The structure of a bound nucleon

Ian Cloët (University of Washington)

Collaborators

Wolfgang Bentz (Tokai University) Anthony Thomas (Adelaide University)

Tony's 60–Fest 15–19 Feburary 2010

Theme

- Gain insights into nuclear structure from a QCD viewpoint
- Highlight opportunities provided by nuclear systems to study QCD
- Present complementary approach to traditional nuclear physics
 - formulated as a covariant quark theory
 - grounded in good description of mesons and baryons
 - at finite density self-consistent mean-field approach
- Fundamental difference
 - bound nucleons differ from free nucleons
 - medium modification effects typically ~10–20%
- Possible answers to many long standing questions: we address
 - the EMC effect [European Muon Collaboration]
 - the NuTeV anomaly [Neutrinos at the Tevatron]

Weak mixing angle and the NuTeV anomaly

- NuTeV: $\sin^2 \theta_W = 0.2277 \pm 0.0013 (\text{stat}) \pm 0.0009 (\text{syst})$
 - G. P. Zeller et al. Phys. Rev. Lett. 88, 091802 (2002)
- World average $\sin^2 \theta_W = 0.2227 \pm 0.0004$: 3 $\sigma \implies$ "NuTeV anomaly"
- Huge amount of experimental & theoretical interest [over 400 citations]
- No universally accepted <u>complete</u> explanation

- Pre–1983: before the EMC experiment
- Nucleon quark distributions unchanged in medium
- Long distance nuclear effects not expected to influence "short distance" quark physics
- Fermi motion of nucleons dominate at large x

EMC Effect

- J. J. Aubert *et al.* [European Muon Collaboration], Phys. Lett. B **123**, 275 (1983).
- Immediate parton model interpretation:
 - valence quarks in nucleus carry less momentum than in nucleon
- Nuclear effects do influence quark physics
- What is the mechanism? After 25 years no consensus
- EMC ↔ medium modification ↔ NuTeV anomaly?

EMC Effect

- J. J. Aubert *et al.* [European Muon Collaboration], Phys. Lett. B **123**, 275 (1983).
- Immediate parton model interpretation:
 - valence quarks in nucleus carry less momentum than in nucleon
- Nuclear effects do influence quark physics
- What is the mechanism? After 25 years no consensus
- EMC ↔ medium modification ↔ NuTeV anomaly?

- What does this mean?
- 50 years of traditional nuclear physics tells us that the nucleus is composited of nucleon-like objects
- However if a nucleon property is not protected by a symmetry its value may change in medium e.g.
 - mass, magnetic moments, radii
 - quark distributions, form factors, GPDs, etc
- There must be medium modification:
 - nucleon propagator is changed in medium
 - off-shell effects: in-medium nucleon has 12 form factors
 - consequently for example $F_{1p}(Q^2 = 0) \neq 1$
- Need to understand these effects as first step toward QCD based understanding of nuclei

Finite Nuclei quark distributions

Definition of finite nuclei quark distributions

$$q_A(x_A) = \frac{P^+}{A} \int \frac{d\xi^-}{2\pi} e^{\frac{iP^+ x_A \xi^-}{A}} \langle A, P | \overline{\psi}_q(0) \gamma^+ \psi_q(\xi^-) | A, P \rangle$$

Approximate using a modified convolution formalism

$$q_A(x_A) = \sum_{\alpha,\kappa,m} \int dy_A \int dx \ \delta(x_A - y_A x) f_{\alpha,\kappa,m}(y_A) \ q_{\alpha,\kappa}(x)$$

Nambu–Jona-Lasinio Model

Interpreted as low energy chiral effective theory of QCD

 Can be motivated by infrared enhancement of gluon propagator e.g. DSEs and Lattice QCD

- Investigate the role of quark degrees of freedom.
- NJL has same symmetries as QCD

Lagrangian: $\mathcal{L}_{NJL} = \overline{\psi} \left(i \partial - m \right) \psi + G \left(\overline{\psi} \Gamma \psi \right)^2$

Nucleon in the NJL model

- Nucleon approximated as quark-diquark bound state.
- Use relativistic Faddeev approach:

• Nucleon quark distributions

$$q(x) = p^{+} \int \frac{d\xi^{-}}{2\pi} e^{i x p^{+} \xi^{-}} \langle p, s | \overline{\psi}_{q}(0) \gamma^{+} \psi_{q}(\xi^{-}) | p, s \rangle_{c}, \quad \Delta q(x) = \langle \gamma^{+} \gamma_{5} \rangle$$

