

Transverse (Spin) Structure of Hadrons

Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University

Outline

Probabilistic interpretation of GPDs as Fourier trafos of impact parameter dependent PDFs

•
$$\tilde{H}(x, 0, -\mathbf{\Delta}_{\perp}^2) \longrightarrow \Delta q(x, \mathbf{b}_{\perp})$$

- $E(x, 0, -\Delta_{\perp}^2) \longrightarrow \bot$ distortion of PDFs when the target is \bot polarized
- Chromodynamik lensing and \perp SSAs

 $\left.\begin{array}{l} \text{transverse distortion of PDFs} \\ + \text{ final state interactions}\end{array}\right\} \quad \Rightarrow \quad \bot \text{ SSA in } \begin{array}{l} \gamma N \longrightarrow \pi + X \\ \vec{p_{\gamma}} & \vec{p_{N}} \end{array}\right.$

- $\mathfrak{g}_2(x) \leftrightarrow \text{transverse force on quarks in DIS}$
- transversity distribution in an unpolarized target
- Summary

Generalized Parton Distributions (GPDs)

• GPDs: decomposition of form factors at a given value of t, w.r.t. the average momentum fraction $x = \frac{1}{2} (x_i + x_f)$ of the active quark

$$\int dx H_q(x,\xi,t) = F_1^q(t) \qquad \int dx \tilde{H}_q(x,\xi,t) = G_A^q(t)$$
$$\int dx E_q(x,\xi,t) = F_2^q(t) \qquad \int dx \tilde{E}_q(x,\xi,t) = G_P^q(t),$$

- x_i and x_f are the momentum fractions of the quark before and after the momentum transfer
- $2\xi = x_f x_i$
- GPDs can be probed in deeply virtual Compton scattering (DVCS)

Generalized Parton Distributions (GPDs)

formal definition (unpol. quarks):

$$\int \frac{dx^{-}}{2\pi} e^{ix^{-}\bar{p}^{+}x} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+}q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H(x,\xi,\Delta^{2})\bar{u}(p')\gamma^{+}u(p) + E(x,\xi,\Delta^{2})\bar{u}(p')\frac{i\sigma^{+\nu}\Delta_{\nu}}{2M}u(p)$$

In the limit of vanishing t and ξ , the nucleon non-helicity-flip GPDs must reduce to the ordinary PDFs:

$$H_q(x, 0, 0) = q(x)$$
 $\tilde{H}_q(x, 0, 0) = \Delta q(x).$

DVCS amplitude

$$\mathcal{A}(\xi,t) \sim \int_{-1}^{1} \frac{dx}{x-\xi+i\varepsilon} GPD(x,\xi,t)$$

operator	forward matrix elem.	off-forward matrix elem.	position space
$\bar{q}\gamma^+q$	Q	F(t)	$ ho(ec{r})$
$\int \frac{dx^- e^{ixp^+x^-}}{4\pi} \bar{q}\left(\frac{-x^-}{2}\right) \gamma^+ q\left(\frac{x^-}{2}\right)$	q(x)	$H(x,\xi,t)$?

 $q(x, \mathbf{b}_{\perp}) = \text{impact parameter dependent PDF}$

Impact parameter dependent PDFs

define \perp localized state [D.Soper,PRD15, 1141 (1977)]

$$\left|p^{+},\mathbf{R}_{\perp}=\mathbf{0}_{\perp},\lambda\right\rangle\equiv\mathcal{N}\int d^{2}\mathbf{p}_{\perp}\left|p^{+},\mathbf{p}_{\perp},\lambda\right\rangle$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has $\mathbf{R}_{\perp} \equiv \frac{1}{P^+} \int dx^- d^2 \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x) = \sum_i x_i \mathbf{r}_{i,\perp} = \mathbf{0}_{\perp}$ (cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

$$\boldsymbol{q}(\boldsymbol{x}, \mathbf{b}_{\perp}) \equiv \int \frac{dx^{-}}{4\pi} \langle p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} | \, \bar{q}(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{b}_{\perp}) | p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \rangle \, e^{ixp^{+}x^{-}}$$

