cdots \}$$

- Loop integral is cutoff in momentum space at mass scale Λ
- Different from standard QFT
 - Λ remains finite for EFT
 - Ultraviolet suppression for loop momenta $k > \Lambda$

Finite-Range Regularisation

• Consider the self-energy of the nucleon in heavy-baryon χPT

$$I_{\pi}(m_{\pi}) = \frac{2}{\pi} \int_0^\infty dk \, \frac{k^4 \, u^2(k)}{k^2 + m^2}$$

with a dipole regulator (on each $NN\pi$ vertex)

$$u(k) = \left(\frac{\Lambda^2}{\Lambda^2 + k^2}\right)^2$$

Finite-Range Regularisation

Consider the self-energy of the nucleon in heavy-baryon χ PT

$$I_{\pi}(m_{\pi}) = \frac{2}{\pi} \int_{0}^{\infty} dk \, \frac{k^4 \, u^2(k)}{k^2 + m^2}$$

with a dipole regulator (on each $NN\pi$ vertex)

$$u(k) = \left(\frac{\Lambda^2}{\Lambda^2 + k^2}\right)^2$$

$$I_{\pi} = \frac{1}{16} \frac{\Lambda^{5} (m_{\pi}^{2} + 4m_{\pi}\Lambda + \Lambda^{2})}{(m_{\pi} + \Lambda)^{4}}$$

Model-Independent Nonanalytic Behavior

Taylor expand

$$I_{\pi} = \frac{1}{16} \frac{\Lambda^5 (m_{\pi}^2 + 4m_{\pi}\Lambda + \Lambda^2)}{(m_{\pi} + \Lambda)^4}$$

about $m_{\pi} = 0$

$$I_{\pi} \to \frac{\Lambda^3}{16} - \frac{5\Lambda}{16}m_{\pi}^2 + m_{\pi}^3 - \frac{35}{16\Lambda}m_{\pi}^4 + \frac{4}{\Lambda^2}m_{\pi}^5 + \dots$$

Model-Independent Nonanalytic Behavior

Taylor expand

$$I_{\pi} = \frac{1}{16} \frac{\Lambda^5 (m_{\pi}^2 + 4m_{\pi}\Lambda + \Lambda^2)}{(m_{\pi} + \Lambda)^4}$$

about $m_{\pi} = 0$

$$I_{\pi} \to \frac{\Lambda^3}{16} - \frac{5\Lambda}{16}m_{\pi}^2 + m_{\pi}^3 - \frac{35}{16\Lambda}m_{\pi}^4 + \frac{4}{\Lambda^2}m_{\pi}^5 + \dots$$

 I_{π} contains a resummation of the chiral expansion such that

 $I_{\pi} \rightarrow 0$ as m_{π} becomes large.

Model-Independent Nonanalytic Behavior

Taylor expand

$$I_{\pi} = \frac{1}{16} \frac{\Lambda^5 (m_{\pi}^2 + 4m_{\pi}\Lambda + \Lambda^2)}{(m_{\pi} + \Lambda)^4}$$

about $m_{\pi} = 0$

$$I_{\pi} \to \frac{\Lambda^3}{16} - \frac{5\Lambda}{16}m_{\pi}^2 + m_{\pi}^3 - \frac{35}{16\Lambda}m_{\pi}^4 + \frac{4}{\Lambda^2}m_{\pi}^5 + \dots$$

 I_{π} contains a resummation of the chiral expansion such that

 $I_{\pi} \rightarrow 0$ as m_{π} becomes large.