Associated with a Feynman diagram calculation

Results: proton quark distributions

- Empirical spin-independent distributions:
 - Martin, Roberts, Stirling and Thorne, Phys. Lett. B **531**, 216 (2002).
- Empirical helicity:
 - M. Hirai, S. Kumano and N. Saito, Phys. Rev. D 69, 054021 (2004).
- Approach is covariant, satisfies all sum rules & positivity constraints

Recall: Shell Model Picture

- We now discuss κ or density dependence
- For nuclear matter $f_{\alpha,\kappa,m}(y_A)$ & hence $\sum_{\alpha,\kappa,m}$ greatly simplify

Asymmetric Nuclear Matter: Lagrangian

• Finite Density Lagrangian: σ , ω , ρ mean fields

$$\mathcal{L} = \overline{\psi} \left(i \not \partial - M^* - \not V \right) \psi + \mathcal{L}'_I$$

- σ : isoscalar-scalar attractive
 - ω : isoscalar-vector repulsive
 - ρ : isovector-vector attractive/repulsive
- Fundamental physics: mean fields couple to the quarks in nucleons

Finite density quark propagator

$$S(k)^{-1} = k - M - i\varepsilon \quad \rightarrow \quad S_q(k)^{-1} = k - M^* - V_q - i\varepsilon$$

Effective Potential

$$\mathcal{E} = \mathcal{E}_V - \frac{\omega_0^2}{4 G_\omega} - \frac{\rho_0^2}{4 G_\rho} + \mathcal{E}_p + \mathcal{E}_n$$

- \mathcal{E}_V : vacuum energy $\mathcal{E}_{p(n)}$: energy of nucleons moving in σ , ω , ρ fields
- Effective potential provides

$$\omega_0 = 6 G_\omega \left(\rho_p + \rho_n \right), \quad \rho_0 = 2 G_\rho \left(\rho_p - \rho_n \right), \quad \frac{\partial \mathcal{E}}{\partial M^*} = 0$$

• $G_{\omega} \Leftrightarrow Z = N$ saturation & $G_{\rho} \Leftrightarrow$ symmetry energy

• Vector potentials:

$$V_{u(d)} = \omega_0 \pm \rho_0 \qquad V_{p(n)} = 3\omega_0 \pm \rho_0$$

• Recall: quark propagator: $S_q(k) = [k - M^* - V_q]^{-1}$

Results: Nuclear Matter

 $\rho_p + \rho_n =$ fixed – Differences arise from:

naive: different number protons and neutrons

• medium: p & n Fermi motion and $V_{u(d)}$ differ $\rightarrow u_p(x) \neq d_n(x), \ldots$

Isovector EMC Effect

• EMC ratio:
$$R^{\gamma} = \frac{F_{2A}}{F_{2A}^{\text{naive}}} \sim \frac{4 \ u_A(x) + d_A(x)}{4 \ u_0(x) + d_0(x)}, \quad u(x) = \frac{Z}{A} u_p(x) + \frac{N}{A} u_n(x) \dots$$

- Effect comes largely from the changing ρ_0 field
- Proton rich: u(x) > d(x) and $V_u > V_d$
- Neutron rich: u(x) < d(x) and $V_u < V_d$

• Density is fixed, only Z/N changes \implies non-trivial isospin dependence

Paschos-Wolfenstein ratio motivated the NuTeV study:

$$R_{PW} = \frac{\sigma_{NC}^{\nu A} - \sigma_{NC}^{\bar{\nu} A}}{\sigma_{CC}^{\nu A} - \sigma_{CC}^{\bar{\nu} A}}, \qquad NC \Longrightarrow Z^0, \quad CC \Longrightarrow W^{\pm}$$

• Expressing R_{PW} in terms of quark distributions:

$$R_{PW} = \frac{\left(\frac{1}{6} - \frac{4}{9}\sin^2\theta_W\right) \left\langle x \, u_A^- \right\rangle + \left(\frac{1}{6} - \frac{2}{9}\sin^2\theta_W\right) \left\langle x \, d_A^- + x \, s_A^- \right\rangle}{\left\langle x \, d_A^- + x \, s_A^- \right\rangle - \frac{1}{3} \left\langle x \, u_A^- \right\rangle}$$

