

Meson-baryon dynamics as a tool for baryon resonance analysis

M. Döring, H. Haberzettl², C. Hanhart, F. Huang¹,

S. Krewald, K. Nakayama¹, U.-G. Meißner, A. Sibirtsev

Forschungszentrum Jülich, Uni Bonn, Germany 1 University of Athens, Georgia, USA 2 GWU, Washington, DC, USA

Contents

EBAC = Excited Baryon Analysis Center Thanks, Tony!

The Juelich coupled reaction channels approach Photoproduction of mesons Meeting the lattice

Analyticity and Unitarity

Pole and Non-Pole T-Matrix

$$T = T^P + T^{NP}$$

$$T = \frac{a_{-1}}{Z - Z_0} + a_0 + O(Z - Z_0)$$
$$a_{-1} = \frac{\Gamma_d \Gamma_d^{(\dagger)}}{1 - \frac{\partial}{\partial Z} \Sigma}$$
$$a_0 = T^{NP} + a_0^P$$
$$a_0^P = \frac{a_{-1}}{\Gamma_d \Gamma_d^{(\dagger)}} *$$
$$* \left(\frac{\partial}{\partial Z} (\Gamma_d \Gamma_d^{(\dagger)}) + \frac{a_{-1}}{2} \frac{\partial^2}{\partial Z^2} \Sigma\right)$$

Partial wave amplitudes: $\pi N \to \pi N_{\text{in der Helmholtz-Gemeinschaft}}$

Complex plane: S₁₁

Second Riemann sheet: P₃₃

 T^{NP}

 $T^P + T^{NP}$

TONY60 , Adelaide, 15-19 February 2010 - p.6/26

Tool: X-ray plot (Gauss)

Re[T(z)]=0

Im[T(z)]=0

$$\frac{1}{x-iy} = \frac{x+iy}{x^2+y^2}$$

$$T^{[2]}(Z) = \frac{a_{-1}(1535)}{Z - Z_0(1535)} + \frac{a_{-1}(1650)}{Z - Z_0(1650)}$$

Poles and residues: Delta

	$\operatorname{Re} z_0$	-2 lm z_0	R	θ [deg]
	[MeV]	[MeV]	[MeV]	[⁰]
$\Delta(1232) P_{33}$	1218	90	47	-37
ARN	1211	99	52	-47
HOE	1209	100	50	-48
CUT	1210 ±1	100 ±2	53 ±2	-47±1
$\Delta^*(1620) S_{31}$	1593	72	12	-108
ARN	1595	135	15	-92
HOE	1608	116	19	-95
CUT	$\textbf{1600}{\pm}15$	120 ±20	15 ±2	-110±20
$\Delta^*(1910) P_{31}$	1840	221	12	-153
ARN	1771	479	45	+172
HOE	1874	283	38	
CUT	1880 ±30	200 ±40	20 ±4	- 90±30

TONY60 , Adelaide, 15-19 February 2010 - p.8/26

$\gamma N \rightarrow \pi N$ Gauge invariance

Gauge invariance: Generalized Ward-Takahashi identity (WTI) (Note the condition of current conservation $k_{\mu}M^{\mu} = 0$ is necessary but not sufficient!)

$$k_{\mu}M^{\mu} = -|F_{s}\tau\rangle S_{p+k}Q_{i}S_{p}^{-1} + S_{p'}^{-1}Q_{f}S_{p'-k}|F_{u}\tau\rangle + \Delta_{p-p'+k}^{-1}Q_{\pi}\Delta_{p-p'}|F_{t}\tau\rangle$$

Strategy: Replace by phenomenological contact term such that the generalized WTI is satisfied Haberzettl, PRC56 (1997), Haberzettl, Nakayama, Krewald, PRC74 (2006)

$d\sigma/d\Omega$ and Σ_{γ} for $\gamma p \to \pi^+ n$

preliminary (Fei Huang, Kanzo Nakayama)

$d\sigma/d\Omega$ and Σ_{γ} for $\gamma n \to \pi^- p$

preliminary (Fei Huang, Kanzo Nakayama)

$d\sigma/d\Omega$ and Σ_{γ} for $\gamma p \to \pi^0 p$

preliminary (Fei Huang, Kanzo Nakayama)

Meeting the lattice: Pole path

Pion mass dependence

Conclusions

- Resonances characterized by poles and residues of the S-matrix M. Döring et al., NPA829,170(2009).
- Separation of amplitude into contributions from bare resonances and background is model dependent. Implication for constituent quark model and missing mass problem!
- Outlook:
- electroproduction
- two pion production

HAPPY BIRTHDAY, DEAR TONY!