Impact parameter dependent PDFs

- No relativistic corrections (Galilean subgroup!)
- \hookrightarrow corrolary: interpretation of 2d-FT of $F_1(Q^2)$ as charge density in transverse plane also free from relativistic corrections
- Reference point for IPDs is transverse center of (longitudinal) momentum $\mathbf{R}_{\perp} \equiv \sum_{i} x_{i} \mathbf{r}_{i,\perp}$
- \hookrightarrow for $x \to 1$, active quark 'becomes' COM, and $q(x, \mathbf{b}_{\perp})$ must become very narrow (δ -function like)
- \hookrightarrow $H(x, 0, -\Delta_{\perp}^2)$ must become Δ_{\perp} indep. as $x \to 1$ (MB, 2000)
- \hookrightarrow consistent with lattice results for first few moments
- Solution Note that this does not necessarily imply that 'hadron size' goes to zero as x → 1, as separation r_{\perp} between active quark and COM of spectators is related to impact parameter b_{\perp} via $r_{\perp} = \frac{1}{1-x}b_{\perp}$.

x = momentum fraction of the quark

$$ec{b} = \bot$$
 position of the quark

Transversely Deformed Distributions and $E(x, 0, -\Delta_{\perp}^2)$

M.B., Int.J.Mod.Phys.A18, 173 (2003)

So far: only unpolarized (or long. pol.) nucleon! In general ($\xi = 0$):

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \left\langle P + \Delta, \uparrow \left| \bar{q}(0) \gamma^{+}q(x^{-}) \right| P, \uparrow \right\rangle = H(x, 0, -\Delta_{\perp}^{2})$$

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \left\langle P + \Delta, \uparrow \left| \bar{q}(0) \gamma^{+}q(x^{-}) \right| P, \downarrow \right\rangle = -\frac{\Delta_{x} - i\Delta_{y}}{2M} E(x, 0, -\Delta_{\perp}^{2}).$$

- Consider nucleon polarized in x direction (in IMF) $|X\rangle \equiv |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \uparrow \rangle + |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \downarrow \rangle.$
- \hookrightarrow unpolarized quark distribution for this state:

$$q(x,\mathbf{b}_{\perp}) = \mathcal{H}(x,\mathbf{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} E(x,0,-\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

Physics: $j^+ = j^0 + j^3$, and left-right asymmetry from j^3 !
[X.Ji, PRL **91**, 062001 (2003)]

Intuitive connection with \vec{J}_q

- DIS probes quark momentum density in the infinite momentum frame (IMF). Quark density in IMF corresponds to $j^+ = j^0 + j^3$ component in rest frame (\vec{p}_{γ^*} in $-\hat{z}$ direction)
- $\label{eq:constraint} \hookrightarrow j^+ \mbox{ larger than } j^0 \mbox{ when quark current towards the } \gamma^*; \mbox{ suppressed when away from } \gamma^*$
- \rightarrow For quarks with positive orbital angular momentum in \hat{x} -direction, j^z is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side

- Details of \perp deformation described by $E_q(x, 0, -\Delta_{\perp}^2)$
- \rightarrow not surprising that $E_q(x, 0, -\Delta_{\perp}^2)$ enters Ji relation!

$$\left\langle J_q^i \right\rangle = S^i \int dx \left[H_q(x,0,0) + E_q(x,0,0) \right] \, x.$$
 Transverse

Transverse (Spin) Structure of Hadrons – p.11/41

 \hat{y}

 \hat{z}

Transversely Deformed PDFs and $E(x, 0, -\Delta_{\perp}^2)$

mean \perp deformation of flavor q (\perp flavor dipole moment)

$$d_y^q \equiv \int dx \int d^2 \mathbf{b}_\perp q_X(x, \mathbf{b}_\perp) b_y = \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q^p}{2M}$$

with $\kappa_{u/d}^p \equiv F_2^{u/d}(0) = \mathcal{O}(1-2) \quad \Rightarrow \quad d_y^q = \mathcal{O}(0.2fm)$

