Wave function of the Proton

Dale Roberts, Waseem Kamleh, Derek Leinweber

CSSM and University of Adelaide

Tony’s 60-fest, February, 2010
Introduction

- We explore the structure of the nucleon by examining the wave function with and without the presence of a background magnetic field.
Introduction

- We explore the structure of the nucleon by examining the wave function with and without the presence of a background magnetic field.
- The standard creation and annihilation operators for the proton are given by

\[
\bar{\chi}(\vec{x}) = \epsilon^{abc} \bar{u}_a(\vec{x})(\bar{d}_b(\vec{x}) C\gamma^5 \bar{u}_c^T(\vec{x})),
\]

\[
\chi(\vec{x}) = \epsilon^{abc} (u_a^T(\vec{x}) C\gamma^5 d_b(\vec{x})) u_c(\vec{x}).
\]
Introduction

- We explore the structure of the nucleon by examining the wave function with and without the presence of a background magnetic field.

- The standard creation and annihilation operators for the proton are given by

\[
\begin{align*}
\bar{\chi}(\vec{x}) &= \epsilon^{abc} \bar{u}_a(\vec{x})(\bar{d}_b(\vec{x}) C \gamma_5 \tilde{u}^T_c(\vec{x})), \\
\chi(\vec{x}) &= \epsilon^{abc} (u_a^T(\vec{x}) C \gamma_5 d_b(\vec{x})) u_c(\vec{x}).
\end{align*}
\]

- \(C = \gamma_2 \gamma_4 \) is the charge conjugation matrix.
We explore the structure of the nucleon by examining the wave function with and without the presence of a background magnetic field.

The standard creation and annihilation operators for the proton are given by

\[
\bar{\chi}(\vec{x}) = \epsilon^{abc} \bar{u}_a(\vec{x})(\bar{d}_b(\vec{x}) C \gamma_5 \bar{u}^T_c (\vec{x})), \\
\chi(\vec{x}) = \epsilon^{abc} (u^T_a(\vec{x}) C \gamma_5 d_b(\vec{x})) u_c(\vec{x}).
\]

\(C = \gamma_2 \gamma_4 \) is the charge conjugation matrix.

In order to create the wave function of the proton we fix the position of the \(u \) quarks and measure the \(d \) quark probability distribution.
\textbf{u Quark Separation}

- Relative to a central spatial point \vec{x}, the vectors \vec{d}_1 and \vec{d}_2 describe the position of the two u quarks respectively, and \vec{y} describes the position of the d quark. So we modify our annihilation operator to be

$$\chi(\vec{x}, \vec{d}_1, \vec{d}_2, \vec{y}) = \epsilon^{abc} (u^T_a (\vec{x} + \vec{d}_1) C \gamma_5 d_b (\vec{x} + \vec{y})) u_c (\vec{x} + \vec{d}_2).$$
u Quark Separation

- Relative to a central spatial point \vec{x}, the vectors \vec{d}_1 and \vec{d}_2 describe the position of the two u quarks respectively, and \vec{y} describes the position of the d quark. So we modify our annihilation operator to be

$$\chi(\vec{x}, \vec{d}_1, \vec{d}_2, \vec{y}) = \epsilon^{abc} (u_a^T (\vec{x} + \vec{d}_1) C \gamma_5 d_b (\vec{x} + \vec{y})) u_c (\vec{x} + \vec{d}_2).$$

- The u quarks are separated along the x–axis,

$$\vec{d}_1 = (d_1, 0, 0), \quad \vec{d}_2 = (d_2, 0, 0).$$
u Quark Separation

- Relative to a central spatial point \vec{x}, the vectors \vec{d}_1 and \vec{d}_2 describe the position of the two u quarks respectively, and \vec{y} describes the position of the d quark. So we modify our annihilation operator to be

$$\chi(\vec{x}, \vec{d}_1, \vec{d}_2, \vec{y}) = \epsilon^{abc}(u_a^T (\vec{x} + \vec{d}_1) C \gamma_5 d_b (\vec{x} + \vec{y})) u_c (\vec{x} + \vec{d}_2).$$

- The u quarks are separated along the x--axis,

$$\vec{d}_1 = (d_1, 0, 0), \quad \vec{d}_2 = (d_2, 0, 0).$$

- For even separations, $d_1 = -d_2$, and for odd separations, $d_1 + 1 = -d_2$.
Gauge fixing