Renormalised Expansion Coefficients

Combine the analytic terms of

$$M_N^{\rm LNA} = a_0 + a_2 m_\pi^2 + \chi_\pi I_\pi(m_\pi) + a_4 m_\pi^4$$

and

$$I_{\pi}^{\text{DIP}} \rightarrow \frac{\Lambda^3}{16} - \frac{5\Lambda}{16}m_{\pi}^2 + m_{\pi}^3 - \frac{35}{16\Lambda}m_{\pi}^4 + \dots$$

 \blacksquare Recover the renormalized expansion coefficients c_i

$$M_N^{\text{LNA}} = \left(a_0 + \chi_\pi \frac{\Lambda^3}{16}\right) + \left(a_2 - \chi_\pi \frac{5\Lambda}{16}\right) m_\pi^2 + \chi_\pi m_\pi^3 + \left(a_4 - \chi_\pi \frac{35}{16\Lambda}\right) m_\pi^4 + \cdots \right)$$
$$= c_0 + c_2 m_\pi^2 + \chi_\pi m_\pi^3 + c_4 m_\pi^4$$

Renormalised Expansion (FRR)

Any value of Λ is allowed!

$$M_N^{\text{LNA}} = \left(a_0 + \chi_\pi \frac{\Lambda^3}{16}\right) + \left(a_2 - \chi_\pi \frac{5\Lambda}{16}\right) m_\pi^2 + \chi_\pi m_\pi^3 + \left(a_4 - \chi_\pi \frac{35}{16\Lambda}\right) m_\pi^4 + \cdots \right)$$
$$= c_0 + c_2 m_\pi^2 + \chi_\pi m_\pi^3 + c_4 m_\pi^4$$

To any finite order, FRR is mathematically equivalent to Dimensional Regularisation.

Renormalised Expansion (FRR)

• Any value of Λ is allowed!

$$M_N^{\text{LNA}} = \left(a_0 + \chi_\pi \frac{\Lambda^3}{16}\right) + \left(a_2 - \chi_\pi \frac{5\Lambda}{16}\right) m_\pi^2 + \chi_\pi m_\pi^3 + \left(a_4 - \chi_\pi \frac{35}{16\Lambda}\right) m_\pi^4 + \cdots \right)$$
$$= c_0 + c_2 m_\pi^2 + \chi_\pi m_\pi^3 + c_4 m_\pi^4$$

- To any finite order, FRR is mathematically equivalent to Dimensional Regularisation.
- Within the power-counting regime of χPT
 - FRR EFT is not a model
 - Higher-order terms are truly negligible.

The Power Counting Regime

Renormalised coefficients c_0 , c_2 and c_4 are fixed.
Application of FRR Result

Fit the resummed expression to lattice QCD results

$$M_N = a_0^{\Lambda} + a_2^{\Lambda} m_{\pi}^2 + \chi_{\pi} I_{\pi}(m_{\pi}, \Lambda) + a_4^{\Lambda} m_{\pi}^4$$

with

$$I_{\pi} = \frac{1}{16} \frac{\Lambda^5 (m_{\pi}^2 + 4m_{\pi}\Lambda + \Lambda^2)}{(m_{\pi} + \Lambda)^4}$$

and

 $\Lambda = 0.8 \text{ GeV}$

Lattice QCD and FRR EFT

Lattice QCD and FRR EFT

Lattice QCD and FRR EFT

Next Leading Order

$$M_N^{\text{NLNA}} = a_0^{\Lambda} + a_2^{\Lambda} m_{\pi}^2 + \chi_{\pi} I_{\pi}(m_{\pi}, \Lambda) + a_4^{\Lambda} m_{\pi}^4 + \chi_{\pi\Delta} I_{\pi\Delta}(m_{\pi}, \Lambda) + \chi_{\pi}^{\text{tad}} I_{\pi}^{\text{tad}}(m_{\pi}, \Lambda) + a_6^{\Lambda} m_{\pi}^6$$

FRR Regulators

Alternatives:

Sharp cut-off

$$\theta(\Lambda - k)$$

Monopole

$$\left(\frac{\Lambda^2}{\Lambda^2 + k^2}\right)$$

Gaussian

$$\exp(-\frac{k^2}{\Lambda^2})$$

Low Energy Coefficients

NLNA results are largely independent of the model!

Regulator	c_0	c_2	c_4
Dipole	0.922	2.49	18.9
Sharp cutoff	0.923	2.61	15.3
Monopole	0.923	2.45	20.5
Gaussian	0.923	2.48	18.3
Dim. reg.	0.875	3.14	7.2

Series Truncation

Residual series coefficients

Regulator	a_4 (GeV $^{-3}$)	a_6 (GeV $^{-5}$)
Dipole	-0.49	0.09
Sharp cutoff	-0.55	0.12
Monopole	-0.49	0.09
Gaussian	-0.50	0.10
Dim. reg.	8.9	0.38

To any finite order, FRR is mathematically equivalent to Dimensional Regularisation.