 \checkmark simple model: for simplicity, make ansatz where $E_q \propto H_q$

$$E_u(x,0,-\boldsymbol{\Delta}_{\perp}^2) = \frac{\kappa_u^p}{2} H_u(x,0,-\boldsymbol{\Delta}_{\perp}^2)$$
$$E_d(x,0,-\boldsymbol{\Delta}_{\perp}^2) = \kappa_d^p H_d(x,0,-\boldsymbol{\Delta}_{\perp}^2)$$

with $\kappa_{u}^{p} = 2\kappa_{p} + \kappa_{n} = 1.673$ $\kappa_{d}^{p} = 2\kappa_{n} + \kappa_{p} = -2.033.$

Model too simple but illustrates that anticipated deformation is very significant since κ_u and κ_d known to be large!

• example:
$$\gamma p \rightarrow \pi X$$

Image: u, d distributions in \perp polarized proton have left-right asymmetry in \perp position space (T-even!); sign "determined" by $\kappa_u \& \kappa_d$

٩

attractive FSI deflects active quark towards the center of momentum

- \hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$ -direction into momentum asymmetry that favors $-\hat{y}$ direction
- \hookrightarrow correlation between sign of κ_q^p and sign of SSA: $f_{1T}^{\perp q} \sim -\kappa_q^p$
- $f_{1T}^{\perp q} \sim -\kappa_q^p$ confirmed by HERMES data (also consistent with COMPASS deuteron data $f_{1T}^{\perp u} + f_{1T}^{\perp d} \approx 0$)

Quark-Gluon Correlations (Introduction)

- (longitudinally) polarized polarized DIS at leading twist —
 'polarized quark distribution' $g_1^q(x) = q^{\uparrow}(x) + \bar{q}^{\uparrow}(x) q_{\downarrow}(x) \bar{q}_{\downarrow}(x)$
- Image: $\frac{1}{Q^2}$ -corrections to X-section involve 'higher-twist' distribution functions, such as $g_2(x)$
- $g_2(x)$ involves quark-gluon correlations and does not have a parton interpretation as difference between number densities

Quark-Gluon Correlations (Introduction)

• (chirally even) higher-twist PDF $g_2(x) = g_T(x) - g_1(x)$

$$\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle PS | \bar{\psi}(0) \gamma^{\mu} \gamma_5 \psi(\lambda n) |_{Q^2} | PS \rangle$$

= $2 \left[g_1(x, Q^2) p^{\mu}(S \cdot n) + g_T(x, Q^2) S^{\mu}_{\perp} + M^2 g_3(x, Q^2) n^{\mu}(S \cdot n) \right]$

• 'usually', contribution from g_2 to polarized DIS X-section kinematically suppressed by $\frac{1}{\nu}$ compared to contribution from g_1

$$\sigma_{TT} \propto g_1 - \frac{2Mx}{\nu}g_2$$

 \checkmark for \perp polarized target, g_1 and g_2 contribute equally to σ_{LT}

$$\sigma_{LT} \propto g_T \equiv g_1 + g_2$$

- \hookrightarrow 'clean' separation between higher order corrections to leading twist (g_1) and higher twist effects (g_2)
- what can one learn from g_2 ?