The wave function of the proton on the lattice is then defined to be proportional to the two-point correlation function at zero momentum in position space,

\[G_{2\gamma\rho}(\vec{x}, \vec{d}_1, \vec{d}_2, \vec{y}, t) = \langle \Omega | T\{\chi(\vec{x}, \vec{d}_1, \vec{d}_2, \vec{y}, t)\bar{\chi}(0)\}|\Omega\rangle. \]
The wave function of the proton on the lattice is then defined to be proportional to the two-point correlation function at zero momentum in position space,

\[G_{2\gamma\rho}(\vec{x}, \vec{d}_1, \vec{d}_2, \vec{y}, t) = \langle \Omega | T\{\chi(\vec{x}, \vec{d}_1, \vec{d}_2, \vec{y}, t)\bar{\chi}(0)\} | \Omega \rangle. \]

We use a volume (wall) source.
The wave function of the proton on the lattice is then defined to be proportional to the two-point correlation function at zero momentum in position space,

$$G_{2\gamma\rho}(\vec{x}, \vec{d}_1, \vec{d}_2, \vec{y}, t) = \langle \Omega | T\{\chi(\vec{x}, \vec{d}_1, \vec{d}_2, \vec{y}, t)\bar{\chi}(0)\}|\Omega \rangle.$$

We use a volume (wall) source.

The two point function we have constructed is no longer gauge invariant.
Gauge fixing

- The wave function of the proton on the lattice is then defined to be proportional to the two-point correlation function at zero momentum in position space,

\[G_{2\gamma\rho}(\vec{x}, \vec{d}_1, \vec{d}_2, \vec{y}, t) = \langle \Omega | T\{\chi(\vec{x}, \vec{d}_1, \vec{d}_2, \vec{y}, t)\bar{\chi}(0)\}|\Omega \rangle. \]

- We use a volume (wall) source.

- The two point function we have constructed is no longer gauge invariant.

- The simplest solution is to gauge fix. We study both the Landau and Coulomb gauges.
Landau Gauge

- Landau gauge, surface plot, D=0
Landau Gauge

- Landau gauge, surface plot, $D=7$
u Quark Symmetrisation

- The density is concentrated around the u quark which is part of the scalar diquark term.
u Quark Symmetrisation

- The density is concentrated around the u quark which is part of the scalar diquark term.
- The wave function should be symmetric around the centre of mass \vec{x}.
u Quark Symmetrisation

- The density is concentrated around the u quark which is part of the scalar diquark term.
- The wave function should be symmetric around the centre of mass \vec{x}.
- The two u quarks should be indistinguishable - but we have explicitly given them different positions.
The density is concentrated around the u quark which is part of the scalar diquark term.

The wave function should be symmetric around the centre of mass \vec{x}.

The two u quarks should be indistinguishable - but we have explicitly given them different positions.

Solution: we symmetrise explicitly over d_1 and d_2,

$$\chi(\vec{x}, \vec{d}_1, \vec{d}_2, \vec{y}) =$$

$$\epsilon^{abc} \left[(u^T_a (\vec{x} + \vec{d}_1) C\gamma_5 d_b (\vec{x} + \vec{y})) u_c (\vec{x} + \vec{d}_2)
ight. + (u^T_a (\vec{x} + \vec{d}_2) C\gamma_5 d_b (\vec{x} + \vec{y})) u_c (\vec{x} + \vec{d}_1) \right].$$
Landau gauge wave function

- Volume source means no preferred starting position, allows us to average our results over all \vec{x}.
Landau gauge wave function

- Volume source means no preferred starting position, allows us to average our results over all \vec{x}.
- See animation.
Landau gauge wave function

- Volume source means no preferred starting position, allows us to average our results over all \vec{x}.
- See animation.
- “Peanut” shape.
Landau gauge wave function

- Volume source means no preferred starting position, allows us to average our results over all \vec{x}.
- See animation.
- “Peanut” shape.
- Diquark clustering clearly present.
Coulomb gauge wave function

See animation.
Coulomb gauge wave function

- See animation.
- “Ellipsoidal” shape.
Coulomb gauge wave function

- See animation.
- “Ellipsoidal” shape.
- Diquark clustering clearly absent.
Coulomb gauge wave function