- To any finite order, FRR is mathematically equivalent to Dimensional Regularisation.
- Lattice QCD simulation results are generally smooth slowly varying functions of the quark mass.
 - Higher-order terms of the DR expansion must sum approximately to zero.

- To any finite order, FRR is mathematically equivalent to Dimensional Regularisation.
- Lattice QCD simulation results are generally smooth slowly varying functions of the quark mass.
 - Higher-order terms of the DR expansion must sum approximately to zero.
- Finite-range regularisation resums the chiral expansion of DR.
 - Linear combinations of higher order DR terms appear already in one-loop calculations.

- To any finite order, FRR is mathematically equivalent to Dimensional Regularisation.
- Lattice QCD simulation results are generally smooth slowly varying functions of the quark mass.
 - Higher-order terms of the DR expansion must sum approximately to zero.
- Higher order DR terms obtained in FRR EFT sum such that loop contributions vanish as the quark mass becomes large.

- To any finite order, FRR is mathematically equivalent to Dimensional Regularisation.
- Lattice QCD simulation results are generally smooth slowly varying functions of the quark mass.
 - Higher-order terms of the DR expansion must sum approximately to zero.
- Higher order DR terms obtained in FRR EFT sum such that loop contributions vanish as the quark mass becomes large.
- Regulator parameter, A, shifts strength between FRR loop integrals and the residual expansion of terms analytic in the quark mass.
 - Provides a new mechanism to optimize the convergence properties of the chiral expansion.

Optimal Regularisation?

- Regulator parameter A should be constrained by lattice QCD results.
- Several criteria were under investigation.
- See Jonathan Hall's poster tomorrow for the solution.

Proton Moment in Quenched QCD

Proton Radius in Quenched QCD

Quenched Chiral Nonanalytic Behavior

Disconnected" sea-quark loops are absent, modifying vertices.

Quenched Chiral Nonanalytic Behavior

Disconnected" sea-quark loops are absent, modifying vertices.

Quenched Quark Flow for Form Factors

Finite-Range Regularisation

Kaon mass relation

$$m_K^2 = m_K^{(0)\,2} + \frac{1}{2}\,m_\pi^2$$

Finite-Range Regularisation

Finite-Range Regularisation

$$\mu_p = c_0 + \mu_p \,\chi_\eta \,\left[\log\frac{\Lambda^2}{\Lambda'^2} + \log\left(\frac{m_\pi^2}{\Lambda^2}\right)\right] + \chi_\pi \,m_\pi + \chi_K \,m_K + c_2 \,m_\pi^2 + \cdots$$

Direct Loop Contributions

Direct Loop Contributions

Indirect Loop Contributions

Indirect Loop Contributions

[arXiv:hep-lat/0211017].

Coefficients χ_{π} and χ_{K} (μ_{N} /GeV)

Quark	Int.	Total	Direct Loop	Valence	Quenched
$2 u_p$	$N\pi$	-6.87	+4.12	-11.0	-3.33
	ΛK	-3.68	0	-3.68	0
	ΣK	-0.15	0	-0.15	0
d_p	$N\pi$	+6.87	+4.12	+2.75	+3.33
	ΣK	-0.29	0	-0.29	0
s_p	ΛK	+3.68	+3.68	0	0
	ΣK	+0.44	+0.44	0	0
$2 u_{\Sigma^+}$	$\Sigma\pi$	-2.16	+2.16	-4.32	0
	$\Lambda\pi$	-1.67	+1.67	-3.33	0
	NK	0	+0.29	-0.29	-0.29
	ΞK	-6.87	0	-6.87	-3.04

Finite Volume Artifacts

- Directly incorporate finite-volume effects into the chiral expansion.
- General expansion for the small parameters m_{π} and 1/L

$$M_N = \{$$
Terms Analytic in m_{π}^2 and $1/L \} + \{$ Volume-modified Chiral loop corrections $\}$

Finite Volume Artifacts

- Directly incorporate finite-volume effects into the chiral expansion.
- General expansion for the small parameters m_{π} and 1/L

 $M_N = \{\text{Terms Analytic in } m_\pi^2 \text{ and } 1/L\} + \{\text{Volume-modified Chiral loop corrections}\}$

- Performed with the constraint $m_{\pi}L \gg 1$.
 - Corrections are perturbative in the pion cloud.
 - Analytic terms in 1/L are small by constraint.