Quark-Gluon Correlations (QCD analysis)

(chirally even) higher-twist PDF $g_2(x) = g_T(x) - g_1(x)$

$$\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle PS | \bar{\psi}(0) \gamma^{\mu} \gamma_5 \psi(\lambda n) |_{Q^2} | PS \rangle$$

= 2 [g_1(x, Q^2) p^{\mu} (S \cdot n) + g_T(x, Q^2) S_{\perp}^{\mu} + M^2 g_3(x, Q^2) n^{\mu} (S \cdot n)]

$$g_2(x) = g_2^{WW}(x) + \bar{g}_2(x), \text{ with } g_2^{WW}(x) \equiv -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y)$$

9 $\bar{g}_2(x)$ involves quark-gluon correlations, e.g.

$$\int dx x^2 \bar{g}_2(x) = \frac{1}{3} d_2 = \frac{1}{6MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^+ q(0) \right| P, S \right\rangle$$

matrix elements of $\bar{q}B^x\gamma^+q$ and $\bar{q}E^y\gamma^+q$ are sometimes called color-electric and magnetic polarizabilities $2M^2\vec{S}\chi_E = \left\langle P, S \left| \vec{j}_a \times \vec{E}_a \right| P, S \right\rangle \& 2M^2\vec{S}\chi_B = \left\langle P, S \left| j_a^0\vec{B}_a \right| P, S \right\rangle$ with $d_2 = \frac{1}{4} \left(\chi_E + 2\chi_M \right)$ — but these names are misleading!

Quark-Gluon Correlations (Interpretation)

9 $\bar{g}_2(x)$ involves quark-gluon correlations, e.g.

$$\int dx x^2 \bar{g}_2(x) = \frac{1}{3} d_2 = \frac{1}{6MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^+ q(0) \right| P, S \right\rangle$$

• QED: $\bar{q}(0)eF^{+y}(0)\gamma^+q(0)$ correlator between quark density $\bar{q}\gamma^+q$ and (\hat{y} -component of the) Lorentz-force

$$F^{y} = e\left[\vec{E} + \vec{v} \times \vec{B}\right]^{y} = e\left(E^{y} - B^{x}\right) = -e\left(F^{0y} + F^{zy}\right) = -e\sqrt{2}F^{+y}.$$

for charged paricle moving with $\vec{v} = (0, 0, -1)$ in the $-\hat{z}$ direction

- \hookrightarrow matrix element of $\bar{q}(0)eF^{+y}(0)\gamma^+q(0)$ yields γ^+ density (density relevant for DIS in Bj limit!) weighted with the Lorentz force that a charged particle with $\vec{v} = (0, 0, -1)$ would experience at that point
- \hookrightarrow d_2 a measure for the color Lorentz force acting on the struck quark in SIDIS in the instant after being hit by the virtual photon

$$\langle F^y(0) \rangle = -M^2 d_2$$
 (rest frame; $S^x = 1$)

Quark-Gluon Correlations (Interpretation)

Interpretation of d_2 with the transverse FSI force in DIS also consistent with $\langle k_{\perp}^y \rangle \equiv \int_0^1 dx \int d^2 k_{\perp} k_{\perp}^2 f_{1T}^{\perp}(x, k_{\perp}^2)$ in SIDIS (Qiu, Sterman)

$$\langle k_{\perp}^{y} \rangle = -\frac{1}{2p^{+}} \left\langle P, S \left| \bar{q}(0) \int_{0}^{\infty} dx^{-} g G^{+y}(x^{-}) \gamma^{+} q(0) \right| P, S \right\rangle$$

semi-classical interpretation: average k_{\perp} in SIDIS obtained by correlating the quark density with the transverse impulse acquired from (color) Lorentz force acting on struck quark along its trajectory to (light-cone) infinity

- matrix element defining d_2 same as the integrand (for $x^- = 0$) in the QS-integral:
 - $\langle k_{\perp}^{y} \rangle = \int_{0}^{\infty} dt F^{y}(t)$ (use $dx^{-} = \sqrt{2} dt$)
 - \hookrightarrow first integration point $\longrightarrow F^y(0)$
 - \hookrightarrow (transverse) force at the begin of the trajectory, i.e. at the moment after absorbing the virtual photon

Quark-Gluon Correlations (Interpretation)

- \hookrightarrow different linear combination $f_2 = \chi_E \chi_B$ of χ_E and χ_M
- \hookrightarrow combine with data for $g_2 \Rightarrow$ disentangle electric and magnetic force
- \leftrightarrow combining JLab(E99-117)/SLAC(E155x) data this yields
 - **proton:**

 $\chi_E = -0.082 \pm 0.016 \pm 0.071$ $\chi_B = 0.056 \pm 0.008 \pm 0.036$

neutron:

 $\chi_E = 0.031 \pm 0.005 \pm 0.028$ $\chi_B = 0.036 \pm 0.034 \pm 0.017$ but future higher- Q^2 data for d_2 may still change these results ...