- See animation.
- “Ellipsoidal” shape.
- Diquark clustering clearly absent.
- Different gauge \implies different shape.
Background \vec{B} Field

- We also study the response of the proton to the presence of a constant background magnetic field.
Background \vec{B} Field

- We also study the response of the proton to the presence of a constant background magnetic field.
- A constant background field in the z direction (with continuum field strength ω) is implemented as a $U(1)$ field, with

\[
U_1(x, y) = \exp(-i\omega y),
\]
\[
U_2(x, y) = 1,
\]

except for the boundary,

\[
U_2(x, n_y) = \exp(+i\omega n_y x).
\]
Background \vec{B} Field

- The plaquettes in the x–y plane are then constant,

$$P_{12}(x, y) = U_1(x, y)U_2(x + 1, y)U_1^\dagger(x, y + 1)U_2^\dagger(x, y)$$

$$= e^{-i\omega y}.1.e^{i\omega y+1}.1 = \exp(+i\omega).$$
Background \vec{B} Field

- The plaquettes in the x–y plane are then constant,

$$P_{12}(x, y) = U_1(x, y)U_2(x + 1, y)U_1^\dagger(x, y + 1)U_2^\dagger(x, y)$$

$$= e^{-i\omega y}.1.e^{+i\omega(y+1)}.1 = \exp(+i\omega).$$

- The corner of the lattice requires special treatment,

$$P_{12}(n_x, n_y) = U_1(n_x, n_y)U_2(1, n_y)U_1^\dagger(n_x, 1)U_2^\dagger(n_x, n_y)$$

$$= e^{-i\omega n_y}.e^{+i\omega n_y}.e^{+i\omega}.e^{-i\omega n_x n_y}$$
Background \vec{B} Field

- The plaquettes in the x–y plane are then constant,

\[P_{12}(x, y) = U_1(x, y)U_2(x + 1, y)U_1^\dagger(x, y + 1)U_2^\dagger(x, y) \]
\[= e^{-i\omega y}.1.e^{+i\omega(y+1)}.1 = \exp(+i\omega). \]

- The corner of the lattice requires special treatment,

\[P_{12}(n_x, n_y) = U_1(n_x, n_y)U_2(1, n_y)U_1^\dagger(n_x, 1)U_2^\dagger(n_x, n_y) \]
\[= e^{-i\omega n_y}.e^{+i\omega n_y}.e^{+i\omega}.e^{-i\omega n_x n_y} \]

- A quantisation condition on the field strength is induced

\[\exp(+i\omega n_x n_y) = 1 \implies \omega = \frac{2\pi k}{n_x n_y}. \]
Background Field

- Background field, x–y plane.
There is clearly an x–y asymmetry present.
\[\vec{B} \text{ Asymmetry} \]

- There is clearly an \(x-y \) asymmetry present.
- There should be:
There is clearly an x–y asymmetry present.

There should be:

1. Our field description is manifestly asymmetric.
\(\vec{B} \) Asymmetry

- There is clearly an \(x-y \) asymmetry present.
- There should be:
 1. Our field description is manifestly asymmetric.
 2. The quark propagator contains the (lattice version of the) inverse of \(\partial_\mu + A_\mu \).
\(\vec{B} \) Asymmetry

- There is clearly an \(x-y \) asymmetry present.
- There should be:
 1. Our field description is manifestly asymmetric.
 2. The quark propagator contains the (lattice version of the) inverse of \(\partial_\mu + A_\mu \).
 3. We are looking at a gauge dependent quantity.
Wave function of the Proton
Dale Roberts, Waseem Kamleh, Derek Leinweber

Introduction
Interpolating Field
\(u \) Symmetrisation
Landau Gauge
Coulomb Gauge

\(\vec{B} \) Field
\(\vec{B} \) Symmetrisation
Landau Gauge
Coulomb Gauge

Summary

\(\vec{B} \) Asymmetry

- In the continuum it is possible to construct a manifestly (anti-)symmetric background gauge field,

\[
F_{12} = \partial_1 A_2 - \partial_2 A_1
\]

\[
A_2 = \omega \frac{x}{2}, \quad A_1 = -\omega \frac{y}{2}
\]

...
\(\vec{B} \) Asymmetry

- In the continuum it is possible to construct a manifestly (anti-)symmetric background gauge field,

\[
F_{12} = \partial_1 A_2 - \partial_2 A_1
\]

\[
A_2 = \omega \frac{x}{2}, \quad A_1 = -\omega \frac{y}{2}
\]

- Symmetric under the transformation \(x \rightarrow -y \).
\[\vec{B} \text{ Asymmetry} \]

- In the continuum it is possible to construct a manifestly (anti-)symmetric background gauge field,

\[
F_{12} = \partial_1 A_2 - \partial_2 A_1
\]

\[
A_2 = \omega \frac{x}{2}, A_1 = -\omega \frac{y}{2}
\]

- Symmetric under the transformation \(x \rightarrow -y \).