• For an isoscalar target $u_A \simeq d_A$ and if $s_A \ll u_A + d_A$

$$R_{PW} = \frac{1}{2} - \sin^2 \theta_W + \Delta R_{PW}$$

- NuTeV measured R_{PW} on an Fe target ($Z/N \simeq 26/30$)
- Correct for neutron excess ⇔ isoscalarity corrections

Isovector EMC correction to NuTeV

General form of isoscalarity corrections

$$R_{PW} = \left(\frac{1}{2} - \sin^2 \theta_W\right) + \left(1 - \frac{7}{3}\sin^2 \theta_W\right) \frac{\langle x \, u_A^- - x \, d_A^- \rangle}{\langle x \, u_A^- + x \, d_A^- \rangle}$$

- NuTeV assumed nucleons in Fe are like free nucleons
 - Ignored some medium effects: Fermi motion & ρ^0 -field
- Use our medium modified "Fe" quark distributions

$$\Delta R_{PW} = \Delta R_{PW}^{\text{naive}} + \Delta R_{PW}^{\text{Fermi}} + \Delta R_{PW}^{\rho^0} = -(0.0107 + 0.0004 + 0.0028).$$

• Recall NuTeV requires $\Delta R_{PW} = -0.005$

$$\begin{split} R_{PW}^{\mathsf{SM}} &\equiv 0.2773 \pm \dots \quad (= \frac{1}{2} - \sin^2 \theta_W) \\ R_{PW}^{\mathsf{NuTeV}} &= 0.2723 \pm \dots \end{split}$$

Isoscalarity ρ^0 correction can explain up to 65% of anomaly

NuTeV anomaly cont'd

- Also correction from $m_u \neq m_d$ Charge Symmetry Violation
 - $CSV + \rho_0 \implies$ no NuTeV anomaly
 - No evidence for physics beyond the Standard Model
- Instead "NuTeV anomaly" is evidence for medium modification
 - Equally interesting
 - EMC effect has over 850 citations [J. J. Aubert *et al.*, Phys. Lett. B 123, 275 (1983).]
- Model dependence?
 - sign of correction is fixed by nature of vector fields

$$q(x) = \frac{p^+}{p^+ - V^+} q_0 \left(\frac{p^+}{p^+ - V^+} - \frac{V_q^+}{p^+ - V^+} \right), \qquad N > Z \implies V_u < V_d$$

- ρ^0 -field shifts momentum from u- to d-quarks
- size of correction is constrained by Nucl. Matt. symmetry energy
- ρ_0 vector field reduces NuTeV anomaly Model Independent!!

Total NuTeV correction

- Small increase in systematic error
- NuTeV anomaly interpreted as evidence for medium modification
- Equally profound as evidence for physics beyond Standard Model

Consistent with other observables?

- We claim Isovector EMC effect explains \sim 1.5 σ of NuTeV result
 - but can this mechanism be observed elsewhere?
- Yes!! Parity violating DIS Z^0 interaction violates parity

$$A^{PV} = \frac{d\sigma_R - d\sigma_L}{d\sigma_R + d\sigma_L} \propto [a_2(x) + \ldots]; \quad a_2(x) = g_A^e \frac{F_2^{\gamma Z}}{F_2^{\gamma}}$$

Parton model expressions

$$F_2^{\gamma Z} = 2x \sum e_q g_V^q (q + \bar{q}), \qquad g_V^q = \pm \frac{1}{2} - 2e_q \sin^2 \theta_W$$

- Measuring $a_2 \Longrightarrow F_2^{\gamma Z}$ or $\sin^2 \theta_W$
- For $N \simeq Z$ target

$$a_2(x) \simeq \left(\frac{9}{5} - 4\sin^2\theta_W\right) - \frac{12}{25} \frac{u_A^+(x) - d_A^+(x)}{u_A^+(x) + d_A^+(x)}$$

• Measurement of $a_2(x)$ at each $x \implies$ a NuTeV experiment!!

Parity Violating DIS: a_2 ratios

•
$$a_2(x) \simeq \frac{9}{5} - 4\sin^2\theta_W - \frac{12}{25}\frac{u_A^+(x) - d_A^+(x)}{u_A^+(x) + d_A^+(x)}$$

- Isoscalarity corrections are independent of $\sin^2 \theta_W$
 - An advantage over Paschos-Wolfenstein ratio
- After naive isoscalarity corrections medium effects still very large
- Large x dependence of $a_2(x)$, even after naive correction
 - \rightarrow Cannot be from $\sin^2 \theta_W$
 - Evidence for medium modification

Recall Shell Model Picture

$$q_A(x_A) = \sum_{\alpha,\kappa,m} \int dy_A \int dx \,\,\delta(x_A - y_A \, x) \, f_{\alpha,\kappa,m}(y_A) \, q_\kappa(x)$$

Nucleon distributions: ²⁸Si

EMC effects

• EMC ratio

$$R = \frac{F_{2A}}{F_{2A}^{\text{naive}}} = \frac{F_{2A}}{Z \, F_{2p} + N \, F_{2n}}$$

- Least model dependent way to definite EMC effect
- Polarized EMC ratio

$$R_{s}^{JH} = \frac{g_{1A}^{JH}}{g_{1A,\text{naive}}^{JH}} = \frac{g_{1A}^{JH}}{P_{p}^{JH} g_{1p} + P_{n}^{JH} g_{1n}}$$

- Spin-dependent cross-section is suppressed by 1/A
 - Must choose nuclei with $A \lesssim 27$
 - protons should carry most of the spin e.g. \implies ⁷Li, ¹¹B, ...
- Ideal nucleus is probably ⁷Li
 - From Quantum Monte–Carlo: $P_p^{JJ} = 0.86$ & $P_n^{JJ} = 0.04$
- Ratios equal 1 in non-relativistic and no-medium modification limit.

EMC ratio ⁷Li, ¹¹B, ¹⁵N and ²⁷Al

Is there medium modification

Is there medium modification

Medium modification of nucleon has been switched off

Nuclear Spin Sum

	Δu	Δd	\sum	g_A
p	0.97	-0.30	0.67	1.267
7 Li	0.91	-0.29	0.62	1.19
^{11}B	0.88	-0.28	0.60	1.16
15 N	0.87	-0.28	0.59	1.15
27 Al	0.87	-0.28	0.59	1.15
Nuclear Matter	0.79	-0.26	0.53	1.05

- Angular momentum of nucleon: $J = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + J_g$
- In-medium lower components of quark wavefunctions are enhanced
 - since $M^* < M$ and therefore quarks are more relativistic
 - lower components have L = 1
 - $\Delta q(x)$ very sensitive to lower components because of γ_5
- Conclusion: quark spin → orbital angular momentum in-medium

Conclusion

- Effective quark theories can be used to incorporate quarks into a traditional description of nuclei
 - fundamentally different approach to nuclear physics
- The major outstanding discrepancy with Standard Model predictions for Z^0 was NuTeV anomaly
 - resolved by CSV and isovector EMC effect corrections
- EMC effect and NuTeV anomaly are interpreted as evidence for medium modification of the bound nucleon wavefunction
- This result can be tested using PV DIS measurements
 - predict large medium modification in PV DIS
 - predict flavour dependence of EMC effect can be large
- In nuclei quark spin converted to orbital angular momentum
 Polarized EMC effect
- Important implications for nuclear physics

• Free Parameters:

 Λ_{IR} , Λ_{UV} , M_0 , G_{π} , G_s , G_a , G_{ω} and G_{ρ}

• Constraints:

• $f_{\pi} = 93 \text{ MeV}, m_{\pi} = 140 \text{ MeV}$ & $M_N = 940 \text{ MeV}$

•
$$\int_0^1 dx \; (\Delta u_v(x) - \Delta d_v(x)) = g_A = 1.267$$

•
$$(\rho, E_B/A) = (0.16 \, \text{fm}^{-3}, -15.7 \, \text{MeV})$$

♦ $a_4 = 32 \, \text{MeV}$

- $\Lambda_{IR} = 240 \text{ MeV}$
- We obtain [MeV]:

- $M_0 = 400$, $M_s = 690$, $M_a = 990$, ...
- Can now study a very large array of observables:
 - e.g. meson and baryon: quark distributions, form factors, GPDs, finite temp. and density, neutron stars

Regularization

Proper-time regularization

$$\frac{1}{X^n} = \frac{1}{(n-1)!} \int_0^\infty d\tau \, \tau^{n-1} \, e^{-\tau \, X}$$
$$\longrightarrow \quad \frac{1}{(n-1)!} \int_{1/(\Lambda_{UV})^2}^{1/(\Lambda_{IR})^2} d\tau \, \tau^{n-1} \, e^{-\tau \, X}$$

• Λ_{IR} eliminates unphysical thresholds for the nucleon to decay into quarks: \rightarrow simulates confinement