Finite Volume Artifacts

- Directly incorporate finite-volume effects into the chiral expansion.
- General expansion for the small parameters m_{π} and 1/L

 $M_N = \{\text{Terms Analytic in } m_\pi^2 \text{ and } 1/L\} + \{\text{Volume-modified Chiral loop corrections}\}$

- Performed with the constraint $m_{\pi}L \gg 1$.
 - Corrections are perturbative in the pion cloud.
 - Analytic terms in 1/L are small by constraint.

The finite periodic volume of the lattice modifies integrals

$$\int d^3k \to \left(\frac{2\pi}{L^3}\right)^3 \sum_{k_x, k_y, k_z}$$

u quark in the Proton: Quenched QCD

u quark in the Proton: Quenched QCD

Quenched Finite Volume Moments

Quenched Finite Volume Moments

Correcting the Quenched Approximation

- Studied a matched set of quenched QCD and full QCD gauge configurations from the MILC Collaboration
- Fit the nucleon mass in quenched QCD and in full QCD
 - With Finite-Range Regularised quenched EFT and full EFT
 - Regulator Parameter $\Lambda = 0.8$

Correcting the Quenched Approximation

- Studied a matched set of quenched QCD and full QCD gauge configurations from the MILC Collaboration
- Fit the nucleon mass in quenched QCD and in full QCD
 - With Finite-Range Regularised quenched EFT and full EFT
 - Regulator Parameter $\Lambda = 0.8$
- Discovered the coefficients of analytic terms in quenched QCD and full QCD
 - Are the same within errors

$$M_{N} = \{a_{0}^{\Lambda} + a_{2}^{\Lambda}m_{\pi}^{2} + a_{4}^{\Lambda}m_{\pi}^{4} + a_{6}^{\Lambda}m_{\pi}^{6} + \cdots \} + \{\chi_{\pi} I_{\pi}(m_{\pi}, \Lambda) + \chi_{\pi\Delta} I_{\pi\Delta}(m_{\pi}, \Lambda) + \cdots \}$$

Correcting the Quenched Approximation

- Studied a matched set of quenched QCD and full QCD gauge configurations from the MILC Collaboration
- Fit the nucleon mass in quenched QCD and in full QCD
 - With Finite-Range Regularised quenched EFT and full EFT
 - Regulator Parameter $\Lambda = 0.8$
- Discovered the coefficients of analytic terms in quenched QCD and full QCD
 - Are the same within errors
- Leads to the concept of separating
 - The pion cloud
 - Affected by quenching and finite volume
 - The core (the source of the pion cloud)
 - Invariant to quenching and finite volume artifacts.

MILC Collaboration Simulations

Coefficients of Analytic Terms

• For case of Regulator Parameter $\Lambda = 0.8$

Nucleon

	a_0	a_2	a_4
N (Dynamical)	1.23(1)	1.13(8)	-0.4(1)
N (Quenched)	1.20(1)	1.10(8)	-0.4(1)

Units are in appropriate powers of GeV.

Coefficients of Analytic Terms

For case of Regulator Parameter $\Lambda = 0.8$

Nucleon

	a_0	a_2	a_4
N (Dynamical)	1.23(1)	1.13(8)	-0.4(1)
N (Quenched)	1.20(1)	1.10(8)	-0.4(1)

Units are in appropriate powers of GeV.

