Electric Dipole Moment of Light Nuclei

Iraj R. Afnan (The Flinders University of South Australia)

Happy Birthday Tony

Collaborator: Benjamin F. Gibson, Los Alamos National Laboratory.

How I met Tony

Date: September 1970 at Flinders University

Occasion: Seminar on the role of *D*-state of deuteron on saturation properties on nuclei

Subject: Low Energy $pp \rightarrow \pi d$

How: Sensitivity of this reaction to deuteron properties?

Question:

How sensitive is the Electric Dipole Moment of Nuclei to the NN interaction

Some History

1949 Purcell & Ramsey:

non-zero electric dipole moment of n implied parity violation in strong interaction:

$$H = -\mu \ \vec{B} \cdot \hat{S} - d \ \vec{E} \cdot \hat{S}$$
$$P[\vec{B} \cdot \hat{S}] = \vec{B} \cdot \hat{S} \quad \text{and} \quad T[\vec{B} \cdot \hat{S}] = \vec{B} \cdot \hat{S}$$
$$P[\vec{E} \cdot \hat{S}] = -\vec{E} \cdot \hat{S} \quad \text{and} \quad T[\vec{E} \cdot \hat{S}] = -\vec{E} \cdot \hat{S}$$

1950 Purcell & Ramsey: $d_n < 3 \times 10^{-18} e \ cm$ from *n* scattering. Present limit: $d_n < 0.29 \times 10^{-25} e \ cm$.

1956 Lee & Yang: Parity violation in Weak Interaction.

1957 Landau: CP invariance implies particles have **NO** Electric Dipole Moment (EDM) if CPT is valid.

Therefore: Measurement of EDM is a test for **flavour-conserving** CP violation.

Why deuteron EDM?

The deuteron EDM is the sum of a one- and two-body contribution

$$d_D = d_D^{(1)} + d_D^{(2)} = (d_n + d_p) + d_D^{(2)}$$

Experiment: Proposed experiment to measure Deuteron EDM in a storage ring at the level of (Y.K. Semertzidis et al, hep-ex/0308063)

 $d \approx 10^{-27} e \ cm.$

Theoretical Estimate: Based on pion exchange model (Liu & Timmermans, PRC 70, 055501 (2004))

 $d_D^{(2)} \approx 0.20 \bar{g}_\pi^{(1)}$

 $d_D^{(1)} \approx 0.03\bar{g}_{\pi}^{(1)} + 0.09\bar{g}_{\pi}^{(0)}$

with $\bar{g}_{\pi}^{(1)}/\bar{g}_{\pi}^{(0)} \approx 10$. This suggests that the dominant contribution to d_D is the two-body contribution $d_D^{(2)}$ which we will now consider.

Evaluation of $d_D^{(2)}$

The Hamiltonian, including PT-violation component, is of the form

$$H = H^{S} + H^{PT}$$
 where $H^{S} = H_{0} + v$ and $H^{PT} = V$

Since H^{PT} will mix parity states, *e.g.* for the deuteron we get a coupling between ${}^{3}S_{1}-{}^{3}D_{1}$ (the large component $|\Psi_{L}\rangle$) and ${}^{3}P_{1}$ (the small component $|\Psi_{S}\rangle$), and we can write the coupled channel equations

$$(E - H_0)|\Psi_L\rangle = v |\Psi_L\rangle + V |\Psi_S\rangle$$

$$(E - H_0) |\Psi_S\rangle = v |\Psi_S\rangle + V |\Psi_L\rangle .$$

Since $V \ll v$, $V |\Psi_S\rangle \ll v |\Psi_L\rangle$, and we have that $|\Psi_L\rangle$ satisfies

 $(E-H_0)|\Psi_L\rangle = v|\Psi_L\rangle$.

On the other hand the small component $|\Psi_S\rangle$ is given by

$$|\Psi_S\rangle = G(E) V |\Psi_L\rangle$$

where

$$G(E) = (E - H_0 - v)^{-1} = G_0(E) + G_0(E) T(E) G_0(E)$$

Evaluation of $d_D^{(2)}$ cont.