Quark-Gluon Correlations (Estimates)

- What should one expect (magnitude)?
 - if all spectators were to pull in the same direction, force should be on the order of the QCD string tension $\sigma \approx (0.45 GeV)^2 \approx 0.2 GeV^2$
 - however, expect significant cancellation for FSI force, from spectators 'pulling' in different directions
 - → expect FSI force to be suppressed compared to string tension by about one order of magnitude (more?)

$$\hookrightarrow |d_2| = \frac{|\langle F^y(0) \rangle|}{M^2} \sim 0.02$$

What should one expect (sign)?

- $\kappa_q^p \longrightarrow$ signs of deformation (u/d quarks in $\pm \hat{y}$ direction for proton polarized in $+\hat{x}$ direction \longrightarrow expect force in $\mp \hat{y}$
- $\hookrightarrow d_2$ positive/negative for u/d quarks in proton
- d_2 negative/positive for u/d quarks in neutron

• large
$$N_C$$
: $d_2^{u/p} = -d_2^{d/p}$

• consistent with $f_{1T}^{\perp u} + f_{1T}^{\perp d} \approx 0$

Quark-Gluon Correlations (data/lattice)

Iattice (Göckeler et al.): $d_2^u \approx 0.010$ and $d_2^d \approx -0.0056$ (with large errors)

$$\hookrightarrow$$
 using $M^2 \approx 5 \frac{\text{GeV}}{fm}$ this implies

$$\langle F_u^y(0) \rangle \approx -50 \frac{\text{MeV}}{fm} \qquad \langle F_d^y(0) \rangle \approx 28 \frac{\text{MeV}}{fm}$$

- signs consistent with impact parameter picture
- SLAC data (5 GeV^2): $d_2^p = 0.007 \pm 0.004$, $d_2^n = 0.004 \pm 0.010$
- combined with SIDIS data for $\langle k^y \rangle$, should tell us about 'effective range' of FSI $R_{eff} \equiv \frac{\langle k^y \rangle}{F^y(0)}$ Anselmino et al.: $\langle k^y \rangle \sim \pm 100 \,\text{MeV}$
- ▶ x^2 -moment of chirally odd twist-3 PDF $e(x) \longrightarrow$ transverse force on transversly polarized quark in unpolarized target (\leftrightarrow Boer-Mulders h_1^{\perp})

$$\int \frac{dx^{-}}{2\pi} e^{ixp^{+}x^{-}} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \sigma^{+j} \gamma_{5} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H_{T} \bar{u} \sigma^{+j} \gamma_{5} u + \tilde{H}_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} \Delta_{\alpha} P_{\beta}}{M^{2}} u \\ + E_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} \Delta_{\alpha} \gamma_{\beta}}{2M} u + \tilde{E}_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} P_{\alpha} \gamma_{\beta}}{M} u$$

- See also M.Diehl+P.Hägler, EPJ C44, 87 (2005).
- Fourier trafo of $\bar{E}_T^q \equiv 2\tilde{H}_T^q + E_T^q$ for $\xi = 0$ describes distribution of transversity for <u>un</u>polarized target in \perp plane

$$q^{i}(x, \mathbf{b}_{\perp}) = \frac{\varepsilon^{ij}}{2M} \frac{\partial}{\partial b_{j}} \int \frac{d^{2} \mathbf{\Delta}_{\perp}}{(2\pi)^{2}} e^{i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}} \bar{E}_{T}^{q}(x, 0, -\mathbf{\Delta}_{\perp}^{2})$$

origin: correlation between quark spin (i.e. transversity) and angular momentum

Transversity Distribution in Unpolarized Target

Transverse (Spin) Structure of Hadrons - p.24/41

IPDs on the lattice (QCDSF)