Delta

	a_0	a_2	a_4
Δ (Dynamical)	1.40(3)	1.1(2)	-0.6(3)
Δ (Quenched)	1.43(3)	0.8(2)	-0.1(3)

Nucleon and Delta Masses

Quenched Baryon Masses

Nucleon Quenched χ **PT** Fit

Delta Quenched χ **PT Fit**

Correct Chiral Nonanalytic Behavior

Correct the Quenched Approximation

Correct Moments to Full QCD

Correct Moments to Full QCD

Correct Moments to Full QCD

Chiral Effective Field TheoryInspired by Tony - p.50/101

Indirect Loop Contributions

Coefficients χ_{π} and χ_{K} (μ_{N} /GeV)

Quark	Int.	Total	Direct Loop	Valence	Quenched
$2 u_p$	$N\pi$	-6.87	+4.12	-11.0	-3.33
	ΛK	-3.68	0	-3.68	0
	ΣK	-0.15	0	-0.15	0
d_p	$N\pi$	+6.87	+4.12	+2.75	+3.33
	ΣK	-0.29	0	-0.29	0
s_p	ΛK	+3.68	+3.68	0	0
	ΣK	+0.44	+0.44	0	0
$2 u_{\Sigma^+}$	$\Sigma\pi$	-2.16	+2.16	-4.32	0
	$\Lambda\pi$	-1.67	+1.67	-3.33	0
	NK	0	+0.29	-0.29	-0.29
	ΞK	-6.87	0	-6.87	-3.04

u quark in the Proton: Quenched QCD

Valence *u* quark in the Proton: Full QCD

Direct Loop Contributions

Coefficients χ_{π} and χ_{K} (μ_{N} /GeV)

Quark	Int.	Total	Direct Loop	Valence	Quenched
$2 u_p$	$N\pi$	-6.87	+4.12	-11.0	-3.33
	ΛK	-3.68	0	-3.68	0
	ΣK	-0.15	0	-0.15	0
d_p	$N\pi$	+6.87	+4.12	+2.75	+3.33
	ΣK	-0.29	0	-0.29	0
s_p	ΛK	+3.68	+3.68	0	0
	ΣK	+0.44	+0.44	0	0
$2 u_{\Sigma^+}$	$\Sigma\pi$	-2.16	+2.16	-4.32	0
	$\Lambda\pi$	-1.67	+1.67	-3.33	0
	NK	0	+0.29	-0.29	-0.29
	ΞK	-6.87	0	-6.87	-3.04

u quark in the Proton: Full QCD

u quark in Σ^+

u quark in p

u quark in n

u quark in Ξ^0

s quark in Ξ^0

s quark in Λ

u or d quark in Λ

Octet Baryon Magnetic Moments

Octet Baryon Magnetic Moments

u quark in p

u quark in n

Proton Charge Radius

Neutron Charge Radius

u quark in p

u quark in Σ^+

u quark in n

u quark in Ξ^0

s quark in Ξ^0

s quark in Λ

s quark in Σ

u or d quark in Λ

Octet Baryon Charge Radii

Proton Moment in Full QCD

Power Counting: $\mathcal{O}(m_{\pi}^1)$

Power Counting: $O(m_{\pi}^2)$

Power Counting: $O(m_{\pi}^3)$

Power Counting: $O(m_{\pi}^4)$

Power Counting: $O(m_{\pi}^5)$

Power Counting: $\mathcal{O}(m_{\pi}^6)$

Power Counting: $\mathcal{O}(m_{\pi}^8)$

Power Counting: $\mathcal{O}(m_{\pi}^{10})$

Power Counting: $\mathcal{O}(m_{\pi}^{20})$

Power Counting: $O(m_{\pi}^{40})$

Power Counting: $O(m_{\pi}^{80})$

Power Counting: $O(m_{\pi}^{160})$

Δ^{++} Decay in Full QCD

Chiral Effective Field TheoryInspired by Tony - p.93/101

QCD is Flavour Blind

Chiral Effective Field TheoryInspired by Tony - p.94/101

But there is no *uuu* **proton!**

Quenched Δ : Negative Metric Contribution

p and Δ^+ Magnetic Moments

p/Δ^+ Magnetic Moment Ratio in QQCD

p/Δ^+ Magnetic Ratio in Full QCD

The Structure of the Nucleon