- It is possible on the lattice as well (if \(n_x = n_y = n \)), by setting

\[
U_1(x, y) = \exp(-i\omega y/2),
\]

\[
U_2(x, y) = \exp(+i\omega x/2).
\]
\(\vec{B} \) Asymmetry

- In the continuum it is possible to construct a manifestly (anti-)symmetric background gauge field,

\[
F_{12} = \partial_1 A_2 - \partial_2 A_1
\]

\[
A_2 = \omega \frac{x}{2}, \quad A_1 = -\omega \frac{y}{2}
\]

- Symmetric under the transformation \(x \to -y \).
- It is possible on the lattice as well (if \(n_x = n_y = n \)), by setting

\[
U_1(x, y) = \exp(-i\omega y / 2),
\]

\[
U_2(x, y) = \exp(+i\omega x / 2).
\]

- However, the quantisation condition is now \(\omega = \frac{4\pi k}{n} \).
\[\vec{B} \text{ Asymmetry} \]

- In the continuum it is possible to construct a manifestly (anti-)symmetric background gauge field,

\[F_{12} = \partial_1 A_2 - \partial_2 A_1 \]

\[A_2 = \omega \frac{x}{2}, \quad A_1 = -\omega \frac{y}{2} \]

- Symmetric under the transformation \(x \to -y \).
- It is possible on the lattice as well (if \(n_x = n_y = n \)), by setting

\[U_1(x, y) = \exp(-i\omega y/2), \]

\[U_2(x, y) = \exp(+i\omega x/2). \]

- However, the quantisation condition is now \(\omega = \frac{4\pi k}{n} \).
- Smallest non-zero field in a factor of \(2n \) bigger.
\(\vec{B} \) Asymmetry

- In the continuum it is possible to construct a manifestly (anti-)symmetric background gauge field,

\[
F_{12} = \partial_1 A_2 - \partial_2 A_1
\]

\[
A_2 = \omega \frac{x}{2}, \quad A_1 = -\omega \frac{y}{2}
\]

- Symmetric under the transformation \(x \rightarrow -y \).

- It is possible on the lattice as well (if \(n_x = n_y = n \)), by setting

\[
U_1(x, y) = \exp(-i\omega y/2),
\]

\[
U_2(x, y) = \exp(+i\omega x/2).
\]

- However, the quantisation condition is now \(\omega = \frac{4\pi k}{n} \).

- Smallest non-zero field in a factor of \(2n \) bigger.

- Thats bad...
Gauge Transformation

If we apply the gauge transformation

\[G(x, y) = \exp(-i\omega xy), \]

using

\[U'_\mu(x, y) = G(x, y)U_\mu(x, y)G^\dagger(x + \delta_{\mu 1}, y + \delta_{\mu 2}) \]

we obtain

\[U'_1(x, y) = 1 \]

except on the boundary where

\[U'_1(n_x, y) = \exp(-i\omega n_x y) \]
Gauge Transformation

- If we apply the gauge transformation

\[G(x, y) = \exp(-i \omega xy), \]

using

\[U'_\mu(x, y) = G(x, y) U_\mu(x, y) G^\dagger(x + \delta_\mu_1, y + \delta_\mu_2) \]

we obtain

\[U'_1(x, y) = 1 \]

except on the boundary where

\[U'_1(n_x, y) = \exp(-i \omega n_x y) \]

- For the links in the y direction we get

\[U'_2(x, y) = \exp(+i \omega x). \]
Gauge Transformation

- If we apply the gauge transformation

\[G(x, y) = \exp(-i\omega xy), \]

using

\[U'_\mu(x, y) = G(x, y) U_\mu(x, y) G^\dagger(x + \delta_{\mu 1}, y + \delta_{\mu 2}) \]

we obtain

\[U'_1(x, y) = 1 \]

except on the boundary where

\[U'_1(n_x, y) = \exp(-i\omega n_x y) \]

