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In 2008 I visited Tony at JLab for 6 months.
Sometimes he was very pleased . . .

but sometimes he worried about my results on fragmentation
functions, and drew diagrams on the whiteboard, which I could not
understand . . .

Empirical

My calculation
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Fragmentation function Dh
q (z) (z = 2p·q

q2 ) describes semi-inclusive
hadron production in e+e− annihilation and (e, e′) DIS processes:

Parton model diagrams for cross sections:

● Recently, much effort was made to extract empirical
fragmentation functions from data.
See, for example: M. Hirai et al: PRD 75 (2007) 094009.
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● Much effort was also made to describe fragmentation
functions in effective quark theories .

However, almost all calculations introduced artificial
“normalization factors” (or other ad-hoc parameters) to enlarge
the calculated fragmentation functions.
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Compare definitions of distributions and fragmentations :

fh
q (x)=

1

2

∑

n

δ(p−x− p− + pn−)〈p|ψ|pn〉γ
+〈pn|ψ|p〉

=p−

∫

d2kT

∑

α

〈p|b†α(k)bα(k)|p〉

〈p|p〉
: quarks in hadron.

Dh
q (z)=

z

12

∑

n

δ
(p−
z

− p− − pn−

)

〈p, pn|ψ|0〉γ
+〈0|ψ|p, pn〉

=
k−
6

∫

d2p⊥
∑

α

〈k(α)|a†h(p)ah(p)|k(α)〉

〈k(α)|k(α)〉
: hadrons in quark!
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● Interpretation of Dh
q (z): Probability that a hadron ( p) in the

cloud of a virtual quark ( k) has fraction z of the quark’s
light cone momentum: p− = zk−.

● Formal relation between distribution and fragmentation (from
crossing and charge conjugation):

Dh
q (z) = (−1)2(sq+sh)+1 z

6
fh

q (x =
1

z
). However, in practice this

“Drell-Levy-Yan ” relation is (almost) useless.
● Momentum sum rules (sums include antiparticles):

∑

q

∫ 1

0

xdx fh
q (x) = 1 : hadron consists of quarks.

∑

h

∫ 1

0

z dz Dh
q (z) = 1 : quark hadronizes completely!

Derivation of sum rule for Dh
q assumes that quark is an eigenstate of the

momentum operator P̂− =
P

h

R ∞

0
dp−

R

d2p⊥

“

p−a†
h
(p)ah(p)

”

expressed

in terms of hadrons!
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Simplest approximation: Truncate |n〉 to one-quark state :

dπ
q (z) =

1

2
(1 + τπτq) g

2
π

z

2

∫

d4k

(2π)4
TrD

[

SF (k)γ+SF (k)γ5 (6k −6p+M) γ5

]

δ(k− − p−/z) δ
(

(p− k)2 −M2
)

=
1

2
(1 + τπτq) z g

2
π

∫

d2p⊥
(2π)3

p2
⊥ +M2z2

[p2
⊥ +M2z2 + (1 − z)m2

π]
2

● Isospins: (τu, τd) = (1,−1) , (τπ+ , τπ0 , τπ− ) = (1, 0,−1).
● The second form is obtained by the substitution kT = −p⊥/z, which follows

from the Lorentz transformation.
● Coupling gπ is defined by residue of qq t-matrix at pion pole.
● Calculation performed using invariant mass cut-off and M = 300 MeV.
● Formally this is the continuation of distribution fπ

q (x) to x = 1/z > 1, but the
relation is violated in any sensible regularization scheme.
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NJL-elementary
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NJL-elementary

● Evolution of NJL result to Q2 = 4 GeV2 does not help - the
curve on left figure would almost disappear on this scale!

● These are disastrous results! To avoid this, previous
calculations using effective quark models introduced
“normalization constants” or other ad-hoc parameters.

● Puzzling : The lowest order fragmentation process q → qπ is
completely inadequate to describe fragmentation functions,
although the “crossed” process π → qq describes distribution
functions well!
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In constituent - like quark models: Large probability ( ZQ ≃ 0.85)
to have a quark “without its pion cloud” . Here ZQ is the residue
of quark propagator including pion-loop self energy:

● Elementary NJL fragmentation function corresponds to the
following “number of pions per quark ”:

∫ 1

0

dz
∑

π

dπ
q (z) = 1 − ZQ ≃ 0.15

Therefore the pion momentum sum is small :
∫ 1

0

z dz
∑

π

dπ
q (z) ≃ 0.1 < 1 − ZQ.

● On the other hand, empirical functions show that ≃ 74% of the
initial quark momentum is converted to pions!

● ⇒ Expect: High-energy quark may radiate a large number
of pions, and we must sum up the momenta of all pions!
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Auxiliary quantity: dQ
q (η) = fragmentation function for:

quark ( q) → quark (Q). [Same as: distribution of Q inside q.]

6 dQ
q (η) = ZQδ(η − 1) + dπ

q (1 − η) ≡ ZQδ(η − 1) + (1 − ZQ)F (η)

(Isospin indices omitted.) Here F (η) is normalized to 1.

dQ
q describes the elementary q → Q splitting ⇒ Product ansatz for
Dπ

q (z): If a quark can produce a maximum of N pions, then

Dπ
q (z) =

∫ 1

0

dη1 . . .

∫ 1

0

dηN 6d(η1) · 6d(η2) · · · · · 6d(ηN )

(

N
∑

m=1

δ(z − zm)

)
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What is the physical meaning of this ansatz ?
● Rewrite the product identically as follows:

Dπ
q (z)=

N
∑

k=1

P (k)

∫ 1

0

dη1 . . .

∫ 1

0

dηk F (η1) . . . F (ηk)

(

k
∑

m=1

δ(z − zm)

)

P (k) is the probability that k pions are produced :

P (k) =

(

N
k

)

(1 − ZQ)
k
ZN−k

Q ⇒

N
∑

k=0

P (k) = 1.

In the limit N → ∞, P (k) becomes a normal distribution with
mean number (multiplicity) 〈k〉 = N(1 − ZQ).

● In each elementary process, a fraction α ≡ 〈zF (z)〉 < 1 is left to
the quark ⇒ Fraction left to the final quark remainder is:
N
∑

k=0

P (k)αk N→∞
−→ 0. ⇒ For N → ∞, 100% of quark

momentum is converted to pions! (Price: Divergent multiplicity. )
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● Cascade-like processes enhance the fragmentation
functions tremendously!

● Calculated functions are still too stiff because:

✦ Q2 evolution should be performed in NLO. (At present,
codes are not available for the public . . . )

✦ Some of observed pions are secondary pions (from decay
of vector mesons).

✦ Other fragmentation channels (nucleons, kaons ) should
be included.
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● Cascade - type multifragmentation processes are
extremely important to describe fragmentation
functions.

● The “NJL-jet model” describes qualitatively the
empirical fragmentation functions without any new
parameters.

● Straight forward extensions will improve the
description: NLO effects in Q2 evolution; inclusion of
vector mesons; inclusion of nucleon and kaon
channels.

● Important: The product ansatz should be derived
from field theory ( ⇔ rainbow-ladder approximation for
quark self energy).
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