D. Ebert, T. Feldmann and H. Reinhardt, Phys. Lett. B 388, 154 (1996).

E.g.: Quark wave function renormalization

•
$$Z(k^2) = e^{-\Lambda_{UV}(k^2 - M^2)} - e^{-\Lambda_{IR}(k^2 - M^2)}$$

→
$$Z(k^2 = M^2) = 0$$
 \implies no free quarks

Needed for: nuclear matter saturation, Δ baryon, etc

W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001)

Gap Equation & Mass Generation

Mass is generated via interaction with vacuum

- Dynamically generated quark masses
- $\iff \langle \overline{\psi}\psi\rangle \neq 0 \iff \mathsf{D}\chi\mathsf{SB}$
- Proper-time regularization: Λ_{IR} and Λ_{UV}
 - → No free quarks \implies Confinement $[Z(k^2 = M^2) = 0]$

Off-Shell Effects

- For an off-shell nucleon, photon–nucleon vertex given by $\Gamma_{N}^{\mu}(p',p) = \sum_{\alpha,\beta=+,-} \Lambda^{\alpha}(p') \left[\gamma^{\mu} f_{1}^{\alpha\beta} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} f_{2}^{\alpha\beta} + q^{\mu} f_{3}^{\alpha\beta} \right] \Lambda^{\alpha}(p)$
- In-medium nucleon is off-shell, extremely difficult to quantify effects
 - However must understand to fully describe in-medium nucleon
- Simpler system: off-shell pion form factors
 - relax on-shell constraint $p'^2 = p^2 = m_\pi^2$
 - Very difficult to calculate in many approaches, e.g. Lattice QCD

$$\begin{array}{c} & & & \\ \hline p & & \\ p & & \\ p' & & \\ \end{array} = (p'+p)^{\mu} F_{\pi,1}(p'^2,p^2,Q^2) + (p'-p)^{\mu} F_{\pi,2}(p'^2,p^2,Q^2) \\ \end{array}$$

• For
$$p'^2 = p^2 = m_{\pi}^2$$
 we have $F_{\pi,1} \to F_{\pi}$ and $F_{\pi,2} = 0$

Pion Off-Shell Form Factors

• Potentially important for experimental extraction of F_{π}

• May also be important for extracting G_E/G_M ratio from ⁴He(e,e'p)³H

F_2^{γ} and $F_2^{\gamma Z}$ EMC ratios – "Carbon"

• Recall EMC ratio:

$$\begin{split} R^{i} &= \frac{F_{2A}^{i}}{F_{2A}^{i,\text{naive}}} = \frac{F_{2A}^{i}}{Z F_{2p}^{i} + N F_{2n}^{i}} \quad i \in \gamma, \ \gamma Z, \dots \\ R^{\gamma} &\sim \frac{4 \, u_{A}(x) + d_{A}(x)}{4 \, u_{0}(x) + d_{0}(x)}, \qquad R^{\gamma Z} \sim \frac{1.16 \, u_{A}(x) + d_{A}(x)}{1.16 \, u_{0}(x) + d_{0}(x)} \end{split}$$

F_2^{γ} and $F_2^{\gamma Z}$ EMC ratios – "Iron" & "Lead"

$$R^{\gamma} \sim \frac{4 \, u_A(x) + d_A(x)}{4 \, u_0(x) + d_0(x)} \quad \& \quad R^{\gamma Z} \sim \frac{1.16 \, u_A(x) + d_A(x)}{1.16 \, u_0(x) + d_0(x)}$$

• Neutron rich –
$$Z/N < 1$$
:

$$\bullet \quad u_A(x) < d_A(x)$$

• medium modification of u_A increases & d_A decreases

- u_A dominates R^{γ} however $R^{\gamma Z}$ almost isoscalar ratio
- ρ_0 -field $\Longrightarrow R^{\gamma Z} > R^{\gamma}$ Model Independent

Flavour Dependence of EMC effect

Flavour dependence is defined above by

$$R_A = \frac{F_{2A}}{F_{2A}^{\text{naive}}} = \frac{\sum_q F_{2A}^q}{\sum_q F_{2A}^{q,\text{naive}}} \longrightarrow R_A^q = \frac{F_{2A}^q}{F_{2A}^{q,\text{ naive}}} \simeq \frac{q_A}{q_0}$$

- Flavour dependence determined by measuring e.g. F_A^{γ} and $F_A^{\gamma Z}$
- If observed ⇒ strong evidence for medium modification