- For the links in the y direction we get

\[U'_2(x, y) = \exp(+i\omega x). \]

- \(G(x, y) \) “rotates” the gauge potential 90°.
Gauge Transformation

- If we apply the gauge transformation
 \[G(x, y) = \exp(-i\omega xn_y), \]
 we obtain
 \[U_1(x, y) = \exp(-i\omega(n_y - y)) \]
 with
 \[U_2(x, y) = 1 \]
 except for the boundary,
 \[U_2(x, n_y) = \exp(+i\omega n_y x). \]
Gauge Transformation

- If we apply the gauge transformation

\[G(x, y) = \exp(-i\omega x n_y), \]

we obtain

\[U_1(x, y) = \exp(-i\omega (n_y - y)) \]

with

\[U_2(x, y) = 1 \]

except for the boundary,

\[U_2(x, n_y) = \exp(+i\omega n_y x). \]

- \(G(x, y) \) “reverses” the gauge potential \(y \rightarrow (n_y - y) \).
Gauge Transformation

- If we apply the gauge transformation

\[G(x, y) = \exp(+i\omega n_x y), \]

this reverses the “rotated” potential, \(x \to (n_y - x) \).
Gauge Transformation

- If we apply the gauge transformation

\[G(x, y) = \exp(+i\omega n_x y), \]

this reverses the “rotated” potential, \(x \rightarrow (ny - x) \).

- We then average the wave function over all four gauge potentials to obtain symmetrised results (in the \(x-y \) plane).
Gauge Transformation

- If we apply the gauge transformation
 \[G(x, y) = \exp(+i\omega n_x y), \]
 this reverses the “rotated” potential, \(x \rightarrow (n_y - x) \).
- We then average the wave function over all four gauge potentials to obtain symmetrised results (in the \(x-y \) plane).
- All four gauge potentials produce the same field strength tensor.
Landau gauge, B Field

▶ See animation.
Landau gauge, B Field

- See animation.
- “Peanut” shape.
Landau gauge, B Field

- See animation.
- “Peanut” shape.
- Diquark clustering still present.
Landau gauge, B Field

- See animation.
- “Peanut” shape.
- Diquark clustering still present.
- Background field only induces a slight deformation.
Background Field

\(B = 0, \ x-z \ plane, \ d = 0. \)
Background Field

$B = 1$, x–z plane, $d = 0$.
Background Field

- $B = 0$, x–z plane, $d = 5$.

![Graph showing the $B = 0$ field in the x–z plane with a value of $d = 5$.]
Background Field

- $B = 1$, x–z plane, $d = 5$.
Coulomb gauge, B Field

▶ See animation.
Coulomb gauge, B Field

- See animation.
- “Ellipsoidal” shape.
Coulomb gauge, B Field

- See animation.
- “Ellipsoidal” shape.
- Diquark clustering still absent.
Coulomb gauge, B Field

- See animation.
- “Ellipsoidal” shape.
- Diquark clustering still absent.
- Background field only induces a slight deformation.
Summary

- Wave function of the proton is gauge dependent.
Summary

- Wave function of the proton is gauge dependent.
- Diquark clustering present in Landau gauge.
Summary

- Wave function of the proton is gauge dependent.
- Diquark clustering present in Landau gauge.
- Diquark clustering absent in Coulomb gauge.
Summary

- Wave function of the proton is gauge dependent.
- Diquark clustering present in Landau gauge.
- Diquark clustering absent in Coulomb gauge.
- Strong background field ($\mu B \approx 260$ MeV) induces a relatively small deformation,
Summary

- Wave function of the proton is gauge dependent.
- Diquark clustering present in Landau gauge.
- Diquark clustering absent in Coulomb gauge.
- Strong background field ($\mu B \approx 260 \text{ MeV}$) induces a relatively small deformation,
- Multiple symmetrisation techniques employed.
Summary

- Wave function of the proton is gauge dependent.
- Diquark clustering present in Landau gauge.
- Diquark clustering absent in Coulomb gauge.
- Strong background field ($\mu B \approx 260$ MeV) induces a relatively small deformation,
- Multiple symmetrisation techniques employed.
- Happy Birthday Tony!