Electric Dipole Moment of Light Nuclei

Iraj R. Afnan
(The Flinders University of South Australia)

Happy Birthday Tony

Collaborator: Benjamin F. Gibson, Los Alamos National Laboratory.
How I met Tony

Date: September 1970 at Flinders University
Occasion: Seminar on the role of D-state of deuteron on saturation properties on nuclei
Subject: Low Energy $pp \rightarrow \pi d$
How: Sensitivity of this reaction to deuteron properties?

Question:
How sensitive is the Electric Dipole Moment of Nuclei to the NN interaction
World first for S.A. physicists

By Science Writer
BARRY HAILSTONE

Two physicists at Flinders University have made a discovery in nuclear physics that is regarded as being of such importance that it will be made available to physicists throughout the world within the next three weeks.

The physicists, Dr. I. R. Afnan, 32, and Mr. A. W. Thomas, 21, a graduate student, have submitted a calculation to the American Institute of Physics, which has undertaken to publish it as a work of urgency.

Their formula will improve the accuracy of calculations in nuclear physics.

Both are members of the university's nuclear theory group.

The group's leader, Professor I. E. McCarthy, said yesterday, "It is a very nice bit of theoretical physics—pretty significant stuff."

Examining a copy of the formula yesterday at Flinders University are (from left) research student Mr. A. W. Thomas, the professor of physics (Professor I. E. McCarthy) and physics lecturer Dr. I. R. Afnan.

The formula:

\[t_{1/2} = \left(\frac{1}{t} \right) \frac{1}{(1 - \frac{1}{e^{\frac{V}{kT}}})} \]

Their discovery concerns heavy hydrogen, the characteristic ingredient of heavy water.

Reasoning behind the calculation was developed by Mr. Thomas last year when he was an honors undergraduate.

"He is the most brilliant student I have seen anywhere," Professor McCarthy said.

The idea was expanded during a seminar on nuclear force and lecturer Dr. Afnan and Mr. Thomas have worked on it for the past two months.

By checking quantities in the formula against known reactions, the scientists have been able to check that their calculations are correct.

But because Australia does not have the modern nuclear physics equipment necessary, the experiment cannot be performed here.

However, it is expected that members of the theoretical group will visit accelerators being constructed in the US, Canada and Switzerland to collaborate with experimental physicists.

Their work will be circulated around the world by the American Institute in a special publication "Physical Review Letters," within three weeks.
Some History

1949 Purcell & Ramsey:
non-zero electric dipole moment of n implied parity violation in strong interaction:

$$H = -\mu \vec{B} \cdot \hat{S} - d \vec{E} \cdot \hat{S}$$

$$P[\vec{B} \cdot \hat{S}] = \vec{B} \cdot \hat{S} \quad \text{and} \quad T[\vec{B} \cdot \hat{S}] = \vec{B} \cdot \hat{S}$$

$$P[\vec{E} \cdot \hat{S}] = -\vec{E} \cdot \hat{S} \quad \text{and} \quad T[\vec{E} \cdot \hat{S}] = -\vec{E} \cdot \hat{S}$$

1950 Purcell & Ramsey: $d_n < 3 \times 10^{-18} e \text{ cm}$ from n scattering.

Present limit: $d_n < 0.29 \times 10^{-25} e \text{ cm}$.

1956 Lee & Yang: Parity violation in Weak Interaction.

1957 Landau: CP invariance implies particles have NO Electric Dipole Moment (EDM) if CPT is valid.

Therefore: Measurement of EDM is a test for flavour-conserving CP violation.
Why deuteron EDM?