S11: background and poles

S11: background and poles

TH HIT

ŧŧ.

1800

S11: cusp

lm z

P11: analytical structure

Poles and residues I

	$\operatorname{Re} Z_0$	-2 lm Z ₀	R	θ [deg]
	[MeV]	[MeV]	[MeV]	[0]
$N^*(1520) D_{13}$	1505	95	32	-18
Arndt06	1515	113	38	-5
Hohler93	1510	120	32	-8
Cutkosky79	1510 ± 5	114 ±10	35 ±2	-12±5
$\Delta(1232) P_{33}$	1218	90	47	-37
Arndt06	1211	99	52	-47
Hohler93	1209	100	50	-48
Cutkosky79	1210 ±1	100 ±2	53 ±2	-47±1
$\Delta^*(1700) D_{33}$	1637	236	16	-38
Arndt06	1632	253	18	-40
Hohler93	1651	159	10	
Cutkosky79	1675 ±25	220 ±40	13 ±3 тог	NY60, 200 + 25 bruary 2010 - p.20/26

Poles and residues II

	$\operatorname{Re} Z_0$	-2 lm Z_0	R	θ [deg]
	[MeV]	[MeV]	[MeV]	[0]
$N^*(1535) S_{11}$	1519	129	31	-3
Arndt06	1502	95	16	-16
Hohler93	1487			
Cutkosky79	1510 ± 50	260 ±80	120 ±40	+15±45
$N^*(1650) S_{11}$	1669	136	54	-44
Arndt06	1648	80	14	-69
Hohler93	1670	163	39	-37
Cutkosky79	1640 ±20	150 ±30	60 ±10	-75±25
$N^*(1440) P_{11}$	1387	147	48	-64
Arndt06	1359	162	38	-98
Hohler93	1385	164	40	
Cutkosky79	1375 ±30	180 ±40	52 ±5 tor	NY60, Ademand, 15-19, 355ary 2010 - p.21/26

Poles and residues III

	$\operatorname{Re} Z_0$	-2 lm Z ₀	R	θ [deg]
	[MeV]	[MeV]	[MeV]	[0]
$\Delta^*(1620) S_{31}$	1593	72	12	-108
Arndt06	1595	135	15	-92
Hohler93	1608	116	19	-95
Cutkosky79	1600 ± 15	120 ±20	15 ±2	-110±20
$\Delta^*(1910) P_{31}$	1840	221	45	-153
Arndt06	1771	479	38	+172
Hohler93	1874	283	19	
Cutkosky79	1880 ±30	200 ±40	20 ±4	- 90±30
$N^*(1720) P_{13}$	1663	212	14	-82
Arndt06	1666	355	25	-94
Hohler93	1686	187	15	
Cutkosky79	1680 ±30	120 ±40	8 ±12 ,	ONY60 6 6 0 + 3 0 ruary 2010 - p.22

Background

	T^{NP}	a_0^{P}	Ratio
$N^*(1440) P_{11}$	15.3 - 7.60i	-10.9 + 7.92i	0.26
$\Delta^*(1620) S_{31}$	9.01 - 6.37i	-1.21 + 0.24i	0.9
$\Delta^*(1910) P_{31}$	4.58 - 2.76i	-0.78 + 0.24	0.9
$N^*(1720) P_{13}$	1.76 - 0.10i	0.45 - 0.56i	1.3
$N^*(1520) D_{13}$	-4.62 - 0.56i	3.03 + 1.23i	0.4
$\Delta(1232) P_{33}$	-16.7 - 3.57i	17.1 + 10.6i	0.4
$\Delta^*(1700) D_{33}$	0.80 - 0.52i	0.40 + 0.11i	1.3

Poles and background \mathbf{P}_{33}

Vicinity of Pole:

 $T(Z) \sim \frac{a_{-1}}{Z - Z_0} + T^{NP}(Z)$

 $T(Z) \sim \frac{a_{-1}}{Z - Z_0} + a_0$

Poles and background D₃₃

Vicinity of Pole:

$$T(Z) \sim \frac{a_{-1}}{Z - Z_0} + T^{NP}(Z)$$

 $T(Z) \sim \frac{a_{-1}}{Z - Z_0} + a_0$

Amplitudes for charge exchange

7 8 9 s^{1/2} (GeV)

5 6