Iowest moment of distribution of unpol. quarks in \perp pol. proton (left) and of \perp pol. quarks in unpol. proton (right):

Transversity Distribution in Unpolarized Target (sign)

- Consider quark polarized out of the plane in ground state hadron
- \hookrightarrow expect counterclockwise net current \vec{j} associated with the magnetization density in this state

- virtual photon 'sees' enhancement of quarks (polarized out of plane) at the top, i.e.
- → virtual photon 'sees' enhancement of quarks with polarization up (down) on the left (right) side of the hadron

 $\hookrightarrow \bar{E}_T > 0$

Transversity Distribution in Unpolarized Target (sign)

[M.B.+B.Hannafious, PLB 658, 1130 (2008)]

- \bullet matrix element for \overline{E}_T involves quark helicity flip
- → requires interference between wave function components that differ by one unit of OAM (e.g. s-p interference)
- \hookrightarrow sign of \overline{E}_T depends on rel. sign between s & p components
- bag model: p-wave from lower component

$$\Psi_m = \begin{pmatrix} if\chi_m \\ -g(\vec{\sigma}\cdot\hat{\vec{x}})\chi_m \end{pmatrix},$$

(relative sign from free Dirac equation $g = \frac{1}{E} \frac{d}{dr} f$)

- more general potential model: $\frac{1}{E} \rightarrow \frac{1}{E-V_0(r)+m+V_S(r)}$
- \hookrightarrow sign of \overline{E}_T same as in Bag model!

- SIDIS: attractive FSI expected to convert position space asymmetry into momentum space asymmetry
- \hookrightarrow e.g. quarks at negative b_x with spin in $+\hat{y}$ get deflected (due to FSI) into $+\hat{x}$ direction
- \hookrightarrow (qualitative) connection between Boer-Mulders function $h_1^{\perp}(x, \mathbf{k}_{\perp})$ and the chirally odd GPD \overline{E}_T that is similar to (qualitative) connection between Sivers function $f_{1T}^{\perp}(x, \mathbf{k}_{\perp})$ and the GPD E.
- **Boer-Mulders**: distribution of \perp **pol.** quarks in **unpol.** proton

$$f_{q^{\uparrow}/p}(x,\mathbf{k}_{\perp}) = \frac{1}{2} \left[f_1^q(x,\mathbf{k}_{\perp}^2) - \frac{h_1^{\perp q}(x,\mathbf{k}_{\perp}^2)}{M} \frac{(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}) \cdot S_q}{M} \right]$$

▶ $h_1^{\perp q}(x, \mathbf{k}_{\perp}^2)$ can be probed in DY (RHIC, J-PARC, GSI) and tagged SIDIS (JLab, eRHIC), using Collins-fragmentation

- consider semi-inclusive pion production off unpolarized target
- spin-orbit correlations in target wave function provide correlation between (primordial) quark transversity and impact parameter
- \hookrightarrow (attractive) FSI provides correlation between quark spin and \perp quark momentum \Rightarrow BM function
- Collins effect: left-right asymmetry of π distribution in fragmentation of \bot polarized quark \Rightarrow 'tag' quark spin
- $\hookrightarrow \cos(2\phi)$ modulation of π distribution relative to lepton scattering plane
- $\hookrightarrow \cos(2\phi)$ asymmetry proportional to: Collins \times BM