The deuteron EDM is the sum of a one- and two-body contribution

\[d_D = d_D^{(1)} + d_D^{(2)} = (d_n + d_p) + d_D^{(2)} \]

Experiment: Proposed experiment to measure Deuteron EDM in a storage ring at the level of (Y.K. Semertzidis et al, hep-ex/0308063)

\[d \approx 10^{-27} e \text{ cm}. \]

Theoretical Estimate: Based on pion exchange model (Liu & Timmermans, PRC 70, 055501 (2004))

\[d_D^{(2)} \approx 0.20 \bar{g}^{(1)}_\pi \]

\[d_D^{(1)} \approx 0.03 \bar{g}^{(1)}_\pi + 0.09 \bar{g}^{(0)}_\pi \]

with \(\bar{g}^{(1)}_\pi / \bar{g}^{(0)}_\pi \approx 10 \). This suggests that the dominant contribution to \(d_D \) is the two-body contribution \(d_D^{(2)} \) which we will now consider.

Evaluation of $d_D^{(2)}$

The Hamiltonian, including PT-violation component, is of the form

$$H = H^S + H^{PT} \text{ where } H^S = H_0 + \nu \text{ and } H^{PT} = V$$

Since H^{PT} will mix parity states, e.g. for the deuteron we get a coupling between 3S_1-3D_1 (the large component $|\Psi_L\rangle$) and 3P_1 (the small component $|\Psi_S\rangle$), and we can write the coupled channel equations

$$(E - H_0)|\Psi_L\rangle = \nu |\Psi_L\rangle + V |\Psi_S\rangle$$

$$(E - H_0)|\Psi_S\rangle = \nu |\Psi_S\rangle + V |\Psi_L\rangle.$$

Since $V \ll \nu$, $V |\Psi_S\rangle \ll \nu |\Psi_L\rangle$, and we have that $|\Psi_L\rangle$ satisfies

$$(E - H_0)|\Psi_L\rangle = \nu |\Psi_L\rangle.$$

On the other hand the small component $|\Psi_S\rangle$ is given by

$$|\Psi_S\rangle = G(E) V |\Psi_L\rangle$$

where

$$G(E) = (E - H_0 - \nu)^{-1} = G_0(E) + G_0(E) T(E) G_0(E)$$
Evaluation of $d_{D}^{(2)}$ cont.

The two-body electric dipole moment is now given by

$$d_{D}^{(2)} = \langle \Psi | O_{d} | \Psi \rangle = \langle \Psi_{L} | O_{d} | \Psi_{S} \rangle + \langle \Psi_{S} | O_{d} | \Psi_{L} \rangle,$$

where O_{d} is the usual electric dipole operator given by

$$O_{d} = \frac{e}{2} \sum_{i} \vec{r}_{i} \tau_{z}(i).$$

Making use of the expression for $|\Psi_{S}\rangle$ we can write

$$\langle \Psi_{L} | O_{d} | \Psi_{S} \rangle = \langle \Psi_{L} | O_{d} G_{0}(E) V | \Psi_{L} \rangle + \langle \Psi_{L} | O_{d} G_{0}(E) T(E) G_{0}(E) V | \Psi_{L} \rangle$$

$$\equiv \frac{e}{2} [d_{PW} + d_{MS}] A \quad \text{with} \quad A = \frac{g_{\pi NN} g_{\pi NN}^{(1)}}{16\pi}$$

where $T(E)$ is the $^{3}P_{1}$ amplitude calculated at the deuteron energy.

Note:

- d_{PW} involves taking plane wave intermediate state (no $^{3}P_{1}$),
- while d_{MS} is the contribution from multiple scattering in the $^{3}P_{1}$ partial wave via $T(E)$.
Previous Results

Avishai, 1985:

- Solved the coupled channel problem with separable potentials in both 3S_1-3D_1 and 3P_1 partial waves.
- For PT violating interaction V, he took one pion exchange.
- The EDM $d_D^{(2)} = -0.91\ A\ e\ fm$ with $A = g_{\pi NN} \bar{g}^{(1)}_{\pi NN}/16\pi$.

Khriplovich & Korkin, 2000

- Use zero range theory – independent of 3P_1 interaction.
- The EDM $d_D^{(2)} = -0.92\ A\ efm$.

Liu & Timmermans, 2004

- Used Argonne v_{18} and Nijmegen models Reid93 and Nijm II in a coupled channel calculations.
- The EDM $d_D^{(2)} = -0.73\pm0.01\ A\ efm$.
Aim of Present Study

- To understand the difference between the previous three calculations specially since Avishai’s results might be off by a factor of 2, i.e. $d_D^{(2)} = -0.46 \, A \, e \, fm$.

- The relative contribution of d_{PW} and d_{MS} with the hope of being able to neglect d_{MS} or treat it perturbativly when going to heavier nuclei, e.g. 3He.

- How sensitive are the results to choice of 3S_1-3D_1 and 3P_1 interaction, and in particular, can one use separable potentials to represent these interaction as one goes beyond the two-nucleon system.

- Finally, how complex a calculation do we need at this stage, considering the experimental limit has not yet been set.

- Ultimately, we hope a measurement of the deuteron EDM will shed some light on flavour-conserving CP violation, and a test of theories beyond the Standard Model.
The Input Interaction

The PT-violating Potential V

In the present analysis we will use only the one pion exchange potential with one vertex having the strong πNN coupling constant $g_{\pi NN}$, while the other has the isospin one PT-violating πNN coupling constant $\bar{g}_{\pi NN}^{(1)}$. These correspond to the Lagrangians

$$\mathcal{L}_{P.T}^{(I=1)} = \bar{g}_{\pi NN}^{(1)} \bar{N} N \pi^0 \quad \mathcal{L}_S = g_{\pi NN} \bar{N} i\gamma_5 \vec{\tau} \cdot \vec{\pi} N$$

The Strong Nucleon-Nucleon Interactions v

- For the 3P_1 interaction we use separable potentials of the form used by Mongan in the late 60’s and adjusted to fit the new np phases from the Nijmegen group.

- For the 3S_1-3D_1 interaction we use either Yamaguchi rank one potentials or the Unitary Pole Approximation (UPA) to the original Reid(1968) or Reid(1993) potential. The Reid(1993) fits the latest Nijmegen np phases.

Note: The UPA gives the identical bound state wave function to the original potential.
Sensitivity to PT-Violating Potential

Since I am considering only π-exchange, I will first examine the dependence of EDM $d^{(2)}_D$ on the mass of the exchanged meson.

![Graph showing EDM as function of mass of exchanged meson](image)

Note: Contribution to $d^{(2)}_D$ is suppressed for heavy meson exchange.
Importance of the Deuteron Wave Function

We now turn to the sensitivity of the EDM to the deuteron wave function. For the 3P_1 potential we take a rank two separable potential that gives the optimum fit the Nijmegen np phase shifts at low energies.

<table>
<thead>
<tr>
<th>$^3S_1^{-3}D_1$</th>
<th>P_d</th>
<th>$d_{PW}(Ae fm)$</th>
<th>$d_{MS}(Ae fm)$</th>
<th>$d^{(2)}_D(Ae fm)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>YY 4%</td>
<td>4%</td>
<td>-1.035</td>
<td>0.4155</td>
<td>-0.6234</td>
</tr>
<tr>
<td>Reid93</td>
<td>5.7%</td>
<td>-0.9715</td>
<td>0.2009</td>
<td>-0.7706</td>
</tr>
<tr>
<td>Reid68</td>
<td>6.5%</td>
<td>-0.9620</td>
<td>0.1718</td>
<td>-0.7902</td>
</tr>
<tr>
<td>YY 7%</td>
<td>7%</td>
<td>-0.1083</td>
<td>0.4271</td>
<td>-0.6564</td>
</tr>
<tr>
<td>Khriplovich et al.</td>
<td></td>
<td>-0.92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

- For d_{PW} the variation with potential is less than 5%. and differs from the zero range results by less that 10%.
- The d_{MS} is sensitive to the short range behaviour of the deuteron wave.
Importance of the 3P_1 Interaction

Here we consider the contribution to the EDM from d_{MS} for several 3P_1 separable potential that fit the latest Nijmegen np data, with the deuteron wave function from the Reid93 potential. Here $d_{PW} = -0.9715\, A\, e\, fm$

<table>
<thead>
<tr>
<th>Case</th>
<th>Rank</th>
<th>χ^2</th>
<th>$d_{MS}(A, e, fm)$</th>
<th>$d_{D}^{(2)}(A, e, fm)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>0.62</td>
<td>0.2583</td>
<td>-0.7132</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>0.02</td>
<td>0.2009</td>
<td>-0.7706</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>0.81</td>
<td>0.2229</td>
<td>-0.7486</td>
</tr>
<tr>
<td>III</td>
<td>1</td>
<td>0.19</td>
<td>0.3075</td>
<td>-0.6640</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>0.12</td>
<td>0.3805</td>
<td>-0.5910</td>
</tr>
<tr>
<td>IV</td>
<td>1</td>
<td>0.78</td>
<td>0.2153</td>
<td>-0.7562</td>
</tr>
</tbody>
</table>

Note:

- With the exception of the Case III, results are not sensitive to the 3P_1.
- Excluding Case III, the contribution from d_{MS} is about 20%.
Importance of the np data

Q: How important is it to fit the latest np data for the 3P_1 channel?

Here we compare results for the same rank one potential as defined by Mongan (1969) and a refitted to the latest Nijmegen np phases.

<table>
<thead>
<tr>
<th></th>
<th>$^3S_1-^3D_1$</th>
<th>Reid68 d_{PW}</th>
<th>YY 4% d_{PW}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$g(k)$</td>
<td>d_{MS}</td>
<td>$d_D^{(2)}$</td>
</tr>
<tr>
<td>Case I</td>
<td>χ^2 0.62 $k/(k^2 + \beta^2)$</td>
<td>0.21</td>
<td>-0.75</td>
</tr>
<tr>
<td>Case I</td>
<td>1.90 $k/(k^2 + \beta^2)$</td>
<td>0.31</td>
<td>-0.66</td>
</tr>
<tr>
<td>Case III</td>
<td>0.19 $[Q_1(1 + \frac{\beta^2}{2k^2})/k^2\pi]^{1/2}$</td>
<td>0.25</td>
<td>-0.71</td>
</tr>
<tr>
<td>Case III</td>
<td>6.67 $[Q_1(1 + \frac{\beta^2}{2k^2})/k^2\pi]^{1/2}$</td>
<td>0.42</td>
<td>-0.54</td>
</tr>
</tbody>
</table>

Note:
- Sensitivity of $d_D^{(2)}$ to 3P_1 is more for YY than the Reid potential.
- The effect is more pronounced for Case III potential than Case I.
Conclusions

- If we ignore the multiple scattering via the 3P_1 (i.e. d_{PW}), the variation due to different deuteron wave function is less than 5%, and consistent with zero range approximation of Khripovich & Korkin.

- The contribution from the 3P_1 (i.e. d_{MS}) is sensitive to the choice of deuteron wave function. With Reid type potentials that have short range repulsion this uncertainty can be as little as 20%.

- The contribution of the 3P_1 via d_{MS} depend on the phase shifts the potentials fit, and the off-shell behaviour of the 3P_1 amplitude.

- Considering the contribution of d_{MS}, we think we can treat the 3P_1 perturbatively in 3He EDM, i.e. replace the off-shell three-body amplitude by the two-body sub-amplitude.

- For Reid93 our results are consistent with Liu & Timmermans, suggesting that separable potentials approach could be used for the 3He EDM.

- Finally, we need to understand why the Case III 3P_1 potentials give drastically different results by examining the 3P_1 scattering wave function at the deuteron pole.