The two-body electric dipole moment is now given by

$$d_D^{(2)} = \langle \Psi | O_d | \Psi \rangle = \langle \Psi_L | O_d | \Psi_S \rangle + \langle \Psi_S | O_d | \Psi_L \rangle ,$$

where O_d is the usual electric dipole operator given by

$$O_d = \frac{e}{2} \sum_i \vec{r_i} \tau_z(i)$$

Making use of the expression for $|\Psi_S\rangle$ we can write

$$\langle \Psi_L | O_d | \Psi_S \rangle = \langle \Psi_L | O_d G_0(E) V | \Psi_L \rangle + \langle \Psi_L | O_d G_0(E) T(E) G_0(E) V | \Psi_L \rangle$$

$$\equiv \frac{e}{2} \left[d_{PW} + d_{MS} \right] A \quad \text{with} \quad A = \frac{g_{\pi NN} \bar{g}_{\pi NN}^{(1)}}{16\pi}$$

where T(E) is the ³P₁ amplitude calculated at the deuteron energy. Note:

- d_{PW} invloves taking plane wave intermediate state (no ${}^{3}P_{1}$),
- while d_{MS} is the contribution from multiple scattering in the ${}^{3}P_{1}$ partial wave via T(E).

Previous Results

Avishai, 1985:

- Solved the coupled channel problem with separable potentials in both ${}^{3}S_{1}$ - ${}^{3}D_{1}$ and ${}^{3}P_{1}$ partial waves.
- For PT violating interaction V, he took one pion exchange.
- The EDM $d_D^{(2)} = -0.91 A \ e \ fm$ with $A = g_{\pi NN} \ \bar{g}_{\pi NN}^{(1)} / 16\pi$??.

Khriplovich & Korkin, 2000

- Use zero range theory independent of ${}^{3}P_{1}$ interaction.
- The EDM $d_D^{(2)} = -0.92 \ A \ efm.$

Liu & Timmermans, 2004

- Used Argonne v_{18} and Nijmegen models Reid93 and Nijm II in a coupled channel calculations.
- The EDM $d_D^{(2)} = -0.73 \pm 0.01 \ A \ e \ fm.$

Aim of Present Study

- To understand the difference between the previous three calculations specially since Avishai's results might be off by a factor of 2, *i.e.* $d_D^{(2)} = -0.46 \ A \ e \ fm.$
- The relative contribution of d_{PW} and d_{MS} with the hope of being able to neglect d_{MS} or treat it perturbatively when going to heavier nuclei, *e.g.* ³He.
- How sensitive are the results to choice of ${}^{3}S_{1}$ - ${}^{3}D_{1}$ and ${}^{3}P_{1}$ interaction, and in particular, can one use separable potentials to represent these interaction as one goes beyond the two-nucleon system.
- Finally, how complex a calculation do we need at this stage, considering the experimental limit has not yet been set.
- Ultimately, we hope a measurement of the deuteron EDM will shed some light on flavour-conserving *CP* violation, and a test of theories beyond the Standard Model.

The Input Interaction

The PT-violating Potential V

In the present analysis we will use only the one pion exchange potential with one vertex having the strong πNN coupling constant $g_{\pi NN}$, while the other has the isospin one PT-violating πNN coupling constant $\bar{g}_{\pi NN}^{(1)}$. These correspond to the Lagrangians

$$\mathcal{L}_{P.T}^{(I=1)} = \bar{g}_{\pi NN}^{(1)} \ \bar{N} N \pi^0 \qquad \mathcal{L}_S = g_{\pi NN} \ \bar{N} i \gamma_5 \vec{\tau} \cdot \vec{\pi} N$$

The Strong Nucleon-Nucleon Interactions \boldsymbol{v}

- For the ³P₁ interaction we use separable potentials of the form used by Mongan in the late 60's and adjusted to fit the new *np* phases from the Nijmegen group.
- For the ³S₁-³D₁ interaction we use either Yamaguchi rank one potentials or the Unitary Pole Approximation (UPA) to the original Reid(1968) or Reid(1993) potential. The Reid(1993) fits the latest Nijmegen np phases.
 Note: The UPA gives the identical bound state wave function to the original potential.

Sensitivity to *PT*-Violating Potential

Since I am considering only π -exchange, I will first examine the dependence of EDM $d_D^{(2)}$ on the mass of the exchanged meson.

Note: Contribution to $d_D^{(2)}$ is suppressed for heavy meson exchange.

Importance of the Deuteron Wave Function

We now turn to the sensitivity of the EDM to the deuteron wave function. For the ${}^{3}P_{1}$ potential we take a rank two separable potential that gives the optimum fit the Nijmegen np phase shifts at low energies.

$^{3}S_{1}-^{3}D_{1}$	P_d	$d_{PW}(Aefm)$	$d_{MS}(Aefm)$	$d_D^{(2)}(Aefm)$
YY 4%	4%	-1.035	0.4155	-0.6234
Reid93	5.7%	-0.9715	0.2009	-0.7706
Reid68	6.5%	-0.9620	0.1718	-0.7902
YY 7%	7%	-0.1083	0.4271	-0.6564
Khriplovich et al.		-0.92		

Note:

- For d_{PW} the variation with potential is less than 5%. and differes from the zero range results by less that 10%.
- The d_{MS} is sensitive to the short range behaviour of the deuteron wave.

Importance of the ${}^{3}P_{1}$ Interaction

Here we consider the contribution to the EDM from d_{MS} for several ${}^{3}P_{1}$ separable potential that fit the latest Nijmegen np data, with the deuteron wave function from the Reid93 potential. Here $d_{PW} = -0.9715A e fm$

Case	Rank	χ^2	$d_{MS}(Aefm)$	$d_D^{(2)}(Aefm)$
Ι	1	0.62	0.2583	-0.7132
Ι	2	0.02	0.2009	-0.7706
II	1	0.81	0.2229	-0.7486
III	1	0.19	0.3075	-0.6640
III	2	0.12	0.3805	-0.5910
IV	1	0.78	0.2153	-0.7562

Note:

- With the exception of the Case III, results are not sensitive to the ${}^{3}P_{1}$.
- Excluding Case III, the contribution from d_{MS} is about 20%.

Importance of the np data

Q: How important is it to fit the latest np data for the ${}^{3}P_{1}$ channel? Here we compare results for the same rank one potential as defined by Mongan (1969) and a refited to the latest Nijmegen np phases.

$^{3}S_{1}-^{3}D_{1}$			Reid68		YY 4%	
		$d_{PW} = -0.96$		$d_{PW} = -1.04$		
Case	χ^2	g(k)	d_{MS}	$d_D^{(2)}$	d_{MS}	$d_D^{(2)}$
I (New)	0.62	$k/(k^2 + \beta^2)$	0.21	-0.75	0.57	-0.47
I (Old)	1.90	$k/(k^2 + \beta^2)$	0.31	-0.66	0.78	-0.26
III (New)	0.19	$[Q_1(1+\frac{\beta^2}{2k^2})/k^2\pi]^{1/2}$	0.25	-0.71	0.77	-0.27
III (Old)	6.67	$[Q_1(1+\frac{\beta^2}{2k^2})/k^2\pi]^{1/2}$	0.42	-0.54	1.16	0.12

Note:

- Sensitivity of $d_D^{(2)}$ to ${}^{3}P_1$ is more for YY than the Reid potential.
- The effect is more pronounced for Case III potential than Case I.

Conclusions

- If we ignore the multiple scattering via the ${}^{3}P_{1}$ (*i.e* d_{PW}), the variation due to different deuteron wave function is less than 5%, and consistent with zero range approximation of Khripovich & Korkin.
- The contribution from the ${}^{3}P_{1}$ (*i.e* d_{MS}) is sensitive to the choice of deuteron wave function. With Reid type potentials that have short range repulsion this uncertainty can be as little as 20%.
- The contribution of the ${}^{3}P_{1}$ via d_{MS} depend on the phase shifts the potentials fit, and the off-shell behaviour of the ${}^{3}P_{1}$ amplitude.
- Considering the contribution of d_{MS} , we think we can treat the ${}^{3}P_{1}$ perturbatively in 3 He EDM, *i.e.* replace the off-shell three-body amplitude by the two-body sub-amplitude.
- For Reid93 our results are consistent with Liu & Timmermans, suggesting that separable potentials approach could be used for the ³He EDM.
- Finally, we need to understand why the Case III ³P₁ potentials give drastically different results by examining the ³P₁ scattering wave function at the deuteron pole.