\perp polarization and γ^* absorption

- QED: when the γ^* scatters off \perp polarized quark, the \perp polarization gets modified
 - gets reduced in size
 - gets tilted symmetrically w.r.t. normal of the scattering plane

lepton scattering plane

quark transversity component in lepton scattering plane flips

on average, FSI deflects quarks towards the center

Collins effect

- When a \perp polarized struck quark fragments, the strucure of jet is sensitive to polarization of quark
- distribution of hadrons relative to \(\box) polarization direction may be left-right asymmetric
- asymmetry parameterized by Collins fragmentation function
- Artru model:
 - struck quark forms pion with \bar{q} from $q\bar{q}$ pair with ${}^{3}P_{0}$ 'vacuum' quantum numbers
 - \hookrightarrow pion 'inherits' OAM in direction of \perp spin of struck quark
 - \hookrightarrow produced pion preferentially moves to left when looking into direction of motion of fragmenting quark with spin up
- Artru model confirmed by HERMES experiment
- more precise determination of Collins function under way (BELLE)

SSA of π in jet emanating from \perp pol. q

 \hookrightarrow in this example, enhancement of pions with \perp momenta \perp to lepton plane

 \hookrightarrow expect enhancement of pions with \bot momenta \bot to lepton plane

Quark-Gluon Correlations (chirally odd)

Image the momentum for quark polarized in $+\hat{x}$ -direction (unpolarized target)

$$\langle k_{\perp}^{y} \rangle = \frac{g}{2p^{+}} \left\langle P, S \left| \bar{q}(0) \int_{0}^{\infty} dx^{-} G^{+y}(x^{-}) \sigma^{+y} q(0) \right| P, S \right\rangle$$

• compare: interaction-dependent twist-3 piece of e(x)

$$\int dx x^2 e^{int}(x) \equiv e_2 = \frac{g}{4MP^{+2}} \left\langle P, S \left| \bar{q}(0) G^{+y}(0) \sigma^{+y} q(0) \right| P, S \right\rangle$$

$$\hookrightarrow \langle F^y \rangle = M^2 e_2$$

 \hookrightarrow (chromodynamic lensing) $e_2 < 0$

Summary

- **GPDs** $\stackrel{FT}{\longleftrightarrow}$ IPDs (impact parameter dependent PDFs)
- $\hookrightarrow \kappa^{q/p} \Rightarrow$ sign of deformation
- \hookrightarrow attractive FSI $\Rightarrow f_{1T}^{\perp u} < 0 \& f_{1T}^{\perp d} > 0$
- Interpretation of $M^2 d_2 \equiv 3M^2 \int dx x^2 \bar{g}_2(x)$ as \perp force on active quark in DIS in the instant after being struck by the virtual photon

$$\langle F^y(0) \rangle = -M^2 d_2$$
 (rest frame; $S^x = 1$)

- In combination with measurements of f_2
 - color-electric/magnetic force $\frac{M^2}{4}\chi_E$ and $\frac{M^2}{2}\chi_M$
- $\kappa^{q/p} \Rightarrow \bot$ deformation $\Rightarrow d_2^{u/p} > 0$ & $d_2^{d/p} < 0$ (attractive FSI)
- \checkmark combine measurement of d_2 with that of $f_{1T}^{\perp} \Rightarrow$ range of FSI
- x^2 -moment of chirally odd twist-3 PDF $e(x) \longrightarrow$ transverse force on transversly polarized quark in unpolarized target (\leftrightarrow BOer Mulder Stule 10 or solutions - p.40/41

Summary

- distribution of ⊥ polarized quarks in unpol. target described by chirally odd GPD $\bar{E}_T^q = 2\bar{H}_T^q + E_T^q$
- \leftrightarrow origin: correlation between orbital motion and spin of the quarks
- \leftrightarrow attractive FSI \Rightarrow measurement of h_1^{\perp} (DY,SIDIS) provides information on \bar{E}_T^q and hence on spin-orbit correlations
- expect:

$$h_1^{\perp,q} < 0 \qquad \qquad |h_1^{\perp,q}| > |f_{1T}^q|$$

■ x^2 -moment of chirally odd twist-3 PDF $e(x) \longrightarrow$ transverse force on transversly polarized quark in unpolarized target (\longrightarrow Boer-